
Adaptive Consistent Unit Root Tests Based on

Autoregressive Threshold Model ∗

Frédérique Bec †

Alain Guay ‡

Emmanuel Guerre §

November 2002 (first version: February 2002)

∗Financial supports from FCAR, CREST and LSTA are gratefully acknowledged. Previous versions were

presented at the SCSE 2002 conference, macroeconomic seminar of CREST, ESEM 2002 and EMM first annual

conference. We benefited from discussions with D. Andrews, M. Carrasco, G. Laroque.
†CREST–ENSAE, Timbre J120 — 3, av. Pierre Larousse, 92245 Malakoff Cedex, France. Email: bec@ensae.fr
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Abstract. We develop adaptive consistent unit root tests based on a three-regime threshold

autoregression specification as auxiliary model. Under the null, the regimes are not identified

and we eliminate the threshold by considering maximum statistics over a set of admissible pa-

rameters. The originality of the approach consists in the treatment of this set. We allow the

threshold level to remain bounded under the null and unbounded under the alternative. Com-

pared to previous approaches, this adaptive choice improves the power of the test by producing

smaller critical values under the null and inspecting a wider set of thresholds under the alter-

native. We derive the null limit distribution of the procedures and show then that the tests are

consistent against a wide class of stationary process. Hence, our tests are specifically designed to

detect processes which are globally stationary but locally nonstationary. A Monte-Carlo study

compares the finite sample properties of the proposed test to some existing unit root tests. We

apply the unit root test to yield spread of interest rates for France, Germany, New-Zealand and

US post-1980 monthly data.

JEL Classification: C12, C22, C32, E43

Keywords:Unit root test, threshold autoregressive model, term structure.

Résumé. On propose un test de racine unité, adaptatif et consistant, basé sur un modèle à

seuil à trois régimes. Sous l’hypothèse nulle, les régimes ne sont pas identifiés, et le paramètre de

seuil est éliminé en prenant le maximum de statistiques. L’originalité de l’approche développée

ici tient à l’ensemble aléatoire sur lequel ce maximum est calculé: les seuils doivent rester borné

sous la nulle mais peuvent diverger sous l’alternative. On obtient la loi limite de ces statistiques

de tests et on établit leur consistance contre une large classe d’alternatives stationnaires. Les

tests proposés sont tout particulièrement adaptés à des alternatives stationnaires qui peuvent

être localement non stationnaire. Les propriétés de ces tests sont étudiés par simulation. On

applique ce nouveau test de racine unité à l’écart de taux d’intérêt pour la France, l’Allemagne,

la Nouvelle-Zélande et les Etats-Unis, sur des données mensuelles postérieures à 1980.
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1 Introduction

Several economic phenomena can potentially imply nonlinear dynamics. The presence of fixed

costs of adjustment or transaction costs create asymmetric adjustment in economic variables.

Economic policy characterized by discrete intervention to manage for instance exchange rate

target zone, inflation or output gap targeting could also induce nonlinear dynamic in economic

variables. Recent studies by e.g. Enders and Granger [1998], Enders and Siklos [2001] and Taylor

[2001] pointed out that standard unit-root and cointegration tests all have low power in presence

of nonlinear adjustment which may explain the frequent failure to reject nonstationarity for

series such that the real exchange rates or yield spread of interest rates. A proper unit-root or

cointegration test must allow for asymmetric adjustment under the alternative. This is precisely

the issue tackled by Enders and Granger [1998] and Enders and Siklos [2001], who propose to

extend the DF unit-root test and the Engle-Granger cointegration test respectively by permitting

a two-regime threshold auto-regressive (TAR) specification under the alternative. However, if

non-linearity arises from, for instance, transaction costs as advocated by Anderson [1997], the

relevant alternative specification should be a three-regime threshold auto-regressive model, so as

to account for the “inaction band” in the middle regime. A few recent studies, like the ones by

Caner and Hansen [2001], Gonzalez and Gonzalo [1998] and Shin and Lee [2001] have examined

models where the threshold variable is stationary and differs from the dependent variable under

the alternative. In general, testing unit-root versus a threshold alternative where the switching

variable is the same as the dependent variable is in fact much more appealing.

In this paper, we develop adaptive consistent unit root tests based on a parsimonious three-

regime threshold autoregressive specification as auxiliary model. As often proposed when a

nuisance parameter appears under the null, we eliminate the threshold parameter by considering

the maximum of standard statistics over a set of possible threshold values ΛT , where T is the

sample size. Previous works use a quantile based set of thresholds which can diverge under the

null of a unit root and remain bounded under the alternative. The originality of our approach

comes from the treatment of these threshold values through an adaptive choice of ΛT : we depart

from the previous studies by allowing the threshold levels in the random interval ΛT to remain

bounded under the null and unbounded under the alternative and build such a test. Construction

of such threshold sets can be done via a consistent test statistic entering in the upper and lower

bounds of ΛT . Because the test relies on a maximum over ΛT , the critical values of our procedure
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are expected to be smaller, with a larger set of thresholds inspected under the alternative, thus

increasing the power compared to usual quantile based choices. An important consequence of

our choice of the threshold values ΛT is that we can show the consistency of the tests against

a wide class of stationary processes, an issue which is seldom studied in the literature. Hence,

the choice of a three-regime threshold autoregressive model yields a test specifically designed to

detect stationary processes which may behave locally as nonstationary ones, as considered in

e.g. Anderson [1997], Bec, Ben Salem and Carrasco [2001],Taylor [2001], Gouriéroux and Robert

[2002], or Rahbek and Shephard [2002] .

One important contribution of the paper is to derive the asymptotic distribution without

assuming that the threshold goes asymptotically to infinity under the null. The finite dimen-

sional limit distribution is derived through the machinery of Park and Phillips [2001] introduced

to study sums of nonlinear integrable function of integrated variables. The asymptotic equicon-

tinuity of the statistics indexed by the threshold parameter is proven in order to find the limit

distribution of our maximum test statistics. The asymptotic equicontinuity follows from moment

bounds for the increments of some piecewise continuous processes indexed by the threshold pa-

rameter and a maximal inequality. This new result is central to derive the asymptotic distribution

of unit root test based on threshold specification such as the ones developed by Bec et al. [2001],

Berben and van Dijk [1999] and Enders and Granger [1998] when the threshold is randomly

chosen.

A Monte-Carlo study compares the finite sample behavior of the consistent unit root test

based on the threshold adjustment specification with the linear specification retained by the

augmented Dickey-Fuller (ADF) test. First, the alternative model corresponds to the auxiliary

model used to perform the unit root test e.g. the threshold adjustment specification. For this

experiment, we also compare our test with the test developed by Bec et al. [2001] who consider

a supremum over a quantile set. Second, we assess the finite sample consistency of the test

against other stationary processes. A linear stationary model, a piecewise stationary model with

a changing mean and an autoregressive conditional model proposed by Rahbek and Shephard

[2002] (see also Gouriéroux and Robert [2002]) are considered under the alternative. The results

are really encouraging for the proposed nonlinear unit root tests. For a vast majority of the

cases, the supremum Wald (supWald) version of our tests outperforms the ADF test.

The supWald test is applied to the yield spread of interest rates. The well-know expectations
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theory of the term structure asserts that under costless and instantaneous portfolio adjustment

assumption, equilibrium interest rates are such that the investor is indifferent between holding

a bond which has k periods left to maturity and investing in a sequence of one-period bond

for k successive periods. This non-arbitrage condition in turn implies that the long-term and

short-term interest rates are cointegrated with weights (1 − 1), or equivalently that the yield

spread — defined as the difference between the k−period and the one-period interest rates

— is stationary. However, the empirical evidence of cointegration between yields of different

maturities is still not clear-cut, as surveyed in Pagan, Hall and Martin [1996]: for instance,

Campbell and Shiller [1987], Stock and Watson [1988] or Anderson [1997] find a stationary US

spread whereas more recent studies by Enders and Siklos [2001] or Bohl and Siklos [2001] fail

to reject the null of no-cointegration between long and short term interest rates for the US and

Germany respectively. When applying our unit-root test on post-1980 monthly data for French,

German, New Zealander and US yield spreads, the null of unit-root is rejected whereas the ADF

test fails to reject it.

The remainder of the paper is organized as follows. Section 2 presents our test statistics and

groups our main theoretical findings. Section 3 is devoted to Monte-Carlo illustrations of the

properties of the SupWald test. Section 4 briefly exposes the implication of transaction costs for

the yield spread process according to the expectations theory of the term structure. This section

also reports our empirical results and Section 5 concludes. Proofs are gathered in the appendix.

2 The Unit-root tests

First, we set out some important features of three-regime threshold autoregressive models and

present our test statistics. The null hypothesis of interest is

H0 : ∆yt = a(L)∆yt−1 + εt

where 1−a(L) is a lag polynomial function with a known order p and roots lying outside the unit

circle, and where {εt} is a sequence of centered i.i.d. random variables with variance σ2. It is now

widely documented that tests of H0 based upon an auxiliary linear model such as the ADF test

statistic suffer from a lack of power against some families of nonlinear alternatives. We therefore

propose a test based on a parsimonious auxiliary self exciting Threshold AutoRegressive (TAR)
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model

∆yt = a(L)∆yt−1 + εt +


µ1 + ρ1yt−1 if yt−1 ≤ −λ

µ2 + ρ2yt−1 if |yt−1| < λ

−µ1 + ρ1yt−1 if yt−1 ≥ λ

. (2.1)

This model differs from Caner and Hansen [2001] who consider a TAR model with three regimes

and a stationary switching variable. Berben and van Dijk [1999] and Enders and Granger [1998]

consider a two-regime TAR model with switching variable yt−1. Such a choice also differs from

three regime models considered in previous works. Our model is more parsimonious than Balke

and Fomby [1997] who consider a different dynamics in the upper and lower regimes. Indeed,

the introduction of extra parameters may increase, for finite sample size, the critical values of

the tests by enlarging the source of randomness. This may therefore affect the power of the test.

On the other hand, the TAR model (2.1) is richer than Kapetanios and Shin [2002] who set ρ2

to 0, as µ1, µ2 and a(L). The parsimonious threshold model (2.1) nests H0 in various ways, such

as ρ1 = ρ2 = 0 and µ1 = µ2 = 0 for any non identified λ, or for λ = ∞, with µ2 = 0 and ρ2 = 0.

Due to the existence of the middle regime |yt−1| < λ, our auxiliary model (2.1) is able

to isolate a local unit-root behavior of the process which cannot be taken into account by a

two-regime TAR. Indeed, Bec et al. [2001] derive a sufficient stationarity condition for model

(2.1) which allows for ρ2 = 0 in the middle regime as soon as the outer dynamics is stationary

enough. In the case p = 0, Chan, Petruccelli, Tong and Woolford [1985] give necessary and

sufficient conditions for stationarity in (2.1). In particular, the presence of unit roots in the

outer and inner regimes (ρ1 = ρ2 = 0) together with µ1 > 0 still yields a stationary process.1

Therefore, as noted by Balke and Fomby [1997], just examining the autoregressive parameters ρ1

and ρ2 is not sufficient to characterize stationarity in (2.1). However, we aim to limit the source

of randomness in our test statistics in order to obtain relatively small critical values and our

tests are based on the parsimonious auxiliary hypotheses ρ1 = ρ2 = 0 in (2.1) with λ varying in

a random set ΛT . Although this is not equivalent to stationarity in (2.1) for a given λ, we derive

the consistency of the test against a wider class of stationary alternatives when the random ΛT

asymptotically covers the set of all admissible threshold parameters. The underlying intuition
1As far as we know, necessary and sufficient conditions are not yet available for (2.1) when the condition p = 0

is relaxed. This is one of the main problems in using (2.1) to test for stationarity. Moreover, even for p = 0 and a

known λ, the sufficient and necessary condition for stationarity of Chan et al. [1985] yields five different conditions

so that a corresponding test would be difficult to build.
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is that taking a large λ in (2.1) gives approximately a linear model for which the unit root

hypothesis is equivalent to ρ2 = 0.

