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Affine Term Structure Models

Abstract

This paper gives a general presentation of affine term structure in discrete
time. By assuming a compound autoregressive (affine) dynamics of the state
variables and an exponential affine stochastic discount factor, it is possible
to derive the risk neutral distribution and to check that the term structure
is affine. We discuss several examples of one or multifactor models of this
type, which can be with discrete or continuous state spaces, parametric or
nonparametric. We provide the derivative pricing formulas and discuss the
implementation.

Keywords : Interest Rate, Term Structure, Compound Autoregressive Pro-
cess, Affine Process, Laplace Transform, Nonparametric Pricing.

Modeles Affines de Structure par Terme

Résumé

Ce papier fournit une présentation générale en temps discret des modeles
affines de structure par terme. Sous I’hypothese de variables d’états suivant
un processus autorégressif composé et en supposant un facteur d’escompte
stochastique exponentiel affine, il est possible de dériver la distribution risque-
neutre et de vérifier que la structure par terme est affine. Nous discutons
plusieurs modeles de ce type a un ou plusieurs facteurs, a espace d’états
discret ou continu, paramétriques ou non paramétriques.

Mots clés : Taux d’intérét, structure par terme, processus autorégressif
composé, processus affine, transformée de Laplace, valorisation non paramé-
trique.
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1. Introduction

Since the publication of the paper by Vasicek (1977), there is a large
literature linking the term structure of interest rates to the historical dy-
namics of the short rate, and more generally pricing derivatives written on
this rate. These models differ by the set of admissible values of the prices
of zero-coupon bonds, which can be discrete as in Ho and Lee model [Ho,
Lee (1986)] or continuous as in the major part of the literature. They also
differ by the interpretation of the factors which have been introduced, and
by their numbers. These factors can be bond prices [Ball, Torous (1983),
Schaefer, Schwartz (1987)], forward rates [Ho, Lee (1986), Heath, Jarrow,
Morton (1990), (1992)], external state variables, especially for the so-called
equilibrium models # or stochastic parameters . They can include one factor,
6 two factors, or more. But the major part of all these approches leads to
an affine term structure, in which the interest rates with different maturities
satisfy affine relationship [Duffie, Kan (1996)].

The aim of this paper is to develop a general approach of affine term
structure in discrete time (see Duffie, Filipovic, Schachermayer (2001) for
continuous time and Duffie, Pan, Singleton (2000) for the inclusion of jump
processes). Discrete time implies an incomplete market framework and a mul-
tiplicity of admissible pricing formulas. The multiplicity problem is solved
by imposing a special structure of the stochastic discount factor (sdf), which
summarizes both the time discounting and the risk correction. The sdf is as-
sumed to be an exponential-affine function of the future short term interest
rate and of other factors. In section 2, we assume a compound autoregres-
sive specification (CAR)(or affine process) for the state variables|Darolles,
Gourieroux, Jasiak (2001), Polimenis (2001)], and derive the exponential-
affine sdf satisfying the arbitrage free restrictions. Then we explain how to
compute recursively the price of zero-coupon bonds and we derive an affine
term structure. In section 3 we discuss the multiplicity of state variables

‘see e.g. [Merton (1974), Long (1974), Vasicek (1977), Dothan (1978), Brennan,
Schwartz (1979), Langetieg (1980), Cox, Ingersoll, Ross (1985), Longstaff, Schwartz
(1992)].

Fong, Vasicek (1991), Chen (1996), Balduzzi et alii (1996)

bsee [Vasicek (1977), Cox, Ingersoll, Ross (1985), Longstaff, Schwartz (1992)] for one
factor models, [Brennan, Schwartz (1979), Longstaff, Schwartz (1992), Balduzzi et alii
(1998)] for two factor models and [Langetieg (1980), Heath, Jarrow, Morton (1992), Duffie,
Kan (1996) Dai, Singleton (2000)] for multifactor models.



which can be introduced, and in particular the partition of the set of state
variables into components which can be interpreted as interest rates and
components without this interpretation. This discussion shows that these
different state variables all follow compound autoregressive processes, but
the dynamics of the process is generally more constrained when the number
of rate type components is larger. We finally focus on the extreme case of
mimicking factors, where all components are interest rates and show that the
dynamics of interest rate is compound autoregressive both in the historical
and risk neutral worlds. Derivative pricing formulas are derived in section 4
following the approach of Duffie, Pan, Singleton (2000). The aim of section 5
it to show that the set of discrete time CAR (affine) processes is much larger
than the set of discretely sampled continuous affine processes. We present a
variety of examples, compute the associated term structure, discuss the be-
haviour of the long term interest rate and compare the stationarity conditions
in the historical and risk neutral world. Section 6 is concerned by statistical
inference. Beside the standard parametric methods developed by Singleton
(2001), we focus on the direct modelling approach. In this approach the CAR
dynamics is directly introduced on the interest rates themselves. We explain
how to incorporate the arbitrage free restrictions in the estimation approach.
Moreover the method is extended to the nonparametric framework.

2 The model

The model is written in discrete time and defined in three steps. First we
introduce the historical distribution of the process of state variables. Then
we specify a class of stochastic discount factors (s.d.f.) [see Harrison, Kreps
(1979), Hansen, Richard (1987)], which explain how to pass from the his-
torical dynamics to the state prices. Finally we impose on the s.d.f. the
arbitrage free constraints. This s.d.f. approach is now standard in discrete
time framework [see e.g. Cochrane (2001), Gourieroux, Jasiak (2001)a for
general presentation].

2.1 The historical distribution

As usual in the literature we first introduce a n-dimensional state vari-
able X;. Some of its components can be interpreted as returns (they are
said endogenous), whereas the other ones do not admit a priori this inter-
pretation (they are said exogenous). The distinction between these types of



components is important due to arbitrage free restrictions. Indeed with each
return state variable is associated an arbitrage free (equilibrium) constraint,
which concerns jointly the historical dynamics and the sdf. This feature will
be discussed in detail in section 3. In the section below we assume that the
first component is the (short term) riskfree rate r;,; predetermined at time
t and that the other component f; is exogenous : X; = (ry1, f{)’, where
denotes transpose.

The historical dynamics of the state variable is fully described by means of
the Laplace transform (also called moment generating function) of its condi-
tional distribution. The conditional Laplace transform can be written either
in terms of complex, or real arguments. It is important to first discuss the
relations between these functions, since different restrictions of the Laplace
transform are used for pricing and estimation purposes. Let us denote by w
a real vector and by z a vector with complex components. The conditional
Laplace transform [resp. real Laplace transform, Fourier transform 7] asso-
ciates to a complex argument z [resp. a real argument w, a pure imaginary
argument jw| the value ¢ (z, X;) = Ei(exp 2’ X;y1), where the conditional
expectation is taken with respect to the current and lagged values of the
factors X; = (X4, Xi—1,...) (vesp. Y(w, X}) = Ey(expw'Xy41), ¥ (iw, Xy) =
Ei(expiw'Xyy1)). The historical dynamics is restricted by means of the con-
ditional Laplace transform.

Definition 1 : The state process is a compound autoregressive (CAR) pro-
cess or an affine process if

i) the conditional Laplace transform is analytical in a neighbourhood of
2z =08

ii) the log of the conditional Laplace transform is an affine function of the
lagged value of the state variable :

Elexp 2' X 11|X,] = expld'(2) X, + b(2)], for all z (say).

The following standard properties are useful to avoid the use of complex
arguments and to get interpretations in terms of moments.

