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Summary . The terms ‘Sequential Monte Carlo methods’, or similarly ‘particle filters’, refer to a
general class of iterative algorithms which perform Monte Carlo approximations of a given se-
quence of distributions of interest (πt). Their use is usually justified by first-order asymptotics,
i.e. it is shown that computed estimates converge almost surely as the number of ‘particles’
(simulated values) tends towards infinity. In this paper, we establish a central limit theorem
for these estimates. This result holds under minimal assumptions on the distributions πt, and
apply in a general framework which encompasses most of sequential Monte Carlo methods
that have been considered in the literature, including the resample-move algorithm of Gilks
and Berzuini (2001) or the residual resampling scheme of Liu and Chen (1998). The corre-
sponding asymptotic variances provide a convenient measurement of the precision of a given
particle filter. We study in particular in some typical examples of Bayesian applications whether
and to which rate these asymptotic variances diverge in time, in order to assess the long term
reliability of the considered algorithm.

Keywords: Convergence of sequential Monte Carlo methods; Markov Chain Monte Carlo; Par-
ticle filter; State-space models

Résumé . Les expressions ‘méthodes de Monte Carlo séquentielles’, ou ‘filtres particulaires’,
font référence à une classe générale d’algorithmes itératifs effectuant des approximations de
Monte Carlo d’une suite donnée de distributions d’intérêt (πt). Leur utilisation est justifiée
par une asymptotique d’ordre un, i.e. on démontre que les estimateurs calculés convergent
presque sûrement lorsque le nombre de ‘particules’ (valeurs simulées) tend vers l’infini. Dans
cet article, nous établissons un théorème central limite pour ces estimateurs. Ce résultat
requiert des hypothèses très faibles sur les distributions (πt), et s’applique dans un cadre
général qui comprend la plupart des méthodes de Monte Carlo séquentielles considérées
dans la littérature, y compris l’algorithme ‘resample-move’ de Gilks et Berzuini (2001), ou le
ré-échantillonnage résiduel de Liu et Chen (1998). Les variances asymptotiques correspon-
dantes permettent de mesurer de façon simple la précision d’un filtre particulaire donné. Nous
étudions en particulier dans quelques exemples typiques d’applications Bayésiennes la vitesse
de divergence de ces variances asymptotiques, afin d’évaluer la stabilité de long terme de
l’algorithme considéré.
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1. Introduction

Sequential Monte Carlo methods form an emerging yet already very active branch of the
Monte Carlo paradigm. Their growing popularity comes in part from the fact that they
are often the only viable computing techniques in those situations where data must be
processed sequentially. Their range of applicability is consequently very wide, and includes
non exclusively signal processing, �nancial modelling, speech recognition, computer vision,
neural networks, molecular biology and genetics, target tracking, geophysics, among others.
A very good introduction to the �eld has been written by Künsch (2001), while the edited
volume of Doucet et al. (2001) provides an interesting coverage of recent developments in
theory and applications.

Speci�cally, sequential Monte Carlo methods (which are often termed as `particle �lters')
are useful in any problem which involves a large sequence of distributions of interestπt(dθt).
In a sequential Bayesian framework,πt(dθt) will usually represent the posterior distribution
of parameter θt given the t �rst observations. The term `parameter' must be understood
here in a broad sense, in that θt may include any unknown quantity which may be inferred
from the t �rst observations, and is not necessarily of constant dimension. We denoteΘt

the support of πt(dθt).
Due to their Monte Carlo nature, the justi�cation of sequential Monte Carlo methods

usually takes the form of a law of large numbers, that is, computed estimates are shown
to converge almost surely to the quantity of interest as the number of `particles' (simu-
lated values) tends towards in�nity. This result however gives little insight on the rate of
convergence of these estimates. To complete this �rst convergence theorem, we establish
in this paper a central limit theorem for these estimates. This result holds under weak
assumptions, and applies in a general framework which encompasses most algorithms found
in the literature, see �2.2 for references. We will see for instance that it applies to the
resample-move algorithm of Gilks and Berzuini (2001), in which particles are `moved' from
time to time through a given MCMC (Monte Carlo Markov Chain) transition, in order to
introduce new particle values.