Assume that a sample y1, . . . , yT is at hand and consider first a given threshold parameter

λ. Let ε̂(λ) = (ε̂p+1(λ), . . . , ε̂T (λ))′ be the estimated residuals associated with the unrestricted

model (2.1). Let ε̂0(λ) be the estimated residuals from (2.1) with ρ1 = ρ2 = 0. Our testing pro-

cedures are based upon the following Wald, Lagrange Multiplier and Likelihood Ratio statistics,

WT (λ) = T

(
ε̂′0(λ)ε̂0(λ)− ε̂′(λ)ε̂(λ)

ε̂′0(λ)ε̂0(λ)

)
= T

(
1− ε̂′(λ)ε̂(λ)

ε̂′0(λ)ε̂0(λ)

)
,

LMT (λ) = T

(
ε̂′0(λ)ε̂0(λ)− ε̂′(λ)ε̂(λ)

ε̂′(λ)ε̂(λ)

)
=

WT (λ)

1− WT (λ)
T

,

LRT (λ) = T ln
(
ε̂′0(λ)ε̂0(λ)
ε̂′(λ)ε̂(λ)

)
= −T ln

(
1− WT (λ)

T

)
.

Note that all these statistics are functions of WT (λ), which rewrites as, using linearity with

respect to the parameters a1, . . . , ap, µ1, ρ1 and µ2, ρ2,

WT (λ) = [ρ̂1(λ), ρ̂2(λ)]V −1
T (λ)

 ρ̂1(λ)

ρ̂2(λ)

 (2.2)

where VT (λ) is an estimate of the variance matrix of (ρ̂1(λ), ρ̂2(λ))′.2 As to build the test, observe

that λ is a nuisance parameter under the null. Following Bec et al. [2001], Berben and van Dijk

[1999], Caner and Hansen [2001], Davies [1987] and Hansen [1994] who consider testing issues

when a nuisance parameter appears under the null, we eliminate λ by considering the maximum

of these statistics. Let ΛT = [λT , λT ] be a random set of admissible threshold parameters. Our

test statistics are

sup
λ∈ΛT

LMT (λ) , sup
λ∈ΛT

LRT (λ) and sup
λ∈ΛT

WT (λ) , (2.3)

The choice of ΛT affects the power of the tests in two ways. First, under H0, if ΛT is small,

then the critical values of the test will be small so that a better power is obtained under the

alternative. Second, under the alternative, it would be desirable to have a large ΛT in order to
2The matrix VT (λ) has no inverse when there is no observation in a regime. In this case, we ignore this regime

when computing the statistics. As seen from the limit result (2.5) below, this should not happen for T large

enough when λ remains bounded. Note also that the statistics are constant over intervals defined through the

ordered values of |y1|, . . . , |yt−1|, so that it is sufficient to compute the statistics at this value.
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detect a large class of alternatives: think for instance of TAR alternatives with ρ1 6= 0 for which

it is suitable to have λ ∈ ΛT , so that ΛT should asymptotically cover the whole set of possible

thresholds. Hereafter, we refer to these behaviors of a random ΛT under H0 and the alternative

by saying that ΛT is adaptive. The next section derives the limit distribution of the test statistics

under H0 and studies the consistency of our procedure. We will also discuss how to build such

a set ΛT through consistent test statistics of H0 and give some examples of such a construction.

2.1 Asymptotic behavior of the tests

An important issue when deriving the limit distribution of the test statistics under the null is

to understand the behavior of the estimators of the central regime parameters. Indeed, under

H0, the Donsker Theorem yields that 1√
T

[Tr]∑
t=1

εt,
y[Tr]√
T


r∈[0,1]

d→ {σW (r), δW (r)}r∈[0,1] , (2.4)

where {W (r)}r≥0 is a standard Brownian motion, σ2 the variance of the εt’s and δ = σ/(1−a(1)).

It then follows that the number of yt’s in the inner regime (−λ, λ) should be small for any finite

λ > 0 since y[Tr] diverges with the order
√
T .3 The Donsker Theorem is therefore appropriate

to study the estimators of the inner regime for a threshold parameter diverging with the order
√
T of the variables, as for instance in Bec et al. [2001]. When the threshold parameter remains

bounded under H0 as in our adaptive approach, the central regime appears in the estimation

through transformations of the yt’s which vanish outside (−λ, λ) and requires a deeper study of

the bounded values of the variables. As known from Park and Phillips [2001], this can be done

by introducing the local time {`W (w, r)}w∈R,r≥0 of the Brownian motion {W (r)}r≥0. The local

time `W (·, T ) can be defined as the density of the occupation time of a measurable subset A of

R by the Brownian motion between 0 and T , i.e.∫ T

0
I(W (r) ∈ A)dr =

∫ +∞

−∞
I(w ∈ A)`W (w, T )dw ,

3As a consequence, one may think to remove the contribution of the inner regime from our test statistics, i.e.

to base the tests on the auxiliary hypothesis ρ1 = 0 in (2.1) as in Kapetanios and Shin [2002]. This may affect the

power of the tests as reported in Balke and Fomby [1997], footnote 13. See also the discussion following Theorem

2 below.
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see Revuz and Yor [1999] and Park and Phillips [2001] for further properties and applications

of the local time. Theorems 3.1 and 3.2. of Park and Phillips [2001] characterize the asymptotic

behavior of means over the inner regime appearing in µ̂2(λ) and ρ̂2(λ), establishing that 1√
T

∑T
t=2 I [yt−1 ∈ (−λ, λ)] f(yt−1)

1
T 1/4

∑T
t=2 I [yt−1 ∈ (−λ, λ)] f(yt−1)εt

 d→

 `W (0,1)
|δ|

∫ λ
−λ f(y)dy

B
(

`W (0,1)
|δ|

∫ λ
−λ f

2(y)dy
)  , (2.5)

jointly with (2.4), where {B(r)}r≥0 is a standard Brownian motion independent of {W (r)}r≥0

and then of its local time {`W (w, r)}w∈R,r≥0. This shows in particular that the number of yt’s

in the inner regime is of order
√
T and can be used to find the limit distribution of T 1/4ρ̂2(λ)

and T 1/4µ̂2(λ). This limit result is therefore a key tool to derive the asymptotic contribution of

the inner regime to the Wald statistic (2.2) for a fixed λ. In order to ensure the validity of the

fundamental results of Park and Phillips [2001], we assume that under H0,

Assumption E. the i.i.d. εt’s are such that Eεt = 0 and E|εt|4+s < ∞ for some

s > 0. The εt’s have a bounded density and limy→∞ yγE exp(iyε1) = 0 for some

γ > 0.

A first step to derive the limit distribution of our test statistics is the finite-dimensional con-

vergence in distribution of the LMT , LRT and WT processes under H0 as stated in the next

proposition. In what follows sgn(x) is the sign of x, i.e. sgn(x) = 1 if x ≥ 0, sgn(x) = −1 if

x < 0.

Proposition 1 Consider some fixed λj > 0, j = 1, . . . , J . If Assumption E holds, then under H0

(LMT (λj), j = 1, . . . , J), (LRT (λj), j = 1, . . . , J) and (WT (λj), j = 1, . . . , J) jointly converge in

distribution to (ζ2
1 + ζ2

2 (λj), j = 1, . . . , J) with, for λ > 0,

 ζ2
1

{ζ2
2 (λ)}λ>0

 =


(
∫ 1
0 W (r)dW (r)−

∫ 1
0 |W (r)|dr

∫ 1
0 sgn(W (r))dW (r))2∫ 1

0 W 2(r)dr−(
∫ 1
0 |W (r)|dr)2{

B2
(

2λ3

3|δ| `W (0,1)
)

2λ3

3|δ| `W (0,1)

}
λ>0


d=

 (
∫ 1
0 W (r)dW (r)−

∫ 1
0 |W (r)|dr

∫ 1
0 sgn(W (r))dW (r))2∫ 1

0 W 2(r)dr−(
∫ 1
0 |W (r)|dr)2{

B2(λ3)
λ3

}
λ>0

 .
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The variable ζ1 is the contribution of the outer regime, and is somehow similar to the limit of

the squared ADF statistic. Note that ζ1 does not depend on λ because the most part of the yt’s

in the outer regime diverge as can be seen from the Donsker Theorem and therefore dominate

λ which can be set to 0. This is not the case for the contribution {ζ2(λ)}λ>0 of the inner regime

which varies with λ as it can be expected from (2.5). Note that {ζ2(λ)}λ>0 does not depend on

the local time due to standardization of the Wald statistic. The contributions of the two regimes

are asymptotically independent and (ζ1, ζ2(λ)) has a parameter-free distribution.

Proposition 1 can be easily extended in several directions. First, different lag polynomial

functions can be considered for the three regimes which can be defined through two thresholds

λ1 < λ2. Different mean and ρ coefficients can as well be introduced for the upper and lower

regimes. Second, the auxiliary hypothesis ρ1 = ρ2 = 0 used to build the statistics can include a

mean restriction µ1 = µ2 = 0. But this will induce an additional term ζ2
1µ + ζ2µ(λ) in the limit

distribution due to estimation of the means, which will increase the critical values of the test.

The variable ζ2(λ) diverges when λ goes to 0 due to the law of iterated logarithm which

yields that B(λ3) goes to 0 slower than
√
λ3 almost surely, see e.g. Revuz and Yor [1999]. This

can be explained more intuitively by noting that taking λ = 0 gives a non identified inner regime

in model (2.1). Therefore, in order to avoid large values of the test statistics, we restrict the

following analysis to a λT asymptotically bounded away from 0 under H0.

To derive the limit distribution of the LMT , LRT and WT statistics considered as processes

indexed by λ, we now establish the asymptotic equicontinuity of some intermediary processes

involved in the expression (2.2) of the Wald statistics WT (λ).

Proposition 2 Let

ST (λ) = T−1/2
T∑

t=2

f(yt−1)I (yt−1 ∈ Λ) , MT (λ) = T−1/4
T∑

t=2

f(yt−1)I (yt−1 ∈ Λ) εt ,

where Λ is (−∞,−λ], (−λ, λ) or [λ,+∞) and f(·) is bounded on the compact interval [a, b]. Then

under H0 and Assumption E, the processes {ST (λ)}λ∈[a,b] and {MT (λ)}λ∈[a,b] are asymptotically

equicontinuous.

Proposition 2 can also be used to extend our framework in several directions. First the auxiliary

model (2.1) can be generalized by allowing different parameters in the upper, middle and lower

regimes as well as an asymmetric central band [λ1, λ2], and the tests may include a mean
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restrictions µ1 = µ2 = 0. Second, the lower and upper threshold values λT and λT may diverge

with T as in Bec et al. [2001] without affecting asymptotic equicontinuity of the (renormalized)

processes in Proposition 2. Indeed, the proof of Proposition 2 relies on a bound of the increments

of the process sT (λ) = T−1/2
∑T

t=2 I(yt−1 ≤ λ) based on a study of the densities of the yt’s by

Akonom [1993]. Lemma 3 in the proof appendix states that, for some C > 0 any λ1, λ2,4

E (sT (λ2)− sT (λ1))
2 ≤ C

(
(λ2 − λ1)2 + 2

|λ2 − λ1|√
T

)
.