Proposition 1 : The state process is a compound autoregressive (affine)

Tor characteristic function.
8Note that the conditional Laplace transform depends on the value of the conditioning
variable and that the neighbourhood is uniform with respect to this value.
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process iff :

i) the conditional real Laplace transform admits series expansion in a
neighbourhood of w = 0;

ii) E(expw'X,,|X;) = expla’ (w)X; + b(w)], for all w,

Proposition 2 : For a CAR (affine) process the conditional real Laplace
transform characterizes the conditional distribution. This distribution ad-
mits conditional moments at any order and the conditional cumulants are
affine functions of X;. °

This dynamic specification corresponds to a compound autoregressive
model, as studied in [Darolles, Gourieroux, Jasiak (2001)] and extends the
standard gaussian vector autoregressive model. This is a discrete time ana-
logue of the continuous time affine process introduced in Duffie, Filipovic,
Schachermayer (2001). The process X; = (ry11, f{)’ is Markovian ; it is sta-
tionary if lim,_,., a®* = 0, where a®* denotes function a compounded h times
[Darolles, Gourieroux, Jasiak (2001)]. '°

The functions a and b cannot be chosen arbitrarily, but are constrained
by the interpretation of the Laplace transform [see e.g. Joe (1997) p. 373 for
a discussion of complete monotonicity]. They are also constrained by the set
of values that take the variables r; ., f;. For instance let us assume that the
short term interest rate is nonnegative with an admissible value zero'' and
denote the conditional real Laplace transform by

9An affine process has often been defined by restricting the conditional mean and
variance to be affine (see e.g. Piazzesi (2001)). The two definitions coincide for diffusion
models, but in more general framework the drift-volatility definition has to be extended
to moments of larger order.

h times
—N—
10400 (2) = a(a(...(a(z)) = aoa . ..oa(z).
—_———

h times
"In the rest of paper, we impose the nonnegativity of the short term interest rate

which is especially important for nominal interest rates. If this assumption is relaxed, the
gaussian vector autoregressive model can be used and, since it is compound autoregressive,
the whole applies. Thus the results can be used to derive the term structure exhibited by
Vasicek (1977) in the one factor case, and Langetieg (1980) in the multifactor case. They
can also be used to study models mixing Ornstein-Uhlenbeck and CIR factor processes,
for instance.



Ey(expw'Xiy1)

= Et exp [’LLTt+2 + U’ft+1] (2 1)

= exp [a(u,v)’ ( T;{l ) + b(u,v)] ,Vu, v.

Then the conditional real Laplace transform is nondecreasing with respect
to the argument u. This implies that:

u— ay(u,v)ri + ao(u, v) fi + b(u,v),

is nondecreasing for any values of v, r; .1, f;. This condition depends on the
signs of the factors:

Condition C'1 :Ifr;y; and the exogenous components are nonnegative with
admissible values zero, the functions ay, as, b are nondecreasing with respect
to u.

Condition C2 : If r;y; is nonnegative with admissible value zero and the
exogenous components can take any value, then a; and b are nondecreasing
with respect to u, whereas as does not depend on u.

When the exogenous components can take any value the conditional dis-
tribution of ry 5 given ry, 4, f; admits the real Laplace transform:

explai (u, 0)re41 + a2(0) fi + b(u, 0)] = explay (u, 0)ry41 + b(u, 0)],

since ay(0) = 0. Therefore the exogenous factor process (f;) does not cause
the interest rate process (ryy1) [Granger (1969)] and intuitively contains no
useful information on this process. On the contrary, when the factor process
is a priori nonnegative, there is a possible causality from (f;) to (r441).

Finally note that, depending on the pattern of functions a and b, the
variables can have discrete or continuous support. This allows to include as
special case the discretely sampled Cox, Ingersoll, Ross model with contin-
uous state space [Cox, Ingersoll, Ross (1985)], as well as models based on
binomial tree [Ho, Lee (1986)].



2.2 Stochastic discount factor

The pricing model is completed by specifying the stochastic discount fac-
tor My, for the period (¢,¢ 4+ 1). The sdf is the basis for pricing any
derivative written on the spot short term interest rate.'?> For instance the
price at ¢ of a european derivative paying g(ry p1) at t + h is :

Ct(ga h) = F; [Mt,t+1 ce Mt+h71,t+hg(7"t+h+1)]
= L [Mt,t+hg(7“t+h+1)] (say), (2.2)

where E; denotes the historical expectation conditional on the information
including the current and lagged values of the state variables. In discrete
time, we are generally in an incomplete market framework with a multiplicity
of admissible sdf. To restrict the set of risk neutral distributions, we select a
sdf, which is exponential-affine in the state variables :

M1 = exp(ariio + 0 fri1 + Br), (2.3)

where «, ¢ are path independent risk correction factors and the intercept [,
can depend on the past. This specification of the sdf corresponds to the Es-
scher transform introduced in insurance [Esscher (1932)] and used in finance
by [Buhlman et alii (1996), Stutzer (1996), Shyraev (1999), Gourieroux, Mon-
fort (2001)a,b, Darolles, Gourieroux, Jasiak (2001)]. The exponential affine
specification of the sdf can be justified in different ways. First it corresponds
to a choice of a risk neutral distribution, which satisfies the arbitrage free
restrictions and is the closest to the historical distribution for an informa-
tion criterion [Stutzer (1996)]. Second it is obtained in a general equilibrium
framework, when the representative agent has a time separable power util-
ity function and the endowment process depends in an appropriate way of
exogenous factors [see e.g. Polimenis (2001)]. Finally it corresponds to the
choice of sdf suggested by Hansen, Scheinkman (2002), where the sdf is an
exponential affine function of the eigenfunction of the conditional expectation
operator associated with the largest eigenvalue. Indeed for CAR processes
this eigenfunction is affine [Darolles, Gourieroux, Jasiak (2001)].

12and more generally a derivative written on a sequence of yields of different maturities
Ti+1,0+k, Say. Then formula (2.2) is valid with a payoff g(ri+h t+h+1, e+, t+h+2, - - ), Where
the bar is introduced for current and lagged values.
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2.3 Arbitrage free restrictions

The parameters «, 9, 3; of the sdf cannot be chosen arbitrarily. Indeed,
under the assumption of no arbitrage opportunity, the pricing formula (2.2)
has to be valid for the zero-coupon bond with unitary residual maturity. The
arbitrage free condition is :

exp(—re1) = Ef(Mypi1)

<~ Et [Mt,t-i-l exp Tt+1] =1

<~ Eexp (CYTH_Q + (Slft_H + 6+ ’I“t_|_1) =1

= a(a,d) ( T?J ) + (v, 6) + B + 1141 = 0, V7, fr (2.4)
t

The arbitrage free restriction fixes [3; as a linear function of current state
variables. By replacing in the expression of M;;, the constrained sdf be-
comes :

M1 = exp lang + 0" fry1 — a(a, 0) ( T;{l ) —b(a,0) — Tt+1] . (2.5)

It is an exponential function of Xy, X;i1 :

M1 = explyo + 11Xt + 75 Xe41], (2.6)
where : 70 = —b(a,8), 7y = —a(a,5) — ( ! ) = (0d). (@1

It is important to remark that the incompleteness due to the discretized
framework has not been completely suppressed by the exponential affine
restriction imposed on the sdf. Indeed the parameters o, d can still be chosen
independently of the historical distributions of the state variables. We say
that the dimension of residual incompleteness is equal to the number n of



state variables. Finally note that the s.d.f constrained by the arbitrage free
restrictions is the same as (2.6), (2.7) if the a priori specifications of My,
is exponential affine in Xy, Xy1 @ My = exp[y, + 71Xy + 75 X41] with
unconstrained v parameters.

2.4 Factor identifiability

As usual the factors are defined up to an invertible affine function. More
precisely, let us consider :

ft* = Bft + brt+1; +boa

where B is an invertible matrix. It is easily checked that the initial sdf is an
exponential-affine function of (ry,2, f;1,)’, and that the process (ry 1, f;') is
still a compound autoregressive process.

2.5 Affine term structure

We can easily derive the prices of the zero-coupon bonds from formula
(2.2) since :

B(t,h) = By [Myyi1 - Mysnos4]
where B(t, h) denotes the price at ¢ for residual maturity h.

Proposition 3 : The price at date ¢ of the zero-coupon bond with residual
maturity h is :

B(t,h) = exp(c X¢ + dp), h > 1,

where ¢, and d, satisfy the recursive equations :

vl (5)]-0(5)- ()
=i (§) oo ()]

13Tn the three factor model this lack of identifiability explains why it is not possible to
interpret a priori factors as affecting the level, slope and curvature of the term structure.
If such factors with these interpretations exist, they have to be searched among the infinite
number of admissible factors.




for h > 2, with initial conditions : ¢} = (—1,0),d, = 0.
Proof : see Appendix 1.

Thus the yields :

1 ¢ d :
Tipsh = =7 log B(t, h) = —ﬁhXt - Fh’ h varying, (2.8)
are affine functions of the short term yield and the factors. They generate an
affine space '*. Thus we get an affine term structure of interest rates [see e.g.

Duffie, Kan (1996) and the list of references for examples of such models].
Corollary 1 : The term structure of yields is affine.