To our knowledge, there have been previously two attempts in establishing a central
limit theorem for particle �lters. First, the theorem of Del Moral and Guionnet (1999) only
applies to a basic sequential Monte Carlo method which does not incorporate any `move'
mechanism. Furthermore, their proof is speci�c to the nature of distributionsπt, namely
it is assumed that πt is the posterior density of a state-space model which ful�ls given
conditions. In contrast, we do not make any assumption onπt. The central limit theorem
of Gilks and Berzuini (2001) is closer in spirit to our work, since the possibility of `moving'
particles is considered. But as pointed out by the authors themselves the considered mode
of convergence (as H1,H2, ..., Ht → +∞, recursively, where Ht is the number of particles
at iteration t) is not very realistic, since the number of particles usually remains identical
through iterations. In this respect one major point of our work is that convergence is
established as H = H1 = H2 = . . . goes towards in�nity. This complicates the proof but is
certainly more relevant to the actual behaviour of particle �lters. Furthermore, both papers
cited above only consider the multinomial resampling scheme of Gordon et al. (1993), while
our theorem equally applies to algorithms which resort to the residual resampling scheme
of Liu and Chen (1998), which is a more e�cient alternative.

We believe that our central limit theorem can become a precious tool in the study of
theoretical aspects of particle �ltering. By way of illustration, we formalize some principles
that have been stated previously on a heuristic basis. For instance, the residual resampling
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scheme is indeed more e�cient than the multinomial resampling scheme, since it is shown
to lead to a smaller asymptotic variance. Similarly, the `Rao-Blackwellization' technique of
Doucet et al. (2000), which consists in integrating out when possible some dimensions ofθt,
is shown to reduce the asymptotic variance.

The most promising application of our central limit theorem is the possibility to assess
the stability of a given particle �lter (in terms of precision of computed estimates) through
the time behaviour of the corresponding asymptotic variances. This is a critical issue since
it is well known that sequential Monte Carlo methods tend to degenerate in numerous cases,
sometimes at a very fast rate. We consider in this paper some typical Bayesian problems,
such as the sequential analysis of state-space models. In this particular case,πt(dθt) will
stand for the posterior distribution of the sequence of state variablesx1, . . . , xt, possibly
completed by a �xed parameter θ, and θt will be therefore of increasing dimension. We will
show that under some conditions stability can be achieved at least for `�ltering' the states,
that is for approximating the marginal posterior densityπt(xt).

We will also provide some interesting results for problems whereπt more simply repre-
sents the posterior distribution of a constant parameter θt = θ. While overlooked in the
literature, this case has many practical applications. Firstly, there are some examples of
dynamical models such that the marginal posterior density of the �xed parameterθ (that
is to say integrated over latent variables x1, . . . , xt) is tractable. It is then possible to ap-
ply the aforementioned `Rao-Blackwellization' technique and consider the sequence of these
marginal densities instead of the joint densities of θ and x1, . . . , xt. Related algorithms,
see Doucet et al. (2000), Chen and Liu (2000), and Chopin (2001), therefore fall in this
`constant parameter' category. Secondly, particle �ltering allows more generally for sequen-
tially estimating any parametric model that does not involve a hidden process. Note this
sequential framework may be purely instrumental, in that the observationsy1, . . . , yT to be
taken into account may be immediately available,π(dθ|y1, . . . , yT ) being the only posterior
distribution of interest. In such a case only the �nal output of the algorithm is considered.
Chopin (2002) argues that particle �ltering is an e�cient computational strategy for the
Bayesian inference of `static' parametric models, provided that the sample size is important,
since accesses to data are reduced.

The paper is organized as follows. Section 2 proposes a generic description of particle
�lters, establishes in this general framework a central limit theorem for computed estimates,
and draws some conclusions from this result. Section 3 discusses the stability of particle
�lters through the time behaviour of the asymptotic variances provided by the central limit
theorem. Section 4 proposes several directions for further research. Proofs of theorems are
put in the Appendix.