Changing λ into π
√
T as in Bec et al. [2001] now yields, for any bounded map f(·)

E

[
1
T

T∑
t=2

f

(
yt−1√
T

)(
I[yt−1 ≤ π2

√
T ]− I[yt−1 ≤ π1

√
T ]
)]2

≤
supy∈[a,b] f

2(y)
T

E
(
sT (π2

√
T )− sT (π1

√
T )
)2

≤ C sup
y∈[a,b]

f2(y)
(

(π2 − π1)2 + 2
|π2 − π1|

T

)
for π1, π2 in [a, b],

which is similar to the bound above and can be used to study the asymptotic equicontinuity

of processes such as T−1
∑
f(yt−1/

√
T )I[yt−1 ≤ π

√
T ] or T−1/2

∑
f(yt−1/

√
T )I[yt−1 ≤ π

√
T ]εt.

Such a result is actually a preliminary step to derive the limit distribution of maximum statistics

when the maximum is taken over a set of threshold values delimited by sample quantiles as in

Bec et al. [2001] or Berben and van Dijk [1999]. Third, slight modifications of Proposition 2

would allow to tackle smooth transition threshold models.

The asymptotic equicontinuity of the LM, LR and Wald statistics over finite intervals

bounded away from 0 is obtained as a corollary.

Corollary 1 Consider 0 < a ≤ b < ∞. Then, under H0 and Assumption E, the processes

{LMT (λ)}λ∈[a,b], {LRT (λ)}λ∈[a,b] and {WT (λ)}λ∈[a,b] are asymptotically equicontinuous.

As in the null limit distribution of Proposition 1, the inner and outer regimes differ when

studying asymptotic equicontinuity. Here, the technical difficulty is to obtain the asymptotic

4The dependence of this bound upon |λ2−λ1|/
√

T prevents here from applying usual asymptotic equicontinuity

criterion as the Chentchov-Komolgorov one, see Theorem 15.6 and below in Billingsley [1968]. We circumvent this

technical issue via a maximal inequality of Van der Vaart and Wellner [1996], see the proof of Proposition 2.
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equicontinuity of the inner regime contribution to the statistics. Indeed, the outer regime is

easier to study because its limit contribution is constant with respect to λ5.

To complete the study of the test statistics under the null, we now derive their common

asymptotic distribution from Proposition 1 and Corollary 1. Theorem 1 is a consequence of

Proposition 1 and Corollary 1 which can also be used to study other functionals of {LMT (λ)}λ>0,

{LRT (λ)}λ>0 or {WT (λ)}λ>0, as, for instance, the exponential average considered in Andrews

and Ploberger (1994).

Theorem 1 Consider a random subset ΛT = [λT , λT ] of R+ where λT = λT (y1, . . . , yT ) and

λT = λT (y1, . . . , yT ) with, under H0,(
λT , λT

) d→
(
λ, λ

)
jointly with the limit of Proposition 1 and P

(
0 < λ ≤ λ <∞

)
= 1.

Then, under H0 and Assumption E, supλ∈ΛT
LMT (λ), supλ∈ΛT

LRT (λ) and supλ∈ΛT
WT (λ)

jointly converge in distribution to

ζ2
1 + sup

λ∈Λ
ζ2
2 (λ) where Λ = [λ, λ].

If, moreover, (λ, λ) is independent of {B(r)}r>0 and the distribution of λ/λ is parameter-

free, then the test statistics supλ∈ΛT
LMT (λ), supλ∈ΛT

LRT (λ) and supλ∈ΛT
WT (λ) are asymp-

totically pivotal.

The variable ζ2
1 + supλ∈Λ ζ

2
2 (λ) remains finite since ζ2 is a.s. continuous over R∗

+ and λ, λ are

bounded away from 0 and infinity with probability 1. A choice of ΛT satisfying the conditions

of Theorem 1 is a deterministic finite interval [a, b], a > 0, which would be appropriate if some

a priori information on λ were available. However, such a choice is somehow arbitrary and may

affect the power of the test: think for instance of a stationary threshold alternative (2.1) with a

threshold parameter outside [a, b]. We now study the tests under general stationary alternatives

and give a sufficient condition on ΛT ensuring that the tests are consistent.

Theorem 2 Assume that the alternative process {yt}t≥1 is ergodic stationary with finite second-

order moments and has a continuous marginal distribution of order p + 1. Assume also λT is

bounded in probability and that λT
P→ +∞ for the alternative at hand. Then the test statistics

5Kapetanios and Shin [2002] go around this issue by considering a restricted version of model (2.1), in which

the inner regime is arbitrarily constrained to be a random walk.
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supλ∈ΛT
LMT (λ), supλ∈ΛT

LRT (λ) and supλ∈ΛT
WT (λ) diverge and the corresponding tests are

therefore consistent.

The divergence of λT can be weakened by assuming that λT is asymptotically larger than the

upper bound of the common support of the yt’s. The proof of Theorem 2 is based on the fact that,

for a large λ > 0, the coefficients of the inner regime are approximately given by the regression

of ∆yt on 1, yt−1,∆yt−1, . . . ,∆yt−p. We show that this gives, for a stationary alternative as in

Theorem 2, a coefficient ρ2 of the inner regime which differs from 0, so that the test statistics

diverge as the ADF statistic.6 But other consistency arguments also apply, suggesting that

our test can be more powerful in presence of local non stationarity. For instance, in case of a

stationary threshold alternative (2.1) with ρ1 6= 0 or ρ2 6= 0, it is sufficient for consistency that

the threshold parameter is in ΛT with a probability going to 1, so that convergence of λT to the

lower bound of the support of the |yt|’s seems to be desirable in practice. As discussed above

and as will be seen from our simulation experiments, the ADF test is less powerful against such

alternatives, especially if ρ2 = 0 and the threshold is large.

The comparison of the conditions of ΛT required by Theorems 1 and 2 therefore suggests

that the behavior of this random set should dramatically differ under H0 and the alternative. A

set ΛT which is bounded under H0 and obeys the conditions of Theorem 2 can easily be built

by choosing a length λT − λT depending on a test statistic of H0 which is bounded under the

null and diverges under the alternative. Choosing a lower threshold λT which is bounded away

from 0 under H0 and asymptotically vanishes under the alternative gives a ΛT which satisfies

the requirements of both Theorems 1 and 2. This will give a test with a potential higher power

compared to existing ones.

2.2 Examples of adaptive threshold sets

We now give two examples of ΛT satisfying the requirements of Theorems 1 and 2. Let ŝ2 be

an estimate of σ2 = Var(εt) which is consistent under H0 and remains bounded under the
6Allowing for a large λ and estimating the coefficient ρ2 of the inner regime is therefore crucial in this con-

sistency argument. From this point of view, our approach differs from Kapetanios and Shin [2002] who do not

take in consideration the inner regime by imposing ρ2 = 0. This may also explain the loss of power mentioned

in the footnote 13 of Balke and Fomby [1997] when removing the contribution of the inner regime from the test

statistics.
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alternative, as for instance

ŝ2 =
1

T − (p+ 2)

T∑
t=

(
yt − β̂0 − β̂1yt−1 − · · · − β̂p+1yt−(p+1)

)2
(2.6)

where β̂0, β̂1, . . . , β̂p+1 are the OLS estimates of the regression coefficients of yt on 1, yt−1, . . . , yt−(p+1).

We use ŝ as a scaling factor in the construction of ΛT . Denote |y|(1), . . . , |y|(T−1) the ordered

values of |y1|, . . . , |yT−1|. Observe that taking λ ∈ [|y|(3), |y|(T−2)] gives a Wald statistic (2.2)

which is well defined for processes with finite continuous distributions of order p + 1. We shall

then base our choice of λT on a test statistic and |y|(3).7 Under H0, |y|(3) goes to 0 due to the

recurrence property of {yt}t≥1 as given in (2.5). Under an ergodic stationary alternative, |y|(3)
goes to the lower bound of the support of the |yt|’s as shown by the Law of Large Number. We

now propose two examples of adaptive ΛT based upon different choices of λT − λT proportional

to a test statistic of H0.

Our first example builds on the t-statistic t̂(ADF ) of the ADF test. Let ` be a length

parameter to be specified in our simulation experiment. The set ΛT = [λT , λT ] with

λT = |y|(3) +
ŝ

`max
(
1, | t̂(ADF ) |

) , λT = λT + `ŝmax
(
1, | t̂(ADF ) |

)
, (2.7)

satisfies the conditions of Theorem 1 and Theorem 2. Indeed, under H0, the limit distribution of

λT /λT is given by the one of `2 max(1, t̂2(ADF )) which holds jointly with Proposition 1 and only

depends upon the Brownian motion {W (r)}r∈[0,1]. As a consequence, a test statistic (2.3) using

(2.7) has an asymptotic pivotal distribution. Under the alternative, |t̂(ADF )| diverges as seen

from the discussion following Theorem 2. As a consequence, λT and λT remain bounded away

from 0 and infinity under H0, while, under a stationary ergodic alternative, λT diverges and λT

converges to the lower bound of the support of the |yt|’s in probability. The next consistency

result is therefore a direct corollary of Theorem 2 by consistency of the ADF test.

Corollary 2 Let {yt}t≥1 be as in Theorem 2. Then supλ∈ΛT
LMT (λ), supλ∈ΛT

LRT (λ) and

supλ∈ΛT
WT (λ) diverge for a choice of ΛT corresponding to (2.7).

7In the construction of the examples below, we therefore propose a lower bound λT with λT ≥ |y|(3) holding

by construction but do not impose a similar restriction on the upper bound. We do not encounter any existence

problem due to this unrestricted choice of λT in our simulation experiments. Otherwise the convention of footnote

2 can be used.
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Our second example is more specific to threshold alternatives and builds on Bec et al. [2001].

Let λ̂1/2 be the median of |y|(1), . . . , |y|(T−1) and consider now a ΛT with

λT = |y|(3) +
ŝ

`max
(
1,W 1/2

T (λ̂1/2)
) , λT = λT + `ŝmax

(
1,W 1/2

T (λ̂1/2)
)
. (2.8)

Proposition 2 of Bec et al. [2001] showed that this choice of (2.8) yields a test statistic (2.3)

with a pivotal limit distribution under the null. The study of this choice (2.8) under a general

alternative is slightly more difficult. Bec et al. [2001] established that W 1/2
T (λ̂1/2) diverges for

some specific TAR alternatives, see Proposition 2 therein.

Corollary 3 Let {yt}t≥1 be as in Theorem 2, assuming moreover that W 1/2
T (λ̂1/2) diverges in

probability. Then supλ∈ΛT
LMT (λ), supλ∈ΛT

LRT (λ) and supλ∈ΛT
WT (λ) diverge for a choice of

ΛT corresponding to (2.8).

Table 1 gives the critical values based on 40,000 simulations of different sample sizes for admis-

sible sets (2.7) and (2.8) with ` = 4. Note that these critical values are much higher than the

squared ones of ADF test. For instance, at the 5% level, the squared critical values of the ADF

test is (−2.88)2 = 8.2944 which is smaller than the one of our test. As shown in Proposition 1

and Theorem 1, the limit distribution of our test statistics has two components. The first one,

ζ2
1 , is comparable to the limit of a squared ADF statistic. The second component, supλ∈Λ ζ

2
2 (λ),

comes from the introduction of an unknown threshold parameter in the test statistic. Higher

critical values is here a price to pay for the introduction of a threshold parameter. As shown later

on in the simulation experiments, this will have some consequences on the relative power of our

tests with respect to the ADF test for linear or close to linear DGP. Note also that the critical

values of the test based upon W 1/2(λ̂1/2) are slightly larger in general than the ones associated

to |t̂(ADF )|, suggesting that the length of ΛT is larger in mean than the one of ΛADF
T .