The dimension of this affine space is equal to the rank of the system
[c1, €2y .oy €,y ...] and is always between 1 and the total number n of state
variables. To discuss the rank, let us first consider exogenous factor com-
ponents with any admissible real values. By condition C2, the function a,
depends on v only and by the recursive equation for ¢, (see Proposition 3)
we find that ¢y, = 0,Vh. The dimension of the affine space is equal to one.
Since the exogenous factor does not Granger cause the interest rate process,
it has no effect on the term structure.

In contrast, factors with nonnegative values generally influence the term
structure. To illustrate this point let us consider the case of one additional
exogenous factor n = 2. We get :

cig = a(a—1,0)—a(a,d) —1, (2.9)

C20 = az(a—1,0) —ax(a,d).

The affine space has dimension 2, whenever ay(u, v) is strictly increasing with
respect to u.

Similarly the forward short term interest rates are :

B(t,h+1)
= —]_ _

14The assumption of path independent risk corrections «,d is crucial to get this result.
Otherwise ¢p, and dp, may depend on 741, f; and the relation is no longer affine.

10



= —(h1 —cn)' Xy — (dpgr — di)
= (ennr —ch)’Xt+b< 3‘ ) —b [ch+ ( ? )] . (2.10)

The forward short term interest rates generate generally the same affine
space as the yields. Moreover they depend on the residual maturity through
cp, only.

Corollary 2 : The term structure of forward rates is affine.

Finally note that the sequences of coefficients ¢y, d, is very easy to com-
pute numerically.

3. Endogenous and exogenous state variables

In the section above we considered a special partition of the state variable
into an interest rate r;; and exogenous factors f;. However other partitions
can be considered a priori. For instance some authors have introduced models
in which all state variables correspond to yields of various maturities. The
advantage is that the yields are observable and the derivatives are generally
written on yields. The drawback is that the dynamics is constrained due to
arbitrage free restrictions. On the contrary other authors considered only
exogenous state variables. This allows for an unconstrained dynamic model,
but requires additional transformations to solve the estimation and pricing
problems. The aim of this section is to show that more financial return
state components in the partition imply more nonlinear restrictions on the
dynamics of the state variable. We will also discuss carefully the dimension
of residual incompleteness.

In a second step we explain how the exogenous factors can be replaced
by endogenous ones, called mimicking factors.

3.1 Free arbitrage restrictions and constraints on parameters

Let us consider a n-dimensional state variable, which can be partitioned
into a H-dimensional subvector of yields and n — H additional exogenous
factors : X; = (f,’f Y ft’)l. For expository purpose, we assume that 7, q
includes the H first yields, and introduce a common a priori specification of
the sdf which is exponential affine in X;, X1 (see (2.6)).

11



i) The structural parameters

The state variable follows a compound autoregressive model :

Eylexp 2' Xy 41] = expla(z, 0) X; + b(z; )], (3.1)

where 0 is a p-dimensional vector of parameters.

The sdf is given by :

M1 = exp (v + 11 Xe + 75 X141) - (3.2)

Thus the total number of parameters is p + 2n + 1. The parameter 6
characterizes the historical distribution of the state variables, whereas the
v parameter concerns the pricing kernel. However these parameters are not
necessarily independent.

ii) The arbitrage free restrictions
They correspond to the pricing of zero-coupon bonds :

B(t, h) = Et[Mt’t+1B(t —+ 1, h — 1)], h Varying, (33)

or equivalently in term of yields :

exp(—hrien) = Ey { M1 exp[—(h — 1)rii1 48]}, b varying. (3.4)

The first H restrictions involve only components of X; and will imply
constraints on the structural parameters. On the contrary the other arbi-
trage free restrictions do not imply constraints on parameters, but define
the other yields as functions of the state components (as for equation (2.8)).
In fact the h*" restriction corresponds to an equilibrium condition on the
bond market, which justifies the terminology endogenous state variable for
Tt,t—l—hah: 1,...,H.

More precisely the structural parameters are constrained by :

eXp(—hT't’H,h) = Et(Mt,t+1 exp[—(h — 1)rt+1,t+h])a h= 1, Ceey H.

These restrictions are of the type :

12



exp(N,Xy) = Ey[Mypr exp(p Xon)],h =1,... H, (say),

where Ay, py, are given. We deduce :

exp(X, Xy) = exp(yo + %1 Xo) E{expl(pn + 72)' Xen]t, h=1,... . H

or : (14 alpn +72) — M)’ Xy + 70 + b(pn +72) =0,h=1,..., H.

These equalities have to be satisfied for any admissible values of X;, which
implies :

’Yl+a’(/l’h+f)/2)_Ah:0770+b(uh+72):Ovh:]-a"'aH' (35)

We get H(n + 1) constraints on the structural parameters. Comparing
with the number of parameters, we get the following order conditions.

Proposition 4 :

i) If H = 0, that is if any state variable is exogenous, the # and v pa-
rameters are unconstrained. There is a multiplicity of admissible derivative
prices, with a dimension of residual incompleteness equal to 2n + 1. 15

ii) If H = 1, which corresponds to the situation of section 2 [see also
Duffie, Pan, Singleton (2000), p 1355], the # parameters are unconstrained,
but the v parameters are partly dependent. There is a multiplicity of admis-
sible derivative prices, with a dimension of residual incompleteness equal to
n.

iii) If H > 2 and p > H(n+ 1) — 2n — 1, the 7 parameters are functions
of the #-parameters and the § parameters are partly constrained. There is a
unique pricing formula and a restricted historical dynamics.

iv) If H>2and p < H(n+1) —2n — 1, the model defined by (3.1), (3.2)
is not compatible with arbitrage free restrictions.

Proposition 4 shows that different modelling approaches can be followed.

5Note that the residual incompleteness can be diminished by introducing additional
restrictions on the 7y parameters, such as 73 = 0 (see Polimenis (2001)]. In this special
case endogenizing the riskfree rate is equivalent to specifying the stochastic discount factor.

13



i) When all state variables are exogenous, the parameters are unconstrained,
but the conditional distribution of the short term interest rate is not
directly specified.

ii) When one state variable corresponds to the short rate and the other
ones are exogenous, the historical dynamics is still unconstrained and
in particular, we can easily select directly the form of the conditional
distribution of the short rate process.

iii) With more endogenous state variables, the historical dynamics has to be
restricted in an appropriate way. 6

3.2 Mimicking factors

Let us now come back to the framework of section 2 and explain how
the initial exogenous factors can be replaced by endogenous ones. As noted
in section 2.4 the exogenous factors are defined up to an invertible affine
transformation. We directly deduce from (2.8) [resp. (2.10)] that a finite
number of interest rates [resp. forward rates] may constitute an admissible
set of factors. Therefore we can replace the initial specification by a model
whose influencing factors are interest rates with given maturities, or forward
rates [as in Heath, Jarrow, Morton (1990), (1992), Jamshidian (1989)], called
mimicking factors. For expository purpose we assume that the affine space
has dimension n and that the mimicking state variables are the rates with the
smallest maturities. The new state variable is denoted by X; = (ri1, R}),
where Ry = (r1 49,y Ttatn) -

The historical dynamics of X; corresponds to a compound autoregressive
model :

Ey(expw'X[,,) = expla”(w)' X] + 0" (w)], (3.6)

and the sdf admits an exponential affine expression :

16For instance the Ball, Torous’ model is inconsistent with the absence of arbitrage (see
Cheng (1987)). The same remark applies for the Nelson, Schaefer model [see Martellini,
Priaulet (2001)].

14



Mupsr = exp (5 + 97 X7 + 95 X7,1). (3.7)

The interest rates at different maturities can often be observed, in contrast
to initial factors 7. Thus the compound autoregressive form (3.6) is a testable
restriction induced by the initial model. For instance we can check if the

conditional mean and variance of the rates are affine functions of the previous
rates [see Ghysels, Ng (1998)].

i) Constrained historical dynamics

The functions a*, b* (and the pricing parameters v*) are functions of the
initial parameters a, b, (o, §), and deduced by means of relations (2.8).

We have already noted that a*,b*,v* were strongly constrained by the
arbitrage free restrictions (see the discussion of section 3.1). In our framework
these restrictions can be obtained in the following way.