2. Central limit theorem for particle filters

2.1. General formulation of particle filters

In full generality, a particle system is a triangular array of random variables inΘ× R+,

(θ(j,H), w(j,H))j≤H ,

where Θ is some space of interest. The variables θ(j,H) are usually called `particles', and
their contribution to the sample may vary according to their weightw(j,H). We will say
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that this particle system targets a given distribution π de�ned on Θ if and only if
∑H

j=1 w(j,H)ϕ(θ(j,H))
∑H

j=1 w(j,H)
→ Eπ(ϕ) (1)

holds almost surely as H → +∞ for any measurable function ϕ such that the expectation
above exists. A �rst example of particle system is a denumerable set of independent draws
from π, with unit weights, which obviously targets π. In this simple case, particles and
weights do not depend onH, and the particle system is rather a sequence than a triangular
array. This is not the case in general however, and, while cumbersome, the dependence in
H will be maintained in notations to allow for a rigourous mathematical treatment.

Now assume a sequence (πt)t∈N of distributions de�ned on a sequence of probabilized
spaces (Θt). In most if not all applications, Θt will be a power of the real line or some
subset of it, and henceforth πt(·) will also denote the density of πt with respect to an
appropriate version of Lebesgue measure. A sequential Monte Carlo algorithm (or particle
�lter) is a method for producing a particle system whose target evolves in time: at iteration
t of the algorithm, the particle system targets πt, and therefore allows for Monte Carlo
approximations of the distribution of (current) interestπt. Clearly enough particle �lters
do not operate in practice on in�nite triangular arrays but rather manipulate particle vectors
of pre-chosen sizeH. One must keep in mind however that the justi�cation of such methods
is essentially asymptotic, and therefore justi�es this abstract framework.

The structure of a particle �lter can be decomposed in three basic iterative operations,
that we will refer to hereafter as mutation, correction and selection steps. At the beginning
of iteration t, consider a particle system (θ(j,H)

t−1 , 1)j≤H , that is with unit weights, currently
targeting πt−1. The mutation step consists in producing new particles drawn from

θ
(j,H)
t ∼ kt(θ

(j,H)
t−1 , dθt),

where kt is a transition kernel which mapsΘt−1 into the set P(Θt) of probability measures
over Θt. The `mutated' particles (with unit weights) targets the new distribution π̃t =∫

πt−1(θt−1)kt(θt−1, ·)dθt−1. This distribution π̃t is usually not relevant to the considered
application, but rather serves as an intermediary stage for practical reasons. To shift the
target to distribution of interest πt, particles are assigned weights proportional to

w
(j,H)
t ∝ υt(θ

(j,H)
t ), with υt(θt) = πt(θt)/π̃t(θt).

This is the correction step. The particle system (θ(j,H)
t , w

(j,H)
t ) targets πt. The function υt

is referred to as the weight function. Note the normalizing constants of densitiesπt and π̃t

are intractable in most applications. This is why weights are de�ned up to a multiplicative
constant, which has no bearings anyway on the estimates produced by the algorithm, since
they are weighted averages.

Finally, the selection step consists in replacing the current vector of particles by a
new, uniformly weighted vector (θ̂(j,H)

t , 1)j≤H which contains a number nj of replicates
of particle θ

(j,H)
t , nj ≥ 0. The nj 's are random variables such that

∑
nj = H and

E(nj) = w(j,H)/
∑

j w
(j,H)
t . In this way, particles with too small a weight are discarded,

while particles with important weight serve as a multiple starting point for the next mu-
tation step. They are various ways for generating the nj 's. Denote ρj the normalized
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weights,

ρj = w
(j,H)
t /

H∑

j=1

w
(j,H)
t

where dependencies in H and t are omitted for convenience. Multinomial resampling (Gor-
don et al., 1993) amounts to drawing independently theH new particles from the multino-
mial distribution which produces θ

(j,H)
t with probability ρj . Residual resampling (Liu and

Chen, 1998) consists in reproducing bHρjc times each particle θ
(j,H)
t , where b·c stands

for the integer part. The particle vector is completed by Hr = H − ∑
jbHρjc inde-

pendent draws from the multinomial distribution which produces θ
(j,H)
t with probability

(Hρj − bHρjc)/Hr. Another interesting selection scheme has been proposed by Whitley
(1994), for which the number of replicatesnj is ensured to di�er from Hρj by at most one.
It has been rediscovered and christened `systematic sampling' by Carpenter et al. (1999).
We failed however to extend our results to this third selection scheme.

The structure of a particle �lter can be summarized as follows.