Other sets ΛT of admissible threshold parameters can be proposed by considering various

test statistics of H0. Our construction of ΛT can also be iterated. In the next section, simulations

experiments under several alternatives are presented for a choice of ΛT given by (2.7) and (2.8).

3 Simulation experiments

We now propose a Monte-Carlo investigation of the power properties of the test. In a first set

of experiments, we analyze the effect of the choice of the threshold values used to compute our
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Table 1: Critical values (40,000 simulations)

W 1/2(λ̂1/2) t̂(ADF )

Sample size 15 % 10% 5% 1% 15 % 10% 5% 1%

100 10.93 12.21 14.32 19.01 10.49 11.70 13.68 18.11

150 10.88 12.14 14.12 18.34 10.47 11.68 13.57 17.64

200 10.76 12.00 13.93 18.28 10.42 11.59 13.48 17.67

250 10.85 12.05 14.00 18.26 10.52 11.66 13.58 17.70

300 10.83 11.99 13.88 18.33 10.50 11.63 13.45 17.79

500 10.90 12.07 14.04 18.14 10.66 11.84 13.77 17.76

1000 10.87 12.08 14.10 18.06 10.66 11.88 13.84 17.82

supremum test statistics. In a second set we study the power properties of our test against various

nonlinear alternatives. In our simulation study, we focus on the Wald statistic supλ∈ΛT
WT (λ)

where ΛT is as in (2.7) and (2.8) with ` = 4. We fix the lag parameter p to 1 and use the variance

estimate (2.6). In what follows, the test statistics are respectively denoted SupWald(ΛADF
T ) and

SupWald(ΛT ). In the experiments we let T = 325.8

3.1 The choice of the threshold values

As a baseline for our comparison, we consider SupWald(Λ0
T ) = supλ∈Λ0

T
WT (λ) with

Λ0
T =

[
|y|([0.15T ]), |y|([0.85T ])

]
.

The set Λ0
T is typical of percentile based choices used in the literature, see Balke and Fomby

[1997], Bec et al. [2001], Berben and van Dijk [1999] and Caner and Hansen [2001]. The length

|y|([0.85T ]) − |y|([0.15T ]) =
√
T

( |y|([0.85T ])√
T

−
|y|([0.15T ])√

T

)
of Λ0

T diverges under H0 as seen from (2.4) and remains bounded under a stationary alternative.

The sets ΛT based on (2.7) and (2.8) of our SupWald tests behave at the opposite and are thus

expected to yield a more powerful test.
8We retain here the same sample size as Bec et al. [2001] for the sake of comparison.
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We first estimate the finite sample critical values of our test under the null. The model

considered under H0 is

∆yt = a∆yt−1 + εt , a = 0.3 , εt ; N (0, 1) , T = 325.

Table 2 compares the critical values of the three tests under the null.9 The critical values of the

Table 2: Empirical critical values of the unit root tests (a = 0.3, T = 325, 10,000 simulations)

15 % 10% 5% 1%

SupWald(Λ0
T ) 13.2 14.5 16.5 21.1

SupWald(ΛT ) 10.8 12.0 13.9 18.1

SupWald(ΛADF
T ) 10.6 11.7 13.6 17.4

three tests are computed for a = 0.3, but taking a = 0 does not seems to affect the estimated

critical values of our test. Indeed, the critical values are close to ones reported in Table 1. The

estimated critical values of SupWald(ΛADF
T ) and SupWald(ΛT ) are significantly below the ones

of SupWald(Λ0
T ). Indeed, further investigation of our simulation datasets shows that ΛT contains

around 26% of the |yt|’s while this percentage reaches 70% for Λ0
T by definition.

In order to investigate the effect of the choice of the threshold values on the power of the

test, we consider the TAR alternatives with an integrated inner regime

∆yt = a∆yt−1 + εt +


µ1 + ρ1yt−1 if yt−1 ≤ −λ,

ρ2yt−1 if |yt−1| < λ,

−µ1 + ρ1yt−1 if yt−1 ≥ λ,

, with µ1 = 1.3× |ρ1| × λ, ρ2 = 0. (3.1)

A preliminary estimation of the 15% and 75% quantiles of the data generating processes of

this experiment shows that λ should be in Λ0
T with a high probability for the data generating

process of the experiment. Table 3 also reports the power of the ADF test. The estimated power

of SupWald(Λ0
T ) is computed using the 5% critical value of Table 1. The values in parenthesis are

percentages of |yt| contains in ΛADF
T and ΛT . As expected by Corollary 2 and Corollary 3, these

values are substantially greater than the ones under the null (around 26 %). This illustrates the

adaptive behavior of ΛADF
T and ΛT . Finally, % denotes the percentage of data in the stationary

regime.
9We thank Bec et al. [2001] to supply us the critical values for Λ0

T .
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Table 3: Empirical power of the unit root tests (α = 5%,T = 325, 1,000 simulations)

a ρ1 ρ2 λ % ADF SupW(Λ0
T ) SupW(ΛT ) SupW(ΛADF

T )

0 -0.10 0 10 1.0 14.7 67.2 80.0 (92.9) 83.6 (85.3)

0 -0.05 0 10 2.3 14.6 47.5 61.4 (87.4) 58.6 (80.3)

0 -0.02 0 10 9.4 13.6 13.9 29.7 (78.3) 27.0 (71.1)

0.3 -0.10 0 10 3.2 24.8 90.0 97.4 (97.0) 99.3 (95.1)

0.3 -0.05 0 10 5.8 22.8 74.2 85.7 (93.6) 89.9 (89.4)

0.3 -0.02 0 10 12.7 17.3 27.1 47.3 (82.2) 47.7 (79.24)

0 -0.10 0 5 8.7 73.2 95.0 99.2 (98.3) 99.1 (98.0)

0 -0.05 0 5 14.3 46.9 57.8 82.1 (97.7) 81.8 (98.1)

0 -0.02 0 5 27.8 20.8 10.3 33.2 (87.0) 34.2 (94.6)

0.3 -0.10 0 5 11.3 100.0 99.7 100.0 (98.7) 100.0 (98.5)

0.3 -0.05 0 5 19.0 96.6 76.8 95.7 (98.1) 96.4 (98.5)

0.3 -0.02 0 5 34.3 45.2 13.4 38.0 (82.6) 43.6 (95.5)

0 -0.10 0 2 32.9 100.0 85.8 99.8 (96.3) 100.0 (97.8)

0 -0.05 0 2 46,3 93.3 20.9 72.1 (91.7) 81.3 (97.8)

0 -0.02 0 2 63.2 27.5 3.9 17.5 (91.7) 22.6 (97.8)

0.3 -0.10 0 2 39.8 100.0 94.5 100.0 (96.3) 100.0 (98.3)

0.3 -0.05 0 2 53.5 99.4 37.4 79.6 (89.1) 95.3 (98.3)

0.3 -0.02 0 2 69.3 44.6 6.4 22.6 (74.86) 35.30 (93.0)

In all cases, the tests SupWald(ΛADF
T ) and SupWald(ΛT ) outperform the test SupWald(Λ0

T ).

The adaptive property greatly increases the power of the test. For instance, the increase in

power exceeds 20 % in six case and is close to 60 % in two cases (a = 0, ρ1 = −0.05, λ = .2

and a = .3, ρ1 = −0.05, λ = .2). As discussed above, the gain in power is due to i) the fact that

the critical values of SupWald(ΛT ) are relatively small and ii) the fact that ΛT should be larger

than Λ0
T under the alternatives. It is rather difficult to discuss which one of these two effects

has the most important impact on the observed gain of power. But, since λ is in Λ0
T with a high

probability so that SupWald(ΛADF
T ), SupWald(ΛT ) and SupWald(Λ0

T ) should be large, one may

suspect that the behavior of ΛT under H0 which yields a smaller critical value provides the most
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important contribution to the improvement of the power.

The tests SupWald(ΛADF
T ) and SupWald(ΛT ) generally outperform the standard ADF ex-

cept for cases where the percentage in the stationary regimes is more important. However, for

these cases the power of adaptive tests is close to the power of the standard ADF and sub-

stantially higher than the power of SupWald(Λ0
T ). For processes characterized by a percentage

of data in the stationary regimes below 10%, the gain of the adaptative tests compared to the

standard ADF can be as high as 70%. Finally, the power of the tests SupWald(ΛADF
T ) and

SupWald(ΛT ) is really close.

3.2 Power of the test against various nonlinear alternatives

Let us now proceed to simulation experiments so as to check the consistency of our SupWald

test against a broader set of stationary alternatives, either linear or not. More precisely, we will

consider below a stationary autoregressive process (Ha
AR), a piecewise stationary model with

a changing mean (Ha
SC), and an Autoregressive Conditional Root model (Ha

ACR) proposed by

Rahbek and Shephard [2002] (see also Gouriéroux and Robert [2002]). Those alternatives are

respectively given by:

Ha
AR : ∆yt = µ+ ρyt−1 + a∆yt−1 + εt, (3.2)

Ha
SC : ∆yt = µ1I(t ≤ τT ) + µ2I(t > τT ) + ρyt−1 + a∆yt−1 + εt, (3.3)

where I(·) is the indicator function which is equal to 1 when the condition into parenthesis holds,

and to 0 elsewhere, and τT is the breaking time. Finally, the Markov ACR alternative writes:

Ha
ACR : yt = ρstyt−1 + εt, (3.4)

where st is binomial given the past with pt = P(st = 1|yt−1, εt) =
[
1 + exp

(
−(α+ βy2

t−1)
)]−1, ρ

is a real number, β is non-negative and α and β are finite. In the three models considered here,

εt is an i.i.d. N (0, σ2). The sample size is T = 325.
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Table 4: Empirical power of the unit root tests for linear model (α = 5%,T = 325, 1,000

simulations)

µ ρ ADF SupWald(ΛT ) SupWald(ΛADF
T )

1 -0.02 25.1 17.9 17.8

0 -0.02 27.0 17.2 23.0

-1 -0.02 28.9 17.3 17.2

1 -0.05 92.6 73.8 73.9

0 -0.05 92.8 58.7 73.6

-1 -0.05 92.9 73.9 73.4

1 -0.10 100 99.8 99.8

0 -0.10 100 98.2 99.5

-1 -0.10 100 99.9 99.9

Tables 4 and 5 report the results for Ha
AR and Ha

SC alternatives. As expected, the ADF

test outperforms the unit root test based on the threshold specification in the linear stationary

case. Indeed, the ADF test is specifically designed for this alternative. As mentioned after Table

1, our test implies the computation of the supremum over an interval involving a loss of power

compared to the ADF test for a linear alternative. However, the performance of our tests seems

to be reasonable. Here again, the power of the tests SupWald(ΛADF
T ) and SupWald(ΛT ) is really

close.
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Table 5: Empirical power of the unit root tests for changing mean model (α = 5%,T = 325,

1,000 simulations)

µ1 µ2 ρ τ ADF SupWald(ΛT ) SupWald(ΛADF
T )

0 0.5 -0.05 0.5 5.6 11.5 12.9

0 1 -0.05 0.5 0.0 37.5 7.3

0 2 -0.05 0.5 0.0 84.0 4.3

0 1 -0.02 0.5 0.0 14.1 1.9

0 1 -0.10 0.5 4.7 62.5 61.8

0 1 -0.05 0.05 83.4 80.7 82.3

0 1 -0.05 0.25 0.0 56.8 41.7

0 1 -0.05 0.75 0.0 18.5 5.1

0 1 -0.05 0.95 28.3 21.0 36.8

It is well known that the ADF test has poor power to detect piecewise stationary model with

a changing mean. As expected, the unit root tests based on the threshold specification with the

set ΛT outperforms greatly the linear ADF test and the test SupWald(ΛADF
T ). The important

power gain of the SupWald(ΛT ) probably comes from the threshold specification of ΛT which

better seperates the two regimes of the process. The power is similar for the cases where the

breakpoint is at the beginning and at the end of the sample. For those cases, the process is

almost linear stationary. Finally, as pointed by previous studies, the power of the ADF test is

below the nominal size (5%) for several cases.