Let us denote by cj, d; the solution of the recursive equation of Proposi-
tion 3, when functions a and b are replaced by functions a* and b* and («, 0)
are replaced by (a*,d*). By applying condition (2.8), we get :

e d*
Tit+h = —Fh < Tg1 > —%,hZQ,...,n
s /2 . ds /2
— R, = —|: ( Etl ) — |
¢ In d:/n

Since this equality has to be satisfied for any admissible values of the
rates, we deduce that functions a*, b* are constrained by :

r=0,h=2,...,n, (3.8)

( ; ) —0, (3.9)

"This remark is important for statistical inference (see section 6).

0’5’/2

c;‘;/n

15



52,
Id+ ;, <1d>:0. (3.10)
cr/n
These restrictions on functions a*, b* are automatically satisfied when the
dynamics of the rates is deduced from (2.1), (2.3), (2.8) [see Appendix 2.
Indeed the dynamics of the rates depend not only on the underlying factors,
but also on the value of the endogenous risk corrections «,d : ”The spot

rate and bond price processes parameters are not independent of the market
prices for risk” [Heath, Jarrow, Morton (1992)] .

ii) Risk neutral dynamics

The dynamics of the interest rate process under the risk neutral prob-
ability!® is characterized by its conditional Laplace transform at horizon 1,
which is given by :

Q
E: [eXP(wIXZFH)]

Ey [My 11 exp(w' X7, y)]
Ey (M t41)

= exp(ris1)Br [exp(v + 5 X7 + 75 Xo1) exp(w’ X7,)

= exp{la”(; +w) —a"(B)XF +07(75 +w) =" (13)},
with 74 = —b*(73), 75 = —a*(75) — ( (1) ) . We deduce the proposition below.

Proposition 5 : The term structure of interest rate X; = (ryy1, R})’ is a
compound autoregressive (affine) process under the risk neutral probability.
It corresponds to shifted functions :

'8In a similar way it is possible to derive the risk neutral dynamics of the initial state
variables X;. However the derivatives proposed on the market are written directly in terms
of the rates X; (not of X;).
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A (w) = a* (v +w)—a*(73),

B(w) = b*(7; +w) = b"(73).
The fact that a compound autoregressive representation is valid both un-
der the historical and risk neutral probabilities allows for a direct analysis of
the stationarity properties. Let us recall that the term structure is station-

ary under the historical (resp. risk neutral) probability if limy_,(a*)°* = 0
[resp. limy, ;oo (A*)" = 0].

4. Derivative Pricing

When the state process follows CAR (affine) dynamics and the sdf is log-
linear, derivatives’ prices also get closed form. To simplify the presentation
we consider european derivatives at maturity h. The discrete time approach
was developed in Polimenis (2001), and is analogous to the method presented
in Duffie, Pan, Singleton (2000) for continuous time models. We first explain
how to price the derivatives with exponential payoff of the type exp(2'X},,),
directly written on interest rates X*. When z = w is real the payoff is simply
exponential, but the computation has to be extended to complex argument
z. Indeed with complex argument, we can invert complex Laplace transform
to deduce the price of derivatives with other types of payoff such as european
call written on bonds.

4.1 Exponential payoff

Let us recall that the process X} is compound autoregressive :

Elexp 2/ X[\ ] = expla®(2)' X + b7 (2)], (4.1)

and that the sdf can be written as :
My = exp(yy + ’YTIX; + 'Y;,X:H)a (4.2)
* * * * * 1
where 5 5 = = 55). 71 = ~ato5) — ).

The exponential payoffs exp(2'X/,,), z varying, constitute a generating
system of the set of all payoffs. Let us denote by C}(z,h) the price at ¢ of
this derivative :
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Cy (2, h) = Ey[Mypn exp(2'X¢ )] (4.3)
Proposition 6 : The price Cj(z, h) of the contingent payoff exp(z'X/,,) is
given by :
C(z,h) = exp|c*(h, 2) X} + d*(h, 2)],

where ¢*, d* satisfy the recursive equations :
1
c*(h,z) = A*c*(h—1,2)] — ( 0 ) ,

d*(h,z) = d'[h—1,2]+ B*[c"(h — 1,2)],

and the initial conditions :
1
10 = a6 )

d*(1,z) = B*(2).
Proof : See Appendix 3.

Proposition 6 is similar to the standard property for continuous time
models, saying that the price of a derivative satisfies a partial differential
equation, which is independent of the payoff (see also the complex valued or-
dinary differential equations derived by Duffie, Pan, Singleton (2000), p1351,
or the generalized Ricatti equations in Duffie et alii (2001) equation (11.10)).
However in the discrete framework the equations are easily solved recursively.

The general formula can be easily particularized to derivatives with expo-
nential payoff on the short term interest rate only and written with respect
to the initial factors. We get the following corollary.

Corollary 2 : The price Cy(u, h) of the derivative paying exp(uryy;) at date
t+his:

Ci(u, h) = explc(h, u)' X; + d(h, u)],

where ¢ and d satisfy the same nonlinear recursive equations as in Proposition
3, with initial conditions :
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c(l,u) = ala+u,d)—ala,d)—(1,0),

d(1,u) = bla+u,d)—bla,d).

4.2 Inversion formula

The pricing formula (4.3) can be considered as a Fourier transform, and
used to derive the price of other derivatives by inversion. For instance it
is possible to use the inversion formula described in Duffie, Pan, Singleton
(2000) [Proposition 2] and Polimenis (2001) for continuous and discrete time
economies, respectively. Let us denote :

Gi(wo, wy, K; h) = Ey[Myqp exp w()X;+h]lw’1Xt*+h<K]a (4.4)

where 1 denotes the indicator function. The function G} is a truncated real
Laplace transform. From Duffie, Pan, Singleton (2000) the truncated real
Laplace transform can be deduced from the (untruncated) complex Laplace
transform :

Ci(wo,h) 1 /°° Im[Cf (wo + twry, h) exp —iy K] dy. (45)
0

Gt(woﬂwlaK;h):T_; y

where I'm(z) denotes the imaginary part of the complex z.

Then the truncated real Laplace transform can be used in the usual way
to derive the price of a european call option on a coupon bond. It is first
noted that holding a call option with maturity £ + A on a coupon bond
paying coupons ¢; at date t + h + k; (say) is equivalent to holding a portfolio
of call options with same maturity ¢ + h on discount bonds B(t + h,k;)
[Jamshidian (1989)]. Thus it is sufficient to price a european call on discount
bond B(t + h, H — h), say. The price of this call is :

Cir(hs HK) = Ey[Myyon(B(t+h, H—h) — K)*]

= Ey{Mypin(exp[—(H — h)ringen] — K)T}.

By the arbitrage free restrictions the rate ryyj;+m can be written as an
affine function of the state variables X7, :
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exp[—(H — h)risnrm| = exple’(h, H)' X}, + d*(h, H)], (say). (4.6)
Therefore :
Cr(hiHk) = By {Myypn(exples(h, HY X, + d=(h, H)] — K]+
= B {Myen(exple* (h, HY X7, + d*(h, H)| - K)
Lo= (h, by X7, e (h,H) >log K

e exp d* (h’ H)Et {Mt,t+h eXp[C* (h, H)IXZ+h]1*C*(h,H)’XZ‘+h<7log K+d*(h,H)}

—-KE, {Mt,t+h 1—c*(h,H)'X;+h<— log K+d*(h,H) } .

Proposition 7 : The price of the european call on discount bond is :

Cr(h, H,K) = exp(d*(h, H))Gi[c"(h, H), —c*(h, H), —log K + d*(h, H)]
— KG[0, —c*(h, H), —log K + d*(h, H)],

where G; denotes the truncated Laplace transform (4.4) and ¢*(h, H), d*(h, H)
are the coefficients in the decomposition of —(H —h)ry 44 g on the state vari-
ables.

The pricing formula only requires one-dimensional integration to derive
the values of the truncated Laplace transform [see (4.5)]. This integration
is equivalent to the computation of the cumulative distribution function of
the gaussian (resp. gamma, bivariate chi-square) distribution in the Black-
Scholes (resp. CIR, Longstaff-Schwartz) model.