1. Mutation: Draw for j = 1, . . . , H,

θ
(j,H)
t ∼ kt(θ

(j,H)
t−1 , dθt),

where kt : Θt−1 → P(Θt).
2. Correction: Assign weights to particles so that, for j = 1, . . . ,H,

w
(j,H)
t ∝ υt(θ

(j,H)
t ) = πt(θ

(j,H)
t )/π̃t(θ

(j,H)
t ),

where π̃t(·) =
∫

πt−1(θt−1)kt(θt−1, ·) dθt−1.
3. Selection: resample, according to a given selection scheme,

(θ(j,H)
t , w

(j,H)
t )j≤H → (θ̂(j,H)

t , 1)j≤H .

The �rst mutation step, t = 0, is assumed to create initial particles by drawing inde-
pendently from some instrumental distribution π̃0.

It is shown without di�culty that the particle system produced by this generic algorithm
does target iteratively the distributions of interest, that is the following convergences hold
almost surely,

H−1
H∑

j=1

ϕ(θ(j,H)
t ) → Eeπt

(ϕ)

∑H
j=1 w

(j,H)
t ϕ(θ(j,H)

t )
∑H

j=1 w
(j,H)
t

→ Eπt(ϕ)

H−1
H∑

j=1

ϕ(θ̂(j,H)
t ) → Eπt(ϕ)

provided the corresponding expectations exist. These convergences will be referred to as
the law of large number for particle �lters. This law of large number ensures the consistency
of the weighed averages above, but gives little insight on their precision. This calls for a
central limit theorem that completes these consistency results.
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2.2. Some examples of particle filters
The general formulation given in the previous section encompasses most sequential Monte
Carlo methods described in the literature. By way of illustration, assume �rst that distri-
butions πt are de�ned on a common space Θt = Θ. Such a situation arises for instance
in a sequential setting where the only unknown quantity is a `�xed' parameter θ. In a
Bayesian framework, πt will be the posterior density of θ, given the t �rst observations,
πt(θ) = π(θ|y1:t), where y1:t denotes the sequence of the observationsy1, . . . , yt. If particles
are not mutated, kt being the `identity kernel' kt(θ, ·) = δθ, we have π̃t = πt−1 for t > 0,
and our generic particle �lter becomes one of the variations of the sequential importance
resampling algorithm (Rubin, 1988; Gordon et al., 1993; Liu and Chen, 1998). The weight
function simpli�es to

υt(θ) = π(θ|y1:t)/π(θ|y1:t−1) ∝ p(yt|y1:t−1, θ)

in a Bayesian model, where p(yt|y1:t−1, θ) is the conditional likelihood of yt, given the
parameter θ and previous observations.

In this setting, the support of πt is expected to concentrate progressively on a certain
region of the space Θ, and to eventually converge to a Dirac mass centred at some θ0.
In the Bayesian framework, this phenomenon represents the accumulation of information
on θ as more and more data is taken into account. If kt is set to the identity kernel,
the set of plausible values for particles is generated once and for all from π̃0 at the �rst
step of the algorithm. Less and less of these values should consequently contribute to a
correct representation of πt as t grows, the others being assigned a very little weight or
even discarded through the successive selection steps. To counter this degeneracy e�ect and
introduce new values in the particle sample, Gilks and Berzuini (2001) proposed to mutate
particles through a given kernel kt which admits πt−1 as an invariant density. In that case,
we still have π̃t = πt−1, and the expression of weight functions is unchanged. Such a kernel
is usually built through MCMC (Markov Chain Monte Carlo) methodology (see Robert and
Casella, 1999, for an authoritative presentation). The ability of such a kernel to `rejuvenate'
the particle system seems to be related to its mixing properties, in that a strong dependence
in previous state θt−1 should prevent any reduction of degeneracy.

Now consider the case where πt is de�ned on a space of increasing dimension of the
form Θt = X t. A typical application is the sequential inference of a dynamical model which
involves a latent process (xt), and πt stands then for density π(x1:t|y1:t). Assume kt can be
decomposed in

kt(x1:t−1, dx1:t) = κt(x1:t−1, dx1:t−1)qt(xt|x1:t−1) dxt,

where κt : X t−1 → P(X t−1) is a transition kernel, and qt(·|·) is a conditional density. If κt

admits πt−1 as an invariant density, the weight function veri�es

υt(x1:t) =
πt(x1:t)

πt−1(x1:t−1)qt(xt|x1:t−1)
. (2)

Again, the case where κt is the identity kernel corresponds to some version of the sequential
importance resampling algorithm, while settingκt to a given MCMC transition kernel with
invariant density πt−1 leads to the resample-move algorithm of Gilks and Berzuini (2001).