The Markov ACR model exhibits local non stationarity when st = 0, which is more likely

to arise if α+ βy2
t−1 is small. When β > 0 as in our simulation experiment, this source of local

stationarity corresponds to a central regime, but with a less precise delimitation than for the

TAR model (2.1). Indeed, due to the randomness of st, local nonstationarity may also hold

outside a central zone. Even though the degree of local nonstationarity of the ACR model is

related to the parameters (α, β), it is worth computing the percentage of time spent in the

stationary regime (% in Table 6) for interpretation’s sake. The values of the parameters are

motivated by the example given by Rahbek and Shephard [2002]. The results are reported in

19



Table 6.

Table 6: Empirical power of the unit root tests for the Markov ACR alternative (α = 5%,

T = 325, 1,000 simulations)

α β ρ % ADF SupWald(ΛT ) SupWald(ΛADF
T )

0 1.1 0.9 100.0 99.7 91.6 94.2

0 1.1 0.7 100.0 100 100 100

-10 1.1 0.9 52.0 99.4 87.5 91.5

-10 1.1 0.7 33.0 100 100 100

-25 1.1 0.9 19.0 75.2 84.9 84.4

-25 1.1 0.7 9.2 100 100 76.9

-50 1.1 0.9 10.6 25.6 76.5 76.4

-50 1.1 0.7 4.4 44.1 99.8 99.7

-100 1.1 0.9 5.5 16.9 61.5 61.9

-100 1.1 0.7 2.4 18.9 93.8 95.9

-200 1.1 0.9 2.7 13.8 34.3 23.9

-200 1.1 0.7 1.3 17.7 61.8 56.7

-300 1.1 0.9 1.9 13.1 25.5 20.0

-300 1.1 0.7 0.9 12.2 42.2 29.8

-100 0.5 0.9 2.6 13.7 34.2 27.1

-100 0.5 0.7 1.3 15.6 60.4 54.7

-100 1.5 0.9 7.0 18.0 72.9 75.1

-100 1.5 0.7 3.0 21.6 97.5 98.1

The ADF test slightly dominates the supWald tests in the case where the time spent in the

stationary regime (st = 1) exceeds 50 %. In the other cases, the unit root tests based on the

threshold specification does remarkably well while the ADF test has poor power. In particular,

for processes characterized by a time spent in the stationary regime below 10 %, the supWald

tests clearly dominate the ADF test. For instance, for parameters values equal to α = −100,

β = 1.1 and ρ = .9 and a time spent in the stationary regime equal to 5.5%, the rate of rejection
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for the supWald tests is around 62 percent compared to 16.9 percent for the ADF test. Finally,

the power of the tests SupWald(ΛADF
T ) and SupWald(ΛT ) is again really close.

According to these simulation results, the tests proposed in this paper seem to be able to

detect globally stationary process with a relatively important nonstationary component. This

simulation study based on four alternative specifications clearly reveals the usefulness of the

proposed tests based on an adaptive choice of the band. We then suggest to practitioners to

perform our tests in conjunction with the traditional ADF test.

4 The yield spread dynamics revisited

Under costless and instantaneous portfolio adjustment assumption, the expectations theory of

the term structure implies the following non-arbitrage condition :

R(k, t) =
1
k

 k∑
j=1

Et[R(1, t+ j − 1)]

+ L(k, t), (4.5)

where R(k, t) denotes the k-period interest rate, Et is the expectation operator conditional on

time t information, and L(k, t) represents the term premium, accounting for risk and liquidity

premia. This in turn implies the stationarity of the yield spread between longer-term and shorter-

term interest rates. Indeed, by rearranging (4.5), the spread may be expressed as :

S(k, 1, t) = R(k, t)−R(1, t) =
1
k

k−1∑
i=1

i∑
j=1

Et[∆R(1, t+ j)] + L(k, t) = µt, (4.6)

where the right-hand side is stationary as soon as interest rates are integrated of order one and

the risk premium is stationary. Hence, as noticed by Hall, Anderson and Granger [1992] and

Anderson [1997], arbitrage behavior guarantees that equation (4.6) acts as an attractor as soon

as S(k, 1, t) 6= µt.

However, as pointed out by Anderson [1997], if one considers homogeneous transaction costs

which reduce the investor’s yield on a purchased bond by a constant amount λ, then the investor

will convert a portfolio of one-period bonds to k−period bonds if and only if λ < S(k, 1, t)−µt,

or convert k−period bonds to 1-period bonds if and only if S(k, 1, t) − µt < −λ. Therefore, in

presence of transaction costs, the attraction towards equilibrium (4.6) is inactive when :

−λ < S(k, 1, t)− µt < λ. (4.7)
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Hence, there is no reason for the cointegration relation between long- and short-term rates to

hold in this area, or put in other words, for the spread to revert toward µt. This arbitrage

behavior clearly suggests a stationary but nonlinear dynamics for the yield spread, which should

be well captured by our parsimonious auxiliary model. Moreover, recent empirical evidence —

see e.g. Keim and Madhavan [1997] or Wagner [1998] — displays transaction costs estimates

ranging roughly from 0.5% to more than 2% depending on the types of costs included in the

calculation.

The interest rates data used in this study are monthly averages spanning from 1980:01 to

1998:12 for France and Germany since the Euro was introduced in January 1999, and to 2001:08

for the US10. For the New Zealand11, the available data span from 1985:01 to 2002:01. For

France, Germany, the New Zealand and the US, the short term interest rate is respectively the

3-month PIBOR, the 3-month FIBOR, the 90-day Bank Bill yield and the 3-month Treasury

Bill rate, while the long term is the 10-year public and semi-public sector bonds rate, the 9 to

10-year Bd listed federal securities rate, the 10-year secondary market government bond yield

and the 10-year Treasury constant maturity rate. The yield spreads are defined as the difference

between the long and the short-term rates, and are denoted SF , SG, SNZ and SUS .

As can be seen from Table 7, performing the standard ADF unit-root test and KPSS

stationarity test12 reveals that the US and German spreads are well characterized by a unit-root

process, whereas no clear-cut conclusion emerges for SF and SNZ . Indeed, the KPSS statistics

Table 7: ADF and KPSS tests

Stat. k,` SG k,` SUS k,` SF k,` SNZ

ADF(k) 1 -1.889 4 -2.726 1 -2.672 4 -3.211

KPSS(`) 3 1.671 4 0.602 2 0.101 4 1.691

The critical values at the 5 % level are -2.88 for ADF and 0.463 for KPSS.

fails to reject the null of stationarity for the US spread while the ADF fails to reject the unit-root

for SNZ . The critical values for the test SupWald(ΛT ) are given in Table 1. The values obtained
10European and US data come respectively from Datastream and FRED databanks.
11These data come from the Reserve Bank of New Zealand.
12The lag length for the ADF(k) is chosen according to the Ljung-Box statistic. The size of the Bartlett windows

for KPSS(`) is obtained following Andrews [1991].
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for the SupWald(ΛT ) statistics are reported in Table 8. The lag order of the a(L) polynomial in

Table 8: SupWald unit-root test

SF SG SNZ SUS

SupWald(ΛT ) 10.96 15.42 52.16 30.07

SupWald(ΛADF
T ) 10.96 15.42 32.98 30.07

p-value 15% 5% 1% 1%

model (2.1) is chosen according to the BIC and Ljung-Box statistics which suggest p = 1 for the

European spreads, and p = 4 for the remainders. The SupWald(ΛT ) statistic strongly rejects

the null for SG, SNZ and SUS , but only at the 15% level for SF .

5 Concluding remarks

In this paper, we develop adaptive consistent unit root tests based on a three-regime threshold

autoregression specification as auxiliary model. We retain this parsimonious auxiliary model for

its potential ability to isolate local nonstationarity. The originality of the approach consists in the

treatment of the unknown threshold in a random set ΛT , over which a maximum of the Lagrange

multiplier, Likelihood ratio or Wald statistic is computed to build the test. At the opposite of

previous approaches, we consider that the threshold levels remain bounded under the null and

allow for unbounded ones under the alternative. This adaptive random choice of thresholds

improves the power of the test, by producing smaller critical values and, under the alternative,

increasing the value of the test statistic. Such a methodology can be applied to various models

and testing issues. For instance in the unit-root context, an alternative test statistic would be an

average over ΛT of some exponential average statistics, as derived by Kapetanios and Shin [2002]

from Andrews and Ploberger [1994]. In specification testing, Cramer-von Mises or Kolmogorov

type test statistics, or average of non parametric estimators, can be computed over an adaptive

ΛT as done in trimming for technical purposes. In addition of increasing the power of a test,

considering a smaller set ΛT may also improve the accuracy of the null limit distribution, as well

as providing a more robust statistic. This new approach therefore suggests various promising

directions for future research.
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A simulation study illustrates the good detection properties of our procedure. Compared to

previous approaches, it is suggested that the improvement of the power comes from a reduction

of the critical values due to the adaptive choice of the threshold parameters involved in the

computation of the maximum. However, the critical values of the test remain large, so that

the traditional ADF test is more powerful against alternatives that are not affected by local

nonstationarity. In particular, the proposed tests should be applied in conjunction with the

traditional ADF test if some a priori information favors a stationary linear alternative. When

applied to post-1980 French, German, New-Zealander and US monthly data, our test rejects the

null of unit root whereas ADF and KPSS tests give mixed evidence at best.
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Appendix: Proofs of the main results

We first introduce our main notations. Let ut = ∆yt and for λ ∈ R+ define the column vector xt as

xt = xt(λ) = (ut−1, . . . , ut−p,−sgnλ(yt−1), yt−1I(|yt−1| ≥ λ), I(|yt−1| < λ), yt−1I(|yt−1| < λ))′ ,

where sgnλ(yt−1) = I(yt−1 ≥ λ)− I(yt−1 ≤ −λ). Let β = β(λ) = (a1, . . . , ap, µ1, ρ1, µ2, ρ2)′ be a column

vector so that

ut = x′tβ + εt with β = β0 = (a1, . . . , ap, 0, 1, 0, 1)′ under H0.

We now aim to give a more explicit expression of the Wald statistic WT (λ) in (2.2). Let β̂ = β̂T be the

ordinary least squares estimate of β. Consider also the (p+ 4)× (p+ 4) diagonal scaling matrix Γ = ΓT

Γ =



√
T

. . .
√
T

√
T

T

T 1/4

T 1/4


=


Γ11 (p× p) 0 0

0 Γo
22 (2× 2) 0

0 0 Γi
22 (2× 2)

 .

The scaling matrix Γ corresponds to the standardization of the estimation error β̂ − β under H0. This is

done through

Γ
(
β̂ − β0

)
= Γ

[
Γ−1

T∑
t=p+1

xtx
′
tΓ
−1

]−1

Γ−1
T∑

t=p+1

xtεt under H0. (A.1)

We rewrite Γ
(
β̂ − β0

)
as C−1(λ)M(λ) where C(λ) = C and M(λ) = M are defined as

C = C(λ) = Γ−1

T∑
t=p+1

xtx
′
tΓ
−1 =

 C11 C ′21

C21 C22

 with

C11 =
1
T



T∑
t=p+1

u2
t−1

T∑
t=p+1

ut−1ut−2 · · ·
T∑

t=p+1

ut−1ut−p

T∑
t=p+1

ut−1ut−2

T∑
t=p+1

u2
t−2 · · ·

T∑
t=p+1

ut−2ut−p

...
...