5. The pattern of the term structure

Various patterns can be derived for the term structure according to the
number of factors and to the selected functions a and b that capture the
dynamics of the state variables X; (or a* and b* that capture the dynamics
of the rates X;). We first consider one factor models and give examples when
the short term interest rate is discrete, or continuous. Then we propose a
general approach for building multifactor models.
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The aim of this section is threefold. First we present a large variety of
models to show that the set of discrete CAR (affine) processes is much larger
than the set of discretely sampled continuous time affine processes [see Ap-
pendix 5]. Second we want to compare the stationarity properties of the rate
dynamics under the historical and risk neutral probabilities. Finally we anal-
yse the dynamics of the long term interest rate. Recall that in the absence
of arbitrage the long term zero-coupon rate can never decrease (Dybvig, In-
gersoll, Ross (1996), El-Karoui, Frachot, Geman (1998)). Thus the following
situations are possible.

i) The long term interest rate does not exist;

ii) The long term interest rate exists and its historical (or risk neutral) dis-
tribution is stationary. Then it is necessarily constant.

iii) The long term interest rate exists and both its historical and risk neutral
distributions are nonstationary.

5.1 One factor model

If the short term interest rate is the single state variable, the dynamics
is characterized by Ej(expuryo) = expla(u)riyr + b(u)], and the sdf is :
M1 = exp(arii2 + ;). When, in an equilibrium framework, higher rates
coincide with lower economic growth, the risk correction v becomes positive.
Cash flows that arrive in high interest rate states allow agents to diversify
their exposure to the fundamental uncertainty and thus have higher value.
In this case, we get :

Cp, dh
r = =0Ty = o
tt+h LT
where : ¢, =alep_1 + o] —ala) — 1,6 = —1,

dh = dh,1 — b(CY) + b[Chfl + Oé], d1 =0.

The term structure is driven by r,,1. The long term interest rate exists
if and only if ¢,/h and d,/h tend to finite limits, when h tends to infinity.
Moreover it is stochastic if limp,_,o ¢/h # 0.
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The historical and risk neutral dynamics are characterized by the Laplace
transforms :

Ei(expurys) = expla(u)riy + b(u)], (5.1)
%t (expurye) = explA(u)ri1 + B(u)l, (5.2)

where : A(u) = a(a+u)—a(a), Blu) =bla+u) —b(a). (5.3)
We give below examples of term structure patterns.
Example 1 : The compound Poisson process

We assume that the interest rate can only take discrete nonnegative values
J7v,j € IR, where v € IR™ is given. Its conditional distribution is such that :

Teva/Y = Zps1 + €41,

where Z;,; and €4, are conditionally independent, with conditional distri-
butions :

Zyy1 ~ B(riga/v;m), ™ € (0,1), (Binomial),
etr1 ~ P(A), A >0, (Poisson).
The conditional Laplace transform is :
Ey(expuriy2) = Eiexpuy(Zipr +41)]
= FEpyexp(uyZii1)Erexp(uyeiq)
= [rexp(uy) + 1 — 7] +1/7 exp[—A(1 — exp uy)].
1
Thus : a(u) = —log[mexp(uy) + 1 — 7], b(u) = —A(1 — exp uy).
Y

A simple computation given in Appendix 4 provides the term structure :
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r mexp[y(a — 1)] "

t+1

= — " log{ A + B
Tt,t+h ~h 0g { <7r exp(ya) + 1 7r> }

C E [ mexp[y(a —1)] h
a E_D_ﬁ<7rexp(7a)+1—7r> ’

where A,B,C,D,E are constant coefficients. For large maturities the interest
rate tends to a constant at an hyperbolic rate. Examples of term structures
are provided in Figure 1 for different values of the parameters. These values
are : v = 0.0015, A = 0.5, 7 varying between 0.9 and 0.99, whereas the risk
adjustment coefficient « is 1,100, —100, 500, —500. We observe monotonic
convex or concave patterns.

[Insert Figures 1 : Term structure for compound Poisson]

It is easily checked that the risk neutral dynamics of the short term inter-
est rate corresponds also to a compound Poisson process, with parameters :

v =, 7 = exp(ay)[rexp(ay) + 1 — 7] L,

A* = Nexp(ay).

There exists an infinite number of risk neutral probabilities indexed by
the risk adjustment parameter a.

When 7 < 1, the process is both stationary under the historical and risk
neutral probabilities. The process has a longer memory under the risk neutral
probability (7* > ), if the correction term « is positive. When 7 = 1, the
process is a random walk with drift under both probabilities. The drift is
larger under the risk neutral probability (A\* > )), if the correction term « is
positive.

Example 2 : The autoregressive gamma process

The autoregressive gamma process is the discrete time counterpart of
the Cox-Ingersoll-Ross process [Cox-Ingersoll-Ross (1985)]. Conditionally to
ri11, the future interest rate r, o is such that r, /¢ follows a gamma distri-
bution (v + Z;), where Z; is drawn in the Poisson distribution P[p r41/c].
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[see e.g. Gourieroux, Jasiak (2001)b]. The parameters are constrained by
¢ > 0,p > 0. Its conditional log-Laplace transform is given by :

log E[exp uryio] = —vlog(l — uc) + : “

Tttt
We get :
U
() = 2 b(w) = v log(1 - uc)
The coefficient ¢;, satisfies the recursion :

_ plep-ita)  po

S l—clgpmi ) 1—ca
It is possible to get the explicit expression of the coefficient ¢;,. Indeed

the series ¢, satisfies a rational recursive equation, which is equivalent to :

Ch

ch—=" _l+m v G —m

Ch = V2 7 Lty —7
where 71, v9 are distinct real roots of the second degree polynomial :
YV 4+ qlpr+ ¢t —1]—-1=0, and ¢* = [l — ac ™!, p* = p[l — ac] 2.

Thus we get :

h_
Ch—71:<1+71 Y2 ) 11+’Y1

Ch — V2 M 1+ L+’
h—
y— <1+’Yl V2 > 11+’Y1
1= V2
_ o I+ L+
Ch = h—1 )
1_<1+’Yl V2 > IT+m
M 1+ T+

It can be checked that the short term interest rate follows a gamma au-
toregressive process under both historical and risk neutral probability. Under
the risk neutral probability the parameters are v* = v, ¢*, p*. The parameters
¢* and p* have to be positive, which implies the restriction & < 1/c¢ on the
risk correction parameter.

Moreover if p < 1, the interest rate process is stationary under the histor-
ical probability. Under the risk neutral probability the process is stationary

1 —
if p* <1, that is if a < \/ﬁ; it is nonstationary, otherwise.
c
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As illustration Figure 2 reports the term structures corresponding to dif-
ferent parameter values : ¢ = .1,v = .1,.2,a = —4,0,4, whereas p varies
between 0 and 0.9.

[Insert Figures 2 : Terms Structure for Autoregressive Gamma
Process]

Note the presence of patterns with bumps.
Example 3 : Infinitely divisible distribution

Let us consider an infinitely divisible distribution on IR* (see e.g. Sato
(1999)) with Laplace transform expa(u) and another distribution on IR™
with Laplace transform exp b(u). Then function a satisfies a complete mono-
tonicity condition, that is function a is infinitely differentiable with non-
negative derivatives [Joe (1997)]. Then we can consider the process with
conditional Laplace transform :

Eylexp uryio] = expla(u)(Yore41 +71) + b(u)],
where v, >, > 0.

Since function a is increasing, convex, with value 0 for v = 0, it is eas-
ily checked that the stationarity condition : lim,_,. 72a® = 0,Vu < 0 is

da(0)
du

equivalent to the Lipschitz condition < 1.

Under the risk neutral probability, we get :
A(u) = vola(u + a) — a(a)],

B(u) = mla(u + «) — a(a)] + b(u + o) — b(u).
The process is also based on an infinitely divisible distribution with log-
dA da

Laplace transform A. Since : d—(()) = ’}/gd—(Oé), the process is stationary
u U

. e ) da
under the risk neutral condition if o < ag, where o satisfies d—(ag) = 1/7.
u

In this special case the recursive equations become :
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e = Yalcp1 +a) —yala) —1,¢ = —1,
dh = dh_1 — %a(a) — b(Oé) + %a(ch_l + Oé) + b(Ch_1 + CY),
d1 == 0

Then the coefficient ¢, satisfies the recursive equation : ¢, = A(ep 1) —
1,¢; = —1, where A is increasing convex. Two cases can be distinguished.

dA(u) da(u)

u
such that ¢, = A(cx) — 1 < —1, and the sequence ¢, tends to c¢y. Then

< 1, there is a fixed point ¢,

d, =dn_1+ ﬂ(ch + 1) is asymptotically equivalent to dj, ~ hﬂ(c00 +1) and
Yo Yo

the long term interest rate exists and is constant ;. = —ﬂ(coo +1).