This second setting is more involved. In certain applications, one is primarily interested
in inferring the last state xt (Bayesian �ltering), and the distribution of interest is the
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marginal density of πt in xt rather than πt itself. It may be su�cient in that case to resort
to the sequential importance resampling algorithm, provided that the conditional density
qt(xt|x1:t−1) has the ability to rejuvenate the particle sample by `forgetting' the previous
states, according to a principle similar to the MCMC rejuvenation presented above. The
density qt must be chosen so that the weight function νt = π̃t/πt is not too distorted. The
simplest solution is to set qt to the conditional prior density ofxt, given x1:t−1, as suggested
originally by Gordon et al. (1993). It is usually more e�cient however to take into account
in some way the information carried byyt, in order to simulate more values compatible with
the observations, as exempli�ed by the algorithm of Pitt and Shephard (1999). Whatever
qt, the sequential resampling algorithm is not an e�cient method for inferring the whole
trajectory x1:t (Bayesian smoothing). These assertions on the behaviour of the sequential
importance resampling algorithm will be formalized more properly in the second part of
this paper.

These two previous cases can be combined into one, by considering a dynamic model
which features in the same time a �xed parameterθ and a sequence of latent variables (xt),
so that Θt = Θ×X t, and πt stands for the joint posterior density π(θ, x1:t|y1:t). This does
not change much the structure of the algorithm described in the second case, but without
an e�cient MCMC rejuvenation strategy depletion in parameter values must be expected
for essentially the same reasons as in the �rst case.

Note �nally that there exists an ever simpler particle �lter algorithm which does not
pertain to our general formulation. This is the sequential importance sampling which al-
ternates mutation and correction steps, but does not perform any selection step. Weights
are consequently not initialized to one at each iteration, and are rather updated through

w
(j)
t ∝ w

(j)
t−1υt(θ

(j)
t ).

We suppress any notational dependence inH since it is meaningless in such a case. Due to
its speci�c nature, this algorithm will be treated separately, see �3.1.

2.3. Central limit theorem
We de�ne the following variance-like quantities, which will play the role of asymptotic
variances in our central limit theorem. Let, for any measurableϕ : Θ0 → Rd, Ṽ0(ϕ) =
Veπ0(ϕ), and by induction, for any ϕ : Θt → Rd,

Ṽt(ϕ) = V̂t−1{Ekt(ϕ)}+ Eπt−1{Vkt(ϕ)}, t > 0, (3)
Vt(ϕ) = Ṽt [υt.(ϕ− Eπtϕ)] , t ≥ 0, (4)
V̂t(ϕ) = Vt(ϕ) + Vπt(ϕ), t ≥ 0. (5)

Notations Ekt(ϕ) and Vkt(ϕ) are short-hands for, respectively, functions µ(θt−1) =
Ekt(θt−1,·){ϕ(·)} and Σ(θt−1) = Vkt(θt−1,·){ϕ(·)}. Note these equations do not necessary
lead to de�nite quantities for any ϕ. We now precise the classes of functions for which
the central limit theorem enunciated below will hold, and in particular for which these
asymptotic variances exist. De�ne recursivelyΦ(d)

t to be the set of measurableϕ : Θt → Rd

such that for some δ > 0,
Eeπt

‖υt.ϕ‖2+δ < +∞, (6)

and that function θt−1 7→ Ekt(θt−1,·){υt(·)ϕ(·)} is in Φd
t−1. The initial set Φ(d)

0 contains all
measurable functions whose moments of order two over π̃0 are �nite.
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Theorem 1. If the selection step consists in multinomial resampling, and provided that
the unit function θt 7→ 1 belongs to Φ(1)

t for every t, then for any ϕ ∈ Φ(d)
t , Eπt

(ϕ), Vt(ϕ) and
V̂t(ϕ) are �nite quantities, and the following convergences in distribution hold asH → +∞,

H1/2

{∑H
j=1 w

(j,H)
t ϕ(θ(j,H)

t )
∑H

j=1 w
(j,H)
t

− Eπt
(ϕ)

}
D→ N{0, Vt(ϕ)},

H1/2



H−1

H∑

j=1

ϕ(θ̂(j,H)
t )− Eπt

(ϕ)





D→ N{0, V̂t(ϕ)}.