...
T∑

t=p+1

ut−1ut−p

T∑
t=p+1

ut−2ut−p · · ·
T∑

t=p+1

u2
t−p


,
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C21 =



− 1
T

T∑
t=p+1

sgnλ(yt−1)ut−1 · · · − 1
T

T∑
t=p+1

sgnλ(yt−1)ut−p

1
T 3/2

T∑
t=p+1

yt−1I(|yt−1| ≥ λ)ut−1 · · · 1
T 3/2

T∑
t=p+1

yt−1I(|yt−1| ≥ λ)ut−p

1
T 3/4

T∑
t=p+1

I(|yt−1| < λ)ut−1 · · · 1
T 3/4

T∑
t=p+1

I(|yt−1| < λ)ut−p

1
T 3/4

T∑
t=p+1

yt−1I(|yt−1| < λ)ut−1 · · · 1
T 3/4

T∑
t=p+1

yt−1I(|yt−1| < λ)ut−p


,

C22 =

 Co
22 0

0 Ci
22

 with

Co
22 =


1
T

T∑
t=p+1

I (|yt−1| ≥ λ) − 1
T

T∑
t=p+1

yt−1√
T

sgnλ(yt−1)

− 1
T

T∑
t=p+1

yt−1√
T

sgnλ(yt−1) 1
T

T∑
t=p+1

(
yt−1√
T

)2

I(|yt−1| ≥ λ)

 ,

Ci
22 = 1√

T


T∑

t=p+1

I(|yt−1| < λ)
T∑

t=p+1

yt−1I(|yt−1| < λ)

T∑
t=p+1

yt−1I(|yt−1| < λ)
T∑

t=p+1

y2
t−1I(|yt−1| < λ)

 ,

M = M(λ) = Γ−1

T∑
t=p+1

xtεt =


M1

Mo
2

M i
2

 with M1 =



1
T

T∑
t=p+1

ut−1εt

1
T

T∑
t=p+1

ut−2εt

...

1
T

T∑
t=p+1

ut−pεt


,

Mo
2 =


−

T∑
t=p+1

sgnλ(yt−1)
εt√
T

T∑
t=p+1

yt−1√
T

I (|yt−1| ≥ λ)
εt√
T

 , M i
2 =


1

T 1/4

T∑
t=p+1

I(|yt−1| < λ)εt

1
T 1/4

T∑
t=p+1

yt−1I(|yt−1| < λ)εt

 .

Let R be a selection matrix with entries 0 or 1 such that Rβ = (ρ1, ρ2)′. Under H0, (A.1) yields that the

Wald statistic WT (λ) in (2.2) writes as

WT (λ) =
1

σ̂2(λ)
(
RC−1(λ)M(λ)

)′ (
RC−1(λ)R′

)−1 (
RC−1(λ)M(λ)

)
with σ̂2(λ) = σ̂2 =

1
T

T∑
t=p+1

ε2t −
M ′(λ)C−1(λ)M(λ)

T
. (A.2)
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Preliminary results

In the results below, C denotes a constant which varies from line to line.

Lemma 1 Under H0 and Assumption E, maxt≤T |ut| = OP(T 1/(4+s)).

Proof of Lemma 1. It immediately follows from the Chebychev inequality and the fact that max E|ut|4+s <

∞ under Assumption E using the mean average expression of the ut’s. 2

The next results are essential to establish asymptotic equicontinuity. Let us first introduce some

additional notations. Let {πi}i≥0 be the coefficients of the Wold representation of ut = yt − yt−1, which

are such that ut =
∑∞

i=0 πiεt−i. As a consequence, we have yt = π0εt + (π0 + π1)εt−1 + · · ·+ (π0 + · · ·+
πt−1)ε1 +

∑∞
i=0(πi+1 + · · ·+ πi+t)ε−i. Define

ψi =
i∑

j=0

πj so that yt =
t−1∑
i=0

ψiεt−i +
∞∑

i=0

(ψi+t − ψi) ε−i ,

ỹt,i =
i∑

j=t+1

ψi−jεj and yt,i = yi − ỹt,i =
t∑

j=1

ψi−jεj +
∞∑

j=0

(ψj+t − ψj) ε−j for t < i.

Let ft(·) and f̃t,i(·) be the Lebesgue densities of yt and ỹt,i. The bound (3.7) of Akonom [1993] write as:

Lemma 2 (Akonom [1993]) Under H0 and Assumption E, there exists a constant C > 0 such that for

all 1 ≤ i and 1 ≤ t < i,

sup
y∈R

ft(y) ≤
C√
t+ 1

and sup
y∈R

f̃t,i(y) ≤
C√
i− t

.

The density bound of Lemma 2 would be straightforward in case of i.i.d. normal εt. We now give a

moment bound for the number of yt’s between two thresholds λ1 ≤ λ2.13

Lemma 3 Let sT (λ) be T−1/2
∑T

t=2 I (yt−1 ∈ Λ) where Λ is (−∞,−λ], (−λ, λ) or [λ,+∞). Then, under

H0 and Assumption E, there is a constant C > 0 such that

E1/2 (sT (λ2)− sT (λ1))
2 ≤ C

[
|λ2 − λ1|+ 2

(
|λ2 − λ1|√

T

)1/2
]

for any λ1, λ2 and T ≥ 2.

13A continuous-time version of this bound can be deduced from a more general moment computation in Darling

and Kac [1957]. The discrete-time version given by these authors is not correct since it ignores the contribution

of (A.3) in E(sT (λ2) − sT (λ1))
2, see the proof of Lemma 3. This item gives the term (|λ2 − λ1|/

√
T )1/2 in the

bound of the lemma.
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Proof of Lemma 3. We consider sT (λ) = T−1/2
∑T

t=2 I (yt−1 ≥ λ) and λ1 < λ2, the other cases being

similar. This gives

E (sT (λ2)− sT (λ1))
2 =

1
T

T∑
t=2

EI(λ1 ≤ yt−1 < λ2) (A.3)

+
2
T

T−1∑
t=2

E

[
I(λ1 ≤ yt−1 < λ2)

T∑
i=t+1

I(λ1 ≤ yi−1 < λ2)

]
. (A.4)

Lemma 2 gives for (A.3)

1
T

T∑
t=2

EI(λ1 ≤ yt−1 < λ2) =
1
T

T∑
t=2

∫ λ2

λ1

ft−1(y)dy ≤
C(λ2 − λ1)

T

T∑
t=2

1√
t

≤ C(λ2 − λ1)√
T

since
∑T

t=2
1√
t
≤
∫ T

0
dx√

x
=

√
T
2 .

For (A.4), write yi−1 = ỹt−1,i−1 + yt−1,i−1 and note that ỹt−1,i−1 is independent of the sigma-field

Ft−1 = σ(εt−1, εt−2, . . .), i ≥ t + 1. Observe also that yt−1, yt−1,i−1, i ≥ t + 1, are in Ft−1. Therefore

Lemma 2 yields
T∑

i=t+1

E [I (λ1 ≤ yi−1 < λ2) |Ft−1 ] =
T∑

i=t+1

∫ λ2−yt−1,i−1

λ1−yt−1,i−1

f̃t−1,i−1(ỹ)dỹ ≤ C(λ2 − λ1)
T∑

i=t+1

1√
i− t

≤ C(λ2 − λ1)
√
T − t ≤ C

√
T (λ2 − λ1).

Combining the bounds above gives for the item (A.4),

1
T

T−1∑
t=2

E

[
I(λ1 ≤ yt−1 < λ2)

T∑
i=t+1

I(λ1 ≤ yi−1 < λ2)

]

=
1
T

T−1∑
t=2

E

[
I(λ1 ≤ yt−1 < λ2)

T∑
i=t+1

E [I(λ1 ≤ yi−1 < λ2) |Ft−1 ]

]

≤ C(λ2 − λ1)√
T

T∑
t=2

E [I(λ1 ≤ yt−1 < λ2)] ≤ C(λ2 − λ1)2 .

Combining the bounds of the items in (A.3) and (A.4) yields that

E1/2 (sT (λ2)− sT (λ1))
2 ≤

(
C
|λ2 − λ1|√

T
+ 2C(λ2 − λ1)2

)1/2

≤ C

[
√

2|λ1 − λ2|+
(
|λ2 − λ1|√

T

)1/2
]

≤
√

2C

[
|λ1 − λ2|+ 2

(
|λ2 − λ1|√

T

)1/2
]
,

since (a + b)1/2 ≤ a1/2 + b1/2 for positive real numbers, showing that Lemma 3 is proven. The form of

the last bound above slightly simplifies the proof of Proposition 2. 2

We now extend the preceding lemma to martingale and more general functions of the lagged variable

yt−1. The following moment bounds are the main tool to establish the asymptotic equicontinuity of

Proposition 2 using the maximal inequality.
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Lemma 4 Let [a, b] be a compact interval of R and f(·) be a bounded function from [a, b] to R. Then

under H0 and Assumption E,

i. Let ST (λ) be T−1/2
∑T

t=2 f(yt−1)I (yt−1 ∈ Λ) where Λ is (−∞,−λ], (−λ, λ) or [λ,+∞). There is

a constant C such that, for all λ1, λ2 ∈ [a, b] and all T ≥ 2,

E1/2 (ST (λ2)− ST (λ1))
2 ≤ d2T (λ1, λ2) = C

[
|λ2 − λ1|+ 2

(
|λ2 − λ1|√

T

)1/2
]

ii. Let MT (λ) be T−1/4
∑T

t=2 f(yt−1)I (yt−1 ∈ Λ) εt where Λ is (−∞,−λ], (−λ, λ) or [λ,+∞). There

is a constant C such that, for all λ1, λ2 ∈ [a, b] and all T ≥ 2,

E1/4 (MT (λ2)−MT (λ1))
4 ≤ d4T (λ1, λ2) = C

[
|λ2 − λ1|1/2 + 2

(
|λ2 − λ1|√

T

)1/4
]
.

Proof of Lemma 4. Lemma 4-i is a direct consequence of Lemma 3 and of the fact that f(·) is bounded

on [a, b]. To establish the second part of the Lemma, consider MT (λ) =
∑T

t=2 f(yt−1)I (yt−1 ≥ λ) εt and

λ1 < λ2, the other cases being similar. Note that MT (λ2) −MT (λ1) has a martingale structure with

respect to the sigma-field Ft = σ(εt, εt−1, . . .). The Burkholder inequality (see e.g. Chow and Teicher

[1988]) therefore yields, yt−1 and εt being independent,

E (MT (λ2)−MT (λ1))
4

≤ 6(4)3/2E

(
1

T 1/2

T∑
t=2

f2(yt−1)I(λ1 ≤ yt−1 < λ2)ε2t

)2

≤ 6(4)3/2 sup
y∈[a,b]

f4(y)E

(
1

T 1/2

T∑
t=2

I(λ1 ≤ yt−1 < λ2)ε2t

)2

=
C

T

T∑
t=2

E
[
I(λ1 ≤ yt−1 < λ2)ε4t

]
+

2C
T

T−1∑
t=2

E

[
I(λ1 ≤ yt−1 < λ2)ε2t

T∑
i=t+1

I(λ1 ≤ yi−1 < λ2)ε2i

]

≤ C

T

T∑
t=2

E [I(λ1 ≤ yt−1 < λ2)]
(
Eε4t + 2E2ε2t

)
(A.5)

+
2C
T

T−1∑
t=2

E

[
I(λ1 ≤ yt−1 < λ2)ε2t

T∑
i=t+2

E [I(λ1 ≤ yi−1 < λ2) |Ft ] Eε2i

]
. (A.6)

(A.5) can be bounded as (A.3), and (A.6) as (A.4) using the decomposition yi−1 = ỹt,i−1+yt,i−1, observing

that yt−1, εt, yt,i−1 ∈ Ft and are independent of ỹt,i−1. It then follows that E (MT (λ2)−MT (λ1))
4 ≤

CE (ST (λ2)− ST (λ1))
2 and the Lemma is proven. 2

We are now able to prove Proposition 2.
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Proof of Proposition 2

Assume without loss of generality that [a, b] = [0, 1] and Λ = [λ,+∞). Recall that the asymptotic

equicontinuity of {XT (λ)}λ∈[0,1] means that

lim
δ↓0

lim sup
T→∞

P

(
sup

|λ1−λ2|≤δ

|XT (λ2)−XT (λ1)| ≥ ε

)
= 0 for any ε > 0,

where the sup above is over all λ1, λ2 in [0, 1].