Yo

da(u)

(ii) If limy s o0 Y0 > 1, the sequence ¢, tends to —oo, and the long

term interest rate can depend on r,,; according to the rate of divergence.

This example shows the large variety of dynamics, which correspond to a
compound autoregressive model. For instance the baseline distribution with
log-Laplace transform a can be discrete with integer value and probabilities
pi, i € IN, such that the ratio p;;1/p; is increasing in ¢ (a sufficient condition
for infinite divisibility [Warde, Katti (1971)]). It includes as special cases
the power series with Laplace transform 1 — (1 — exp 8)1/0, 0 > 1, and the
logarithmic series with Laplace transform —6 log[1—(1—exp —#) exp s],0 > 0.
The baseline distribution can also be continuous as for stable distribution
with Laplace transform exp(—|s|'/?),6 > 1.

5.2 Multifactor model

The extension of the above examples to a multifactor framework is impor-
tant, if we want to introduce independent evolutions for the level, slope and
curvature of the term structure. In this section we present general approaches
to build multifactor models.

i) A transformation approach.
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It is well known that gaussian vector autoregressive models admit an
affine log-Laplace transform. Let us consider such a model :

Y, = OY,_; + u, (5.4)
where u; ~ N(0,%). Then we have :

2—1/2 Y, = (E—I/Qq)zl/Q)E—l/Q Y, |+ 2—1/2 uy,

or: Z;=®*Z,_1 + v, (say),

where v, ~ N(0, Id). Thus (Y;) is a linear transformation of a process (7;),
whose components are instantaneously independent and which admits a CAR
representation.

A similar approach can be followed for defining CAR distributions of
nonnegative variables.

In a first step we define a nonnegative process with conditionally inde-
pendent components. The conditional Laplace transform is defined by :

Eylexp v'Zy41]

— Et[exp(i1 Vi Zji1)) (5.5)

= exp[zn:{aj (vi) (Vi Ze + Yjo) + bj(v3) },

j=1

where a;,j varying, is the log-Laplace transform of an infinitely divisible
distribution ' on IR*, v; = (v;1,---,7Vn)’, and i, Vo are nonnegative coef-
ficients.

Then in a second step the process of interest is defined by :

Ji

where P has nonnegative elements and is invertible (P can be chosen triangu-
lar). Then the process of interest admits the conditional Laplace transform :

X, = ( s ) = PZ, (5.6)

19The choice of an infinitely divisible distribution ensures that exp(a;(v;)y) is a Laplace
transform for any nonnegative y.
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Eylexp w' Xy 1]

= FEiexpw'PZ 4] 57)

=1

— exp {i[aj[(w'mj](v; P, 4 7, +bj[(w'P>jn>} .

We get a CAR representation :

Ey[exp w' Xyi1]

= exp[A(w)' X; + B(w)],

where : A(w) = Xn:aj[(w'P)j]v'-P_l

n
B(w) = 21 {a;[(w'P);]vjo + bj[(w'P);]} -

j=
The specification depends on the basic distribution by means of functions
ai,...,ap, on the vectors v,,7;,7 = 1,...,n, which capture the time depen-
dence and on the matrix P defining the linear transformation. It involves
2n(n + 1) parameters in the definition of the conditional affine mean and

covariance matrix, and induces strict restrictions on these affine moments.

Example 4 : Let us consider for a moment the continuous time framework
and assume that the process (X;) satisfies a multidimensional stochastic dif-
ferential equation with drift x(X;) and volatility matrix X(X;). Since the
instantaneous Laplace transform of the process is :

1
explun(X;) + S0 S(X)u],

the affine condition is satisfied if and only if ;4 and ¥ are affine functions of
(X;). 2 Tt is well-known that this condition plus the nonnegativity of the

20The affine restriction on the two first conditional moments is often used as definition
of affine models [see e.g. Piazzesi (2001) section 2.4].
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variance matrix restrict the admissible processes. For instance the multivari-
ate continuous time extensions of the CIR process are very constrained and
can require independent factors (Duffie-Kan (1996), Dai, Singleton (2000)].
The restrictions are weaker in discrete time and for instance, the previous
approach can be applied to get a multivariate extension of the autoregressive
gamma process.

ii) Recursive multifactor models

Let us discuss again the gaussian vector autoregressive model. For conve-
nience, the approach is described in dimension two. Instead of autoregressive
equation (4.4), we can first define the conditional distribution of Y}, given
Y2,t,Y1,t—1,Y2,t—1 :

Yig=0bo+01Yoy 4+ b2Y1 1+ 03Yo, 1 + viy, (say),

then the conditional distribution of Y5, given Y3, 1,Y5, 4 :

Yor=co+ 1Yo + Yoy + vay (say).

The first equation can be seen as a gaussian autoregressive model, in
which a stochastic factor Y5, has been introduced in the drift. This approach
is typically used in the Ornstein-Uhlenbeck process with stochastic long run
equilibrium.

We can now apply this recursive scheme to the general compound autore-
gressive process. Let us introduce the log-Laplace transforms of two infinitely
divisible distributions aq, as (say). We can define the conditional distribution

of ri4o given fii1, 741, fi by :

E; [eXP(W"tH) |ft+17 Tt+1, ft]

= exp [ar(v)|ay figr + Biregr + Bofi] +b1(u)],
then the conditional distribution of f,1 given r,q, f; by :

Ey[exp(ufis1)|reer, fil = exp laa(u)(nirep + 72 fi)] -
We deduce by iterated expectations that :

Ey [exp(urirs + v fiy1)|resn, fil

= explas [v+ai(war] (nres1 + 2 ft) + a1 (w)Birerr + ar(w)Bafe + bi(u) + balv + a1 (u)aq]]
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which is a compound autoregressive process.

This approach can also be used to extend the autoregressive gamma pro-
cess to the multivariate framework and does not provide the same dynamics
as in the example of the section above.

iii) Recursive specification and stochastic parameter models

Finally it is interesting to relate the recursive modelling approach with the
practice of considering models with stochastic parameters, such as stochastic
volatility or stochastic long run parameter. Let us consider a parametric
CAR process :

E[eXp U,Y;t+1|Y;; 5] = eXp[ao(u),yt + bo(u)lé]a

where parameter ¢ affects linearly the b function. The model can be extended
by introducing a stochastic parameter ¢ satisfying also a CAR specification.
The model becomes :

E[GXPU'Y;JFHYt,(StH] = eXP[ao(U)'E-i-bo(U)'(StH];

Elexpv'011[Y:, 6] = explai(v)'d; + b1 (v)].

We get a recursive model of the type discussed in the section above. For
instance for the compound Poisson process [section 5.1, Example 1], the in-
tensity A can be modified into a stochastic intensity \;. In the autoregressive
gamma case [see 5.1, Example 2], the degree of freedom v can be made
stochastic. 2!

6. Implementation

The implementation of the model for pricing requires a preliminary esti-
mation of the parameters involved in the historical dynamics of the interest
rates, that are functions a*,b* defined in equation (3.6) characterizing the
dynamics of X;.

Two types of approaches can be followed. In the latent modelling ap-
proach the dynamics concerns a vector of state variables including exogenous

21Tf we do not impose the positivity of the short term interest rate, we can consider
the gaussian AR(1) model, where both the volatility and mean are stochastic [see Chen
(1996)].
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components (as in section 2). The functions a*, b* depend on a set of param-
eters 0* = (0, «, §), where § parametrizes the initial functions a and b. In the
direct modelling approach, a parametric specification of a*,b* is assumed,
and we explain how to take account of the arbitrage free restrictions in the
statistical step.