A proof is given in the Appendix. In the course of this proof an additional central limit
theorem is established for the unweighted particle system(θ(j,H)

t , 1) produced by the muta-
tion step, which targets π̃t. This result is not given here however, for it holds for a slightly
di�erent class of functions, and is of less practical interest. The condition that function
θt 7→ 1 belongs to Φ(1)

t implies that the weight function υt has �nite moment of order 2 + δ
over π̃t, for some δ > 0, and therefore restricts somehow the dispersion of particle weights.
Note this condition also ensures thatΦd

t contains all bounded functions.
A central limit theorem also holds when the selection step follows the residual sampling

scheme of Liu and Chen (1998), but this imposes some change in the expression of the
asymptotic variances. The new expression of V̂t(ϕ) is

V̂t(ϕ) = Vt(ϕ) + Rt(ϕ), (7)

where
Rt(ϕ) = Eeπt

{r(υt)ϕϕ′} − 1
Eeπt

{r(υt)} [Eeπt
{r(υt)ϕ}] [Eeπt

{r(υt)ϕ}]′ , (8)

and r(x) is x minus its integer part.

Theorem 2. Results of Theorem 1 still hold when the selection steps consists in residual
resampling, except that the asymptotic variances are now de�ned by equations (3), (4) and
(7).

When the mutation step follows the multinomial scheme, a simpler alternative to itera-
tive formulae (3) to (5) is the close-form expression

Vt(ϕ) =
t∑

k=0

Eeπk

[
υ2

kEk+1:t {ϕ− Eπt(ϕ)} Ek+1:t {ϕ− Eπt(ϕ)}′] , (9)

where Et is the functional operator which attributes toϕ the function

Et(ϕ) : θt−1 7→ Ekt(θt−1,·) [υt(·) {ϕ(·)}] , (10)

and Ek+1:t(ϕ) = Ek+1 ◦ . . . ◦ Et(ϕ) for k + 1 ≤ t, Et+1:t(ϕ) = ϕ. A similar formula for the
residual case can be obtained indirectly by deriving the variation of the asymptotic variance
incurred by resorting to the residual scheme rather than the multinomial scheme, that is,
for t > 0,

V r
t (ϕ)− Vt(ϕ) = V̂ r

t−1(ϕ)− V̂t−1(ϕ) =
t−1∑

k=0

[Rk{Ek+1:t(ϕ)} − Vπk
{Ek+1:t(ϕ)}] , (11)
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where V r
t (ϕ) and V̂ r

t−1(ϕ) are the asymptotic variances de�ned in the residual case, through
(3), (4) and (7). In the following, we will similarly distinguish the residual case through a
r-su�x in notations.

2.4. First conclusions
A �rst application of this central limit theorem is to provide more rigourous justi�cation
for some heuristics that have been stated previously in the literature, see for instance Liu
and Chen (1998). Inequalities in this section refer to the canonical order for symmetric
matrices, that is to say A > B (resp. A ≥ B) if and only if A−B is positive de�nite (resp.
positive semide�nite).

First, it is preferable to derive any estimate before the selection step, since the immediate
e�ect of the latter is a strict increasing of asymptotic variance: V̂ (ϕ) > V (ϕ) for any
non constant function ϕ. In this respect one may wonder why selection steps should be
performed. We will see that this immediate degradation of the particle system is often
largely compensated by gains in precision for future inference.

Second, residual sampling outperforms multinomial resampling in every case. Letϕ :
Θt → Rd and ϕ = ϕ− Eeπt

{r(υt)ϕ}, then

Rt(ϕ) = Eeπt
{r(υt)ϕϕ′},

≤ Eeπt
{r(υt)(ϕ− Eπtϕ)(ϕ− Eπtϕ)′}

≤ Vπt(ϕ)

since r(x) ≤ x. It follows from this inequality and (11) that Vt(ϕ) ≥ V r
t (ϕ). Actually, a

substantial gain should be expected when using the residual scheme since the majoration
used above is clearly not sharp.