We begin with {ST (λ)}λ∈[0,1]. Observe that for λ1 and λ2 in [0, 1], |ST (λ2)− ST (λ1)| ≤
supy∈[0,1] |f(y)||sT (λ2)−sT (λ1)| so that it suffices to establish the stochastic equicontinuity of {sT (λ)}λ∈[0,1].

Let δ > 0 be such that 1/δ is an integer number and consider the piecewise constant process over determin-

istic intervals s̃T (λ) = s̃T (λ; δ) = sT (iδ) if λ ∈ [(i−1)δ, iδ) for i = 1, . . . , 1/δ−1, λ ∈ [(1/δ−1)δ, 1] for i =

1/δ. Because sT (·) is monotonous, we have supλ∈[0,1] |sT (λ)− s̃T (λ)| ≤ max1≤i≤1/δ |sT (iδ)− sT [(i− 1)δ]|
and then

sup
|λ2−λ1|≤δ

|sT (λ2)− sT (λ1)| = sup
|λ2−λ1|≤δ

|s̃T (λ2)− s̃T (λ1) + (sT (λ2)− s̃T (λ2))− (sT (λ1)− s̃T (λ1))|

≤ sup
|λ2−λ1|≤δ

|s̃T (λ2)− s̃T (λ1)|+ 2 sup
λ∈[0,1]

|sT (λ)− s̃T (λ)|

= 3 max
1≤i≤1/δ

|sT (iδ)− sT [(i− 1)δ]| .

Therefore the Chebychev inequality and Lemma 3 yield

P

(
sup

|λ2−λ1|≤δ

|sT (λ2)− sT (λ1)| ≥ ε

)
≤ P

(
3 max

1≤i≤1/δ
|sT (iδ)− sT [(i− 1)δ]| ≥ ε

)

≤
1/δ∑
i=1

P
(

3 max
1≤i≤1/δ

|sT (iδ)− sT [(i− 1)δ]| ≥ ε

)

≤ 9
ε2
C

δ

(
δ +

√
δ√
T

)2

=
C

ε2

(√
δ +

1√
T

)2

and the process {ST (λ)}λ∈[0,1] is asymptotically equicontinuous.

We now consider {MT (λ)}λ∈[0,1] which is more difficult to study. Let h = hT be such that 1/h

is an integer number. Define M̃T (λ) = M̃T (λ;h) as s̃T (λ) = s̃T (λ;h) and denote Ji = [(i − 1)h, ih),

J1/h = [(1/h− 1)h, 1]. We have

sup
λ∈[0,1]

∣∣∣MT (λ)− M̃T (λ)
∣∣∣ = max

1≤i≤h
max
λ∈Ji

∣∣∣∣∣ 1
T 1/4

T∑
t=2

f(yt−1)I (λ ≤ yt−1 ≤ ih) εt

∣∣∣∣∣
≤ sup

y∈[0,1]

|f(y)|T 1/4 max
1≤t≤T

|εt| max
1≤i≤1/h

|sT (ih)− sT [(i− 1)h]|

= OP

(
T

1
4+ 1

4+s

)
max

1≤i≤1/h
|sT (ih)− sT [(i− 1)h]|
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by Lemma 1, with, by Lemma 3,

E
(

max
1≤i≤1/h

|sT (ih)− sT [(i− 1)h]|
)2

≤
1/h∑
i=1

E (|sT (ih)− sT [(i− 1)h]|)2

≤ C

h

(
h+ 2

√
h√
T

)2

= C

(√
h+

2√
T

)2

.

Therefore, taking h = hT of exact order 1/T yields that supλ∈[0,1]

∣∣∣MT (λ)− M̃T (λ)
∣∣∣ = oP(1), and the

asymptotic equicontinuity of {MT (λ)}λ∈[0,1] will be a consequence of the one of {M̃T (λ)}λ∈[0,1]. We wish

to apply a maximal inequality for separable processes, see e.g. Theorem 2.2.4 in Van der Vaart and

Wellner [1996]. Observe that {M̃T (λ)}λ∈[0,1] is a piecewise constant cadlag process with, by Lemma 4-ii,

E1/4
(
M̃T (λ2)− M̃T (λ1)

)4

≤ d̃4T (λ1, λ2) = d4T (λ̃1, λ̃2) with λ̃ = ih if λ ∈ Ji.

Note that d̃4T is a semimetric (i.e. vanishes when λ1 = λ2, is symmetric and verifies the triangular

inequality). For x > 0, let Ñ4T (x) be the d̃4T -covering number of size x of [0, 1], i.e. the minimal number

of d̃4T -balls of radius x needed to cover [0, 1]. The maximal inequality of Theorem 2.2.4 in Van der Vaart

and Wellner [1996] yields for any positive η, δ14

E1/4 sup
d̃4T (λ1,λ2)≤δ

∣∣∣M̃T (λ2)− M̃T (λ1)
∣∣∣4 ≤ C ′

[∫ η

0

Ñ
1/4
4T

(x
2

)
dx+ δÑ

1/2
4T

(η
2

)]
,

where C ′ is a constant which can vary from line to line in the inequalities below. We now find a suit-

able bound for the covering numbers Ñ4T . Let C be from Lemma 4-ii and xh = Cx′h be such that(√
Tx′h+1−1
√

T

)4

= h, that is

xh = C

(√
Th1/4 + 1

)2

− 1

T
= C

[
h1/2 + 2

(
h√
T

)1/4
]
∼ C

√
h with h = hT of exact order 1/T .

The definitions of xh and d4T are such that a covering of d̃4T -balls with radius x < xh is given by the

Ji’s, i = 1, . . . , 1/h. This gives that Ñ4T (x) ≤ 1/h for x < xh. We consider now x ≥ xh. Observe that the

d4T -ball of center λ̃0 = i0h with radius Cx is the set of λ ∈ [0, 1] with

C

[(
|λ− λ̃0|1/4 +

1√
T

)2

− 1
T

]
≤ Cx i.e. |λ− λ̃0| ≤

[(
x+

1
T

)1/2

− 1√
T

]4

=
(√

Tx+ 1− 1√
T

)4

.

Since a d̃4T -covering is a covering with unions of contiguous Ji’s, we have

Ñ
1/4
4T (x) ≤

√
T√

Tx/C + 1− 1
for x ≥ xh, Ñ1/4

4T (x) ≤ h−1/4 for x < xh.

14Applying this result directly to the process {MT (λ)}λ∈[0,1] yields a diverging integral at 0 as can be seen from

the bounds below.
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Since xh ∼ C
√
h→ 0 with Txh →∞ and Txh = o(T ), the maximal inequality yields for T large enough

such that η ≥ xh,

E1/4 sup
d̃4T (λ1,λ2)≤δ

∣∣∣M̃T (λ2)− M̃T (λ1)
∣∣∣4

≤ C ′

[
h−1/4xh +

∫ η

xh

√
T√

Tx/(2C) + 1− 1
dx+ δ

T

(
√
Tη/(2C) + 1− 1)2

]
x=2Cu/T

= C ′

[
o(1) +

1√
T

∫ Tη/(2C)

Txh/(2C)

du√
u+ 1− 1

+ 2C
δ

η
[1 + o(1)]

]
T→∞→ C ′

(
(η/2C)1/2/2 + 2C

δ

η

)
,

using
∫ Tη/(2C)

Txh/(2C)

du√
u+ 1− 1

T→∞∼ 1
2

√
Tη/(2C) since 1√

u+1−1

u→∞∼ u−1/2 .

Recall now that d4T (λ̃1, λ̃2) ≤ δ is equivalent to

∣∣∣λ̃2 − λ̃1

∣∣∣ ≤ (√Tδ/C + 1− 1√
T

)4

T→∞∼ δ2/C2 for δ > 0,

so that the definition of λ̃ yields, for T large enough and taking η =
√
δ,

E1/4 sup
|λ2−λ1|1/2≤δ/(2C)

∣∣∣M̃T (λ2)− M̃T (λ1)
∣∣∣4 ≤ E1/4 sup

d̃4T (λ1,λ2)≤δ

∣∣∣M̃T (λ2)− M̃T (λ1)
∣∣∣4 T→T→ C ′

(
δ1/4 + δ1/2

)
.

Because limδ↓0(δ1/4 + δ1/2) = 0, {M̃T (λ)}λ∈[0,1] is asymptotically equicontinuous by the Markov inequal-

ity, as {MT (λ)}λ∈[0,1]. 2

Proof of Proposition 1

Under H0, C11 = OP(1) and M1 = OP(1).

We first show that C21 = oP(1). We consider first the entries of C21 of the inner regime. We have,

using Lemma 1 and Theorem 3.2 of Park and Phillips [2001], k = 1, . . . , p,∣∣∣∣∣ 1
T 3/4

T∑
t=p+1

h(yt−1)I(|yt−1| < λ)ut−k

∣∣∣∣∣ ≤ maxt≤T |ut|
T 1/4

∣∣∣∣∣ 1√
T

T∑
t=p+1

h(yt−1)I(|yt−1| < λ)

∣∣∣∣∣ = oP(1),

with h(y) = 1 or h(y) = y here. For the entries of C21 of the outer regime, observe

1
T 3/2

T∑
t=p+1

yt−1I(|yt−1| ≥ λ)ut−k

=
1

T 3/2

T∑
t=p+1

yt−1ut−k −
1

T 3/2

T∑
t=p+1

yt−1I(|yt−1| < λ)ut−k
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=
1

T 3/2

T∑
t=p+1

yt−1ut−k + oP(1) by the equation above,

=
1

T 3/2

T∑
t=p+1

ut−1ut−k + · · ·+ 1
T 3/2

T∑
t=p+1

u2
t−k +

1√
T

T∑
t=p+1

yt−k−1√
T

ut−k√
T

+ oP(1)

= oP(1) see Proposition 17.3-(c,e) in Hamilton [1994].