6.1 Latent modelling approach
i) Parametric specification with known transition

When functions a*,b* are known up to a finite dimensional parameter
¢*, and the conditional density of X; = [ri1, Ry ;] admits a closed form
expression, the parameter is estimated by maximum likelihood. Moreover
the risk neutral distribution generally belongs to the same family as the
historical distribution, and it is possible to get analytical expressions of the
prices of european calls written on bonds. This is the case of the standard
CIR model.

ii) Parametric specification easy to simulate

For some parametric specifications the closed form expression of the con-
ditional pdf is not available, but simulated paths are easily constructed.
The parameter can be estimated by simulated maximum likelihood [Ped-
ersen (1995), Brandt, Santa-Clara (2001)], or indirect inference [Gourieroux,
Monfort, Renault (1993), Gallant, Tauchen (1996)a]. In this framework, it
is generally easy to simulate under the risk neutral probability. Thus the
derivative prices can be computed by Monte-Carlo to avoid the integral for-
mula based on the complex Laplace transform.

iii) Parametric specification difficult to simulate

When a closed form expression of the transition is not available and sim-
ulated path are not easily constructed, the parameter can be estimated by
a method of moments based on the Laplace transform 22. Two approaches
have yet been developed in the literature according to the type of argu-

22Tt is also possible to use the first and second order conditional moments for calibration,
since they have simple affine expression [Darolles et alii (2001), Singleton (2001)]. The
method is simple since it involves seemingly unrelated regressions. However it may lack
of efficiency in finite sample.
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ment introduced in the Laplace transform either real, or pure imaginary (see
Darolles, Gourieroux, Jasiak (2001), Singleton (2001), respectively). For real
arguments, the estimator is defined as a solution of :

J /T
A . * * T * *
f = argmin ( E witlexp(ujrit1 + v Riy1) — exp {a (wj,0%) ( E;l + 0" (w;,0") >

j=1 \t=1
)
where w; = (uj,v;)',7 = 1,...,J are given values, w; = (wji,... w]t)
varying, are instrumental variables. 23
For imaginary arguments, the estimator is defined as a solution of :
J T r
0= argn;i*nz | Zwjt[exp(iujrt+1+iv}Rt+1)—exp[a*(iwj,0*)' < Ertl )-{—b*(iwj,ﬁ*)] 1.
j=1 t=1
(6.2)

Since both the real Laplace transform and the Fourier transform charac-
terize the distribution for nonnegative variables, accurate estimations can be
expected if the number of moments J, the instruments w; and the grid w; =
(uj,v;),7 = 1,...,J are well-chosen [see Feuerverger (1990), Feuerverger,
Mec Dunnough (1991) a,b, Singleton (2001)]. This is a consequence of gen-
eral results on GMM with a continuum of moment conditions established by
Carrasco, Florens (2000), (2002).

In fact the approaches above do not use the same basic moments for cali-
bration. The first approach focuses on exponential transformations, whereas
the second one considers sine and cosine functions. Intuitively the first ap-
proach is more appropriate for getting accurate results on the tails of the
distribution in finite sample, since some of the selected moments overweight
the tails. On the other hand the second approach involves transformations
with the same order of magnitude and can be more easily applied with con-
stant instruments w;; = 1,7, ¢, independent of j.

6.2 Direct modelling approach

23To improve the asymptotic efficiency it is possible to introduce a matrix of weights,
which is not diagonal. We retained an objective function of type (6.1) for expository
purpose.
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We first explain how this approach can be implemented in a parametric
framework. Then we consider its extension to the nonparametric case.

i) Parametric specification

Let us denote by 6* the parameter introduced in the direct specification
of a*,b*. We assume that the dimension of #* is sufficiently large to avoid the
unconsistency discussed in Proposition 4, that is dim §* =p > n? —n — 1.2
By applying one of the methods described in section 6.1, it is possible to get
an unconstrained estimator % of the parameter and an estimator Q of its
variance-covariance matrix.

However the estimated functions a*(.) = a*(.,0%),b* = b*(.,#*) are not
necessarily compatible with the arbitrage free restrictions. Indeed from (3.5),
there exist constants 7, 71,75 such that :

A a (o +75:0%) = A= 0,75 + b(pn +73;0%) =0,h=1,...,n, (6.3)

where 0* denotes the true value of parameter.
This is a standard constrained estimation problem (Gourieroux, Monfort
(1989), (1995), Vol 2), in which the constraint (6.3) has a mixed form :

G(v*,0") =0, say.

Then the estimator §* can be corrected to incorporate the constraint. The
constrained asymptotic least squares estimators of both type of parameters
0*,~* are solutions of :

(6*,5%) = argming- .- (% — 6*)QL(6* — 0%)

s.t. G(v*,6%) = 0.

Moreover it is known that the optimal value of the criterion is a natu-
ral test statistic for the hypothesis G(v*,0*) = 0 (see Gourieroux, Monfort
(1995) Vol 2].

In summary this approach provides arbitrage free constrained estimators
of 0*,~*, but also a specification test, which is easy to implement. When

24Tn multifactor models a large number of parameters is easily introduced by following
one of the approaches proposed in section 5.2.
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the arbitrage free restrictions are rejected, the initial model can be modified
either by changing the parametric form of the distribution, or by increasing
the number of factors. This specification test is similar to the approach
developped by De Munnik, Schotman (1994), Bams, Schotman (1997), Bams
(1998), De Jong (1997) in special cases.

ii) Nonparametric specification

More important, the CAR (affine) processes can also be used in a non-
parametric framework. Let us recall how functions a*, b* restricted to real
arguments can be estimated in a nonparametric setup [see Darolles, Gourier-
oux, Jasiak (2001)]. For any real argument w the values a*(w), b*(w) can be
approximated by :

T
[a(w), b(w)] = argmin Y _{exp(w'X},,) — exp(a” X7 +b9)}°. (6.4)
7ot=1

These functional estimators are consistent and converge at rate v/T'. They
can be used to estimate the underlying prices of risk by considering :

(36,91, 95) = argming. > | 77 + alpn +73) — M ||”
h=1

n
+ 3 176 + bl +) II7,
h=1
and as above the optimal value of the criterion function can be used to test
the arbitrage free restrictions.

The estimated a* and b* functions restricted to real arguments can be
used to determine the term structure of interest rates and to price derivatives
with real exponential payoff. But the expression of the Laplace transform
should be estimated for complex arguments also in order to apply a pricing
formula based on the inversion of a Fourier transform [see section 4.2]. The
nonparametric estimation of the Laplace transform for complex arguments is
less tractable. Indeed two approaches can be followed. The first one consists
in applying a calibration criterion (6.4) for complex arguments z = wq + iw;.
Thus the dimension of the optimization problem is 2n, since it concerns
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both wy and w;. Likely the curse of dimensionality will be encountered.
Moreover the results will not be very accurate. Indeed we now that the
Laplace transform defined for complex numbers is characterized by the real
Laplace transform. Thus the fact that z — a(z),z — b(z) depend on the
real functions w — a(w),w — b(w) of smaller dimension is not taken into
account. A second approach consists in computing the complex Laplace
transform from the real one. The idea is to derive the series expansion of the
[complex] Laplace transform by estimating the derivatives at w = 0 of the
real Laplace transform exp[a(w)' X, + b(w)].

7. Affine versus quadratic term structure models

This paper develops a general approach for affine term structure in dis-
crete time. The specification assumes that the underlying factors satisfy a
compound autoregressive (affine) process and that the stochastic discount
factor is an exponential affine function of the lagged values of the factors.
Under these assumptions, the term structure is affine and it is possible to
derive the admissible risk neutral probabilities. Several examples have been
considered and the implementation has been discussed in a parametric or
nonparametric framework.

Several authors reported strong evidence against the set of restrictions
implied by the general class of affine models. But either they have consid-
ered specific parametrized specifications often deduced from affine continuous
time models, implying a constant long term interest rate [Ait-Sahalia (1996),
Anderson, Lund (1996), Chan et al. (1992), Conley et alii (1996), Gallant,
Tauchen (1996), Stanton (1997)], or introduced a priori observable economic
factors [Ghysels, Ng (1998)].

These stylized facts are against the affine specifications written in contin-
uous time. At this point two strategies can be followed.

1) It is possible to still consider continuous time model and to relax the
affine assumption. This is done in the quadratic term structure models [see
e.g. Leippold, Wu (2002)]. But as for affine models, the admissible dynamics
are very restricted. Typically 2%, the short term interest rate has to be a
quadratic function of factors, following a differential stochastic system with
linear drift and constant volatility [see e.g. Leippold, Wu (2002), Proposition
1]. Thus the quadratic model involves only K (K + 1)/2 more parameters

Z5Under the risk neutral probability.
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than the affine model in continuous time where K is the number of factors.
Moreover this quadratic specification is not easy to implement in practice
since the unobservable factors have to be recovered from the yields by solving
multivariate quadratic system.

2) The alternative is to stay in the affine class, but to assume a min-
imal time unit which is not infinitesimal. Since the class of discrete time
compound autoregressive (affine) processes is quite large in a nonparametric
setup, a reasonable fit can be expected (see the application on absolute value
of returns in Darolles et alii (2001))].