Our central limit theorem also provides formal justi�cation for resorting to `marginalized'
particle �lter, as explained in the following section.

2.5. Marginalized particle filters
In some speci�c cases, it is possible to decompose each spaceΘt in Ξt×Λt in such a way that
the marginal density πm

t of πt over Ξt is computable (up to a positive constant). When such
a structure can be exhibited, it is bene�cial to implement a particle �lter which tracks the
marginal densities πm

t instead of the `complete' densities πt, since it produces more precise
estimators (in a sense that we precise below). The idea of resorting to `marginalized' particle
�lters has been formalized by Doucet et al. (2000), and implemented in various settings
by Chen and Liu (2000), Chopin (2001) and Andrieu and Doucet (2002), among others.
Doucet et al. (2000)'s justi�cation for resorting to `marginalized' particle �lters is that they
feature importance weights with smaller a variance than their `unmarginalized' counterpart,
which suggests that the produced estimates are also less variable. This is proven by a
Rao-Blackwell decomposition, and consequently `marginalized' particle �lters are sometimes
referred to as `Rao-Blackwellized' particle �lters. We now extend the argument of these
authors by proving that asymptotic variances for every estimator are indeed smaller in the
`marginalized' case. Assume decompositions ofπt and π̃t of the form

πt(θt) = πm
t (ξt)πc

t (λt|ξt), π̃t(θt) = π̃m
t (ξt)π̃c

t (λt|ξt),
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where (ξt, λt) identi�es to θt, and πm
t , πc

t , π̃m
t , π̃c

t , are, respectively, marginal and conditional
densities of ξt and λt. Consider two particle �lters, tracking respectively (πt) and (πm

t ).
It is assumed that both �lters resort to the same selection scheme (whether multinomial
or residual), and that their mutation steps consist in drawing respectively from kernelskt

and km
t , where the latter is the `marginal' version of the former, that is to say the following

probability measures coincide onΘt = Ξt × Λt,∫

Λt−1

πc
t−1(λt−1|ξt−1)kt{(ξt−1, λt−1), (dξt, dλt)} dλl−1 = km

t (ξt−1, dξt)π̃c
t (λt|ξt) dλt, (12)

for almost every ξt−1 ∈ Ξt−1. This equality implies in particular that
∫

πm
t−1(ξt−1)km

t (ξt−1, ·) dξt−1 = π̃m
t (·).

Asymptotic variances and other quantities are distinguished similarly through them-su�x
for the marginal case, that is Vt(ϕ) and V m

t (ϕ) and so on.
Theorem 3. For any ϕ : Ξt → Rd, we have V m

t (ϕ) ≤ Vt(ϕ) and V m,r
t (ϕ) ≤ V r

t (ϕ).
These inequalities are attained for a non constant ϕ if and only if πc

k(·|ξt) = π̃c
k(·|ξt) for

almost every ξt ∈ Ξt.
As suggested by the condition for equality above or more clearly exhibited in the proof
in the Appendix, marginalizing allows for cancelling weight dispersion due to discrepancy
between conditional densities π̃c

t and πc
t , while the part due to discrepancy between marginal

densities πm
t and π̃m

t remains identical.
Beyond the small number of cases where this marginalization technique can be e�ectively

carried out, this result has also strong qualitative implications. In the following sections,
we will study the behaviour of the time sequenceVt(ϕ) in order to measure whether and to
which rate a given particle �lter `diverges'. In this respect, we will be able in some cases
to build a marginalized particle �lter whose rate of divergence is theoretically known, thus
providing a lower bound for the actual rate of divergence of the considered particle �lter.

3. Stability of particle filters

3.1. Sequential importance sampling
The study of the sequential importance sampling algorithm is much simpler that any other
particle �lter. Since particles are not resampled, they remain independent through itera-
tions. It follows through the standard central limit theorem that

H1/2{
∑H

j=1 w
(j)
t ϕ(θ(j)

t )
∑H

j=1 w
(j)
t

− Eπt(ϕ)} D→ N{0, V sis
t (ϕ)},

where the corresponding asymptotic variance is

V sis
t (ϕ) = Eeπt

[
πt

π̃t
{ϕ− Eπt(ϕ)}

]2

,

and π̃t denotes this time the generating distribution of particlesθ(j,H)
t obtained by recursion