It remains to study the items

1
T

T∑
t=p+1

sgnλ(yt−1)ut−k =
∞∑

j=0

πj

T

T∑
t=p+1

sgnλ(yt−1)εt−k−j , k = 1, . . . , p

to find the order of C21. Observe that

E

∣∣∣∣∣∣
∞∑

j=J0+1

πj

T

T∑
t=p+1

sgnλ(yt−1)εt−k−j

∣∣∣∣∣∣ ≤
∞∑

j=J0+1

|πj |
T

T∑
t=p+1

E|εt−k−j | ≤ C
∞∑

j=J0+1

|πj |

which can be arbitrarily small by taking J0 large enough. Then T−1
∑

sgnλ(yt−1)ut−k = oP(1) for

k = 1, . . . , p is a consequence of T−1
∑

sgnλ(yt−1)εt−q = oP(1) for any finite q. Recall that sgnλ(y) =

I(y ≥ λ)− I(−y ≥ −λ) and note that

|I(y1 + y2 ≥ λ)− I(y1 ≥ λ)| = |I(y1 + y2 − λ < 0, y1 − λ ≥ 0) + I(y1 + y2 − λ ≥ 0, y1 − λ < 0)|

≤ I(|y1 − λ| ≤ |y2|) ,

and then |sgnλ(y1 + y2) − sgnλ(y1)| ≤ 2I(|y1| ≤ |y2 − λ|). Therefore, writing yt = yt−q−1 + yt − yt−q−1

with yt − yt−q−1 = ut + · · · + ut−q, ut−q = 0 for t − q < 1 and yt−q−1 = 0 for t < q + 2, and Lemma 1

yields ∣∣∣∣∣ 1T
T∑

t=p+1

sgnλ(yt−1)εt−q

∣∣∣∣∣
≤

∣∣∣∣∣ 1T
T∑

t=p+1

sgnλ(yt−q−1)εt−q

∣∣∣∣∣+ 2
T

T∑
t=p+1

I(|yt−q−1 − λ| ≤ |yt − yt−q−1|)|εt−q|

≤

∣∣∣∣∣ 1T
T∑

t=p+1

sgnλ(yt−q−1)εt−q

∣∣∣∣∣ (A.7)

+
2
T

T∑
t=p+1

I
(
|yt−q−1 − λ| ≤ CT 1/(4+s)

)
|εt−q| (A.8)

with a probability which can be made arbitrarily close to 1 by choosing C large enough.
∑T

t=p+1 sgnλ(yt−q−1)εt−q

is a martingale with a variance
∑T

t=p+1 E[sgn2
λ(yt−q−1ε

2
t−q] ≤ σ2T , so that (A.7) is OP(1/

√
T ). For (A.8),

Lemma 2 yields

E

[
1
T

T∑
t=p+1

I
(
|yt−q−1 − λ| ≤ CT 1/(4+s)

)
|εt−q|

]
≤ 1

T

T∑
t=q+2

E|εt−q|
∫ CT 1/(4+s)

−CT 1/(4+s)
ft−q−1(y − λ)dy
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≤ CT 1/(4+s)

T

T∑
t=q+2

1√
t− q

= O

(
T 1/2+1/(4+s)

T

)
= o(1) ,

showing that T−1
∑T

t=p+1 sgnλ(yt−q−1)εt−q = oP(1). As a consequence, C21 = oP(1).

We now derive the limit distribution of (C22(λ),M2(λ)), the study of (C22(λj),M2(λj), j = 1, . . . , J)

being similarly studied using the Cramer-Wold device in (2.5). Due to the standardization by (1/T, 1/
√
T )

in (Co
22(λ),Mo

2 (λ)) and by (1/
√
T , 1/T 1/4) in the processes (ST (λ),MT (λ)) of Lemma 3, Lemma 3 yields

that (Co
22(λ),Mo

2 (λ)) = (Co
22(0),Mo

2 (0)) + oP(1). Note also that∫
I(|δy| ≤ λ)dy = 2

λ

|δ|
,

∫
δyI(|δy| ≤ λ)dy = 0,

∫
δ2y2I(|δy| ≤ λ)dy =

2
3
λ3

|δ|
.

Writing yt−1 = δyt−1/δ, Theorems 3.1 and 3.2 of Park and Phillips [2001] therefore give that, jointly

C22(λ) d→


1 −

∫ 1

0
|δW (r)| dr 0 0

−
∫ 1

0
|δW (r)| dr

∫ 1

0
δ2W 2(r)dr 0 0

0 0 2λ
|δ|`W (0, 1) 0

0 0 0 2λ3

3|δ|`W (0, 1)

 ,

M2(λ) d→ σ


−
∫ 1

0
sgn (δW (r)) dW (r)∫ 1

0
δW (r)dW (r)

B
(

2λ
|δ|`W (0, 1)

)
B
(

2λ3

3|δ|`W (0, 1)
)

 .

We now derive the asymptotic distribution of the Wald statistic. Let r = (0, 1)′. Observe that

σ̂2(λ) P→ σ2 since M ′(λ)C−1(λ)M(λ)/T = oP(1), and C21 = oP(1). It then follows from (A.2) that

WT (λ) =
1

σ2 + oP(1)


(
r′ [Co

22(λ)]−1
Mo

2 (λ)
)2

r′ [Co
22(λ)]−1

r
+

(
r′
[
Ci

22(λ)
]−1

M i
2(λ)

)2

r′
[
Ci

22(λ)
]−1

r

+ oP(1)

d→

(∫ 1

0
δW (r)dW (r)−

∫ 1

0
|δW (r)| dr

∫ 1

0
sgn (δW (r)) dW (r)

)2

∫ 1

0
δ2W 2(r)dr −

(∫ 1

0
|δW (r)| dr

)2 +
B2
(

2λ3

3|δ|`W (0, 1)
)

2λ3

3|δ|`W (0, 1)

d=

(∫ 1

0
W (r)dW (r)−

∫ 1

0
|W (r)| dr

∫ 1

0
sgn (W (r)) dW (r)

)2

∫ 1

0
W 2(r)dr −

(∫ 1

0
|W (r)| dr

)2 +B2(λ3)/λ3 ,

where the equality in distribution above holds jointly with respect to λ in R∗+, and comes from standard

scaling properties of the Brownian motion and of the sign function, the fact that δ = σ/(1 − a(1)) > 0

(since the roots of 1−a(x) lies outside the unit circle with 1−a(0) = 1, so that 1−a(1) > 0 by continuity),

together with the independence between {W (s)}s∈R+ and {B(s)}s∈R+ . It is easily seen that the three

tests statistics have the same limit distribution under H0. 2

37



Proof of Corollary 1

We first check the asymptotic equicontinuity of the entries of C(λ) which depend upon λ. Consider first

C21 and let h(y;λ) be sgn(λ), yI(|y| ≥ λ), I(|y| < λ) or yI(|y| < λ). We have, for k = 1, . . . , p,∣∣∣∣∣ 1T
T∑

t=p+1

h(yt−1;λ)ut−k

∣∣∣∣∣ ≤ maxt≤T |ut|√
T

1√
T

T∑
t=p+1

|h(yt−1;λ)|

= oP(1)
1√
T

T∑
t=p+1

|h(yt−1;λ)|

by Lemma 1, and then {C21(λ)}λ∈[a,b], is asymptotically equicontinuous by Proposition 2 due to a stan-

dardization smaller or equal to 1/T in front of the sums involved in this submatrix. The asymptotic

equicontinuity of the other entries of C(λ), and then the asymptotic equicontinuity of {C(λ)}λ∈[a,b] also

follows from Proposition 2, which also implies the asymptotic equicontinuity of {M(λ)}λ∈[a,b]. Since the

limit in distribution of infλ∈[a,b] detC(λ) and infλ∈[a,b] det
(
RC−1(λ)R

)
are bounded away from 0 with

probability 1, (A.2) shows that the asymptotic equicontinuity of the Wald statistic is proven. The other

statistics easily follow. 2

Proof of Theorem 1

As above, we consider only the Wald statistic which is asymptotically equivalent to the other ones. Because

I(yt−1 ≥ λ) = 1 − I(yt−1 < λ), {WT (λ)}λ∈[a,b] writes as a continuous functional of cadlag functions. It

then follows from Proposition 1 and Corollary 1 that (λT , λT )

{WT (λ)}λ∈[a,b]

 d→

 (λ, λ)

{ζ2
1 + ζ2

2 (λ)}λ∈[a,b]


for any compact interval [a, b] with a > 0, and where weak convergence is with respect to the Skorohod

topology of D[a, b], see Billingsley [1968], p.111 and further. Recall also that convergence in D[a, b]

implies uniform convergence when the limit is continuous. Due to the a.s. continuity of the limit process

{ζ1 + ζ2(λ)}λ∈[a,b], we then have

max
λ∈ΛT∩[a,b]

WT (λ) d→ sup
λ∈ΛT∩[a,b]

(
ζ2
1 + ζ2

2 (λ)
)
.

Observe now that

P
(

max
λ∈ΛT

WT (λ) 6= max
λ∈ΛT∩[a,b]

WT (λ)
)
≤ 1− P

(
a ≤ λT ≤ λT ≤ b

)
P

(
sup

λ∈[λ,λ]

(
ζ2
1 + ζ2

2 (λ)
)
6= sup

λ∈[λ,λ]∩[a,b]

(
ζ2
1 + ζ2

2 (λ)
))

≤ 1− P
(
a ≤ λ ≤ λ ≤ b

)
.
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Note that ζ2(λ) is a.s. continuous over R∗+. Therefore, taking an interval [a, b] ⊂ R∗+ with lim infT→∞ P(a ≤
λ ≤ λ ≤ b) arbitrary close to 1 yield

sup
λ∈[λT ,λT ]

WT (λ) d→ ζ2
1 + sup

λ∈[λ,λ]

ζ2
2 (λ) with, since (λ, λ) and B(·) are independent,(

ζ2
1 , sup

λ∈[λ,λ]

ζ2
2 (λ)

)
=

(
ζ2
1 , sup

t∈[1,λ/λ]

B2
(
λ3t3

)
λ3t3

)
d=

(
ζ2
1 , sup

t∈[1,λ/λ]

B2
(
t3
)

t3

)
.

The test statistic is then asymptotically pivotal under the conditions of the Theorem. 2

Proof of Theorem 2

Let µ be the common mean of the stationary yt’s. We first show that, for any stationary {yt}, for any q

P(q): if (y1, . . . , yq, yq+1) has a continuous distribution, the (auto)regression bq(L)(yt−µ) =

vq,t = vt of yt − µ on yt−1 − µ, . . . , yt−q − µ is such that bq(1) 6= 0.

Assume without loss of generality that µ = 0. For q = 1, the autoregression writes yt − b1yt−1 = vt

with b1 = Cov(yt, yt−1)/Var(yt−1) = Corr(yt, yt−1) where Corr(A,B) is the correlation coefficient of A

and B, and since Var(yt) = Var(yt−1) by stationarity. Therefore b1(1) = 0 yields that yt and yt−1 have

a correlation of 1 and then vt = 0 so that yt = yt−1, a contradiction. Therefore P(1) is true. Let us

now show that P(q) is true for any q > 1. Assume that P(q) is not true so that bq(L) = (1 − L)̃bq(L).

Observe now that {b̃q(L)yt} is stationary as a linear transformation of a stationary process, and that

(̃bq(L)yt, b̃q(L)yt−1) has a continuous distribution since b̃q(L) is of degree q − 1. Note that {b̃q(L)yt}
admits an autoregression of order 1 given by b̃q(L)yt = b̃q(L)yt−1 + vt with a unit root 1, contradicting

P(1). Therefore P(q) is true for any q ≥ 1.

We now show that WT (λ∗) diverges for a well chosen λ∗ > 0, showing that supλ∈ΛT
WT (λ) diverges

since λ∗ ∈ ΛT with a probability tending to 1 under the conditions on (λT , λT ) of Theorem 2, the case

of the other test statistics being similar. For any λ ∈ R+, let (aλ(L), µ1(L), ρ1(L), µ2(λ), ρ2(λ)) be the

coefficients of the TAR model (2.1) of order p associated with {yt} by a theoretical linear regression.

Setting µ1(λ) = ρ1(λ) = 0 if λ is above the common support of the yt’s shows that the pseudo TAR

model is uniquely defined since y1, . . . , yp+1 has a continuous distribution. Observe that ρ2(λ) → bp(1) 6= 0

when λ → +∞ by the Lebesgue Dominated Convergence Theorem. Therefore taking λ∗ large enough

and ergodicity yield that ρ̂2(λ∗)
P→ ρ2(λ∗) 6= 0 ensuring that WT (λ∗) will diverge under the convention

of footnote 2 since V −1
T (λ∗) in (2.2) is of order T under the alternative. 2
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