Of course it would be possible to mix the two extensions and consider
quadratic models in discrete time, but it is out of the scope of the present
paper.

Finally as in Duffie et alii (2001) the approach points out the importance
of the conditional Laplace transform instead of the standard conditional drift
and volatility functions.
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Appendix 1
Proof of Proposition 3

B(t,h) = E;[Myi1... Myinh14n)
- Et [Mt7t+1B(t + ]., h - ].)]

= Eyexplaryo+ 0" fir1 —ala, ) Xy — b(a,0) — riq
+ 1 X + dhq]

= exp[—a(@,0)' Xy — b(a, 6) — 141 + dp1]

b o e ()] ]

= exp[—a(a,6)' Xy — b(a, 8) — rep1 + dp—

v (e () (s ()]

The result follows by identifying the coefficients.

QED
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Appendix 2
Constraints in the two factor case

As an illustration let us consider a model with two state variables, that
are the riskfree rate r,; and a nonnegative factor f;. From (2.7), (2.8) and
Proposition 3 we get:

C1,2 C2,2 dy

Mtz = T T T fi = b}
ar(a, ) —a(a—1,0) +1 az(,0) — as(av — 1,0 b(a,0) —b(ax — 1,0
1( ) 1; ) eit 2( ) 22( )ft ( ) 2( )

= T + Y2 fe + 3, say.

Whenever functions aq,as,b are strictly increasing with respect to u [see
Condition C1], the affine space can be generated by 74, and r;442. Moreover
r1+2 automatically takes nonnegative values.

Let us now consider the joint dynamics of the two rates. The conditional
Laplace transform of ryy9, 7141 443 = Riqq is:

Eiexp(uriys +vRiiq)
= Epexpluriis +v(Ni7e2 + Y2 firr +73)]
= explar(u + 10, %20)re + az(u + 71, 720) fi + b(u + 11, 720) 4 730]
= explai(u + 710, 720)re1 + az2(u + Y10, 720) [Re/v2 — (11/72) 01 — 3/ el
+b(u + 71, 72v) + Y30]
= explaj(u, v)ri1 + a5 (u, v) Ry + 0" (u, v)],

where

ai(u,v) = ay(u+7v,720) = (71/72)a2(u 4+ 110, Y20),
az(u,v) = ax(u+7v,720)(1/7),
b (u,v) = bu+nv,72v) + 730 — (v3/72)a2(u + 71v, Y2v).

Similarly the stochastic discount factor becomes:

Mg = exp(aris +0fir + Br)
= exp(a'ripe + 0" Ripr + ),
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where o = o — 071 /72, 0" = §/7s.
It follows directly from this example that:

aj(a*,0") —aj(a* = 1,6%) = -1,
ay(a*,0") —ay(a* —1,6%) = 2,

b (", 6%) — b (a* —1,6%) = 0,

and that the arbitrage free restriction is automatically satisfied, since:

aj(a*,0%) —ai(a* —1,6%) + 1 ay(a*, 0%) —as(a* —1,6"
o) oot Z LBV L a6 o’ — 18

2
b, 6) — b*(a* — 1,6%)
2

= Rt-
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Appendix 3
Proof of Proposition 6

The proof of similar to the proof of Appendix 1 after noting that :

Cy(2,h) = Ey [Myy 1 Gy (2,h = 1)] .

i) Recursive equation

We get :

E[My 111 Crpy (2, h — 1)
= E{exp(y5 + 71 Xi + 75 Xiga) expler(h = 1,2) Xyy + d*(h = 1, 2)]}
= exply; + 77 Xy + d*(h — 1, 2)]E{exp[(c*(h — 1, 2) +73) Xysa]}
= exp{(a*[c"(h—1,2) + %] +77) X, +b*[c*(h—1,2) + 3] + v +d"(h —1,2)}

— exp{(A[*(h—1,2)] — ( . ))’Xt +d*(h—1,2) + B (h—1,2)]}.

Thus we deduce :
1
c*(h,z) = A*e*(h—1,2)] — ( 0 ) ,

d*(h,2) = d*(h—1,2)+ B*[c*(h — 1,2))].

ii) Initial conditions

For h =1, we get :
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Ci(z,1)

Et[Mt,t-i-l exp ZIXt*+1]
exp(g + ’yi‘,Xt)Et[eXp(z + ’Y;),Xt*ﬂ]

expl(a*(z +75) +77)' X + 0" (2 + 73) + ]

ep{la) -~ (g 10+ B,
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Appendix 4
Term structure for the compound Poisson process

We have to compute the expressions of the coefficients ¢, and d,. The
coefficient ¢, satisfies the recursive equation :

1 mexp(yep_1 +ya)+1—7
cp, = — log -1
Texpya+1—m

T exp Yy« 1—7
exp YCp—1 +

= expyexp(ycy) =

Texpya+1—m Texpya+1—7

We get a linear recursive equation, whose solution is of the type :

_ oy (_mexeb(e 1] '
exp(yen) = A <7r exp(ya) + 1 — 7r> +B

— Ch:llog{A< mexpy(a — 1) >h+3},

v mexp(ya)+1—m

for some constants 4 and B.

mexply(or — 1)]
mexp(ya)+1—m
tures hyperbolic decay.

Since < 1,¢,/h tends asymptotically to zero and fea-

The coefficient d), satisfies the equation :

dp = dp—1 + Aexp(ay)(exp(yen—1) — 1),

and can be written as :

mexply(a — 1)] )

dp, = Dh+FE
h=C+Dht (FeXp(’)/OZ)—F].—?T

for some constants C', D, E. Thus d,/h tends to a limit D asymptotically.
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Appendix 5
Discrete and continuous time affine processes

The class of continuous time (c.t.) affine processes has been introduced
by Duffie, Filipovic, Schachermayer (2001). Let us recall that a c.t. Markov
process is affine if :

Ey(exp 2' X1 1) = explan(2)' Xy + by (2)],Vz € C,Vt € IR,Vh € IR™.

(see Definition (2.1), Duffie et alii (2001)). In particular this condition is
satisfied when ¢ and h are integers. We deduce that any discretely sampled
c.t. affine process is a compound autoregressive process.

It is known that the class of c.t. affine processes is rather small. ”Roughly
speaking the c.t. affine processes with state space IR'} are branching process
with immigration and those with state space IR" are of Ornstein-Uhlenbeck
type” (Duffie et alii (2001)). In fact these processes have to be infinitely
decomposable. This decomposability condition is not necessary in discrete
time, which explains the much larger number of affine dynamics in discrete
time. Let us now provide examples of CAR processes without continuous
time interpretation.

i) Gaussian Vector Autoregressive Process

The Laplace transform of a process : X; = AX; 1 + &4, ~ N(0,Id) is :

2z

Ey(exp 2/ X111) = exp[/ AX, + 7],

and satisfies the CAR condition for any matrix A

A necessary and sufficient condition for infinite decomposability is the
existence of a matrix A such that A = exp —A. In the one dimensional case
the gaussian AR (1) process is given by X; = pX; ;1 + &, with |p| < 1 to
ensure the stationarity. It is decomposable if p > 0, (and is the discretized
Ornstein-Uhlenbeck process), not decomposable if p < 0.

ii) Markov of order p.
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The class of CAR processes is compatible with autoregressive lags larger
than 2. Indeed, let us assume that X; = (ry1,7) (say). The Laplace
transform is :

Ei(exp2'X;11) = Efexp(z17i42 + 227141)]
— expfa(=)' X, + b(2))

= explai(2)ri41 + az(2)r + b(2)].

In particular : Fjexp(zi17i42) = explai(z1, 0)ripq + az(z1,0)ry + b(21,0)]
and the short term interest rate is Markov of order 2. Such a process cannot
be the discretized version of a c.t. process of order 1.

iii) Count processes

CAR specifications for count data time series are easily derived in the
following way. Let us consider independent discrete variables Z;,,1,t vary-
ing (&4, ¢ varying) with identical distribution on IN with Laplace transform
expa(z) [resp. expb(z)]. We assume that the variables (Z;;) and (¢;) are
independent. The one dimensional process X; defined by :

Xi—1

X, = Z Zit + e,

=1

admits the Laplace transform :

Eilexp 2X;,1] = expla(2) X, + b(2)].

It is important to note that the discrete distributions a,b can be chosen
arbitrarily.
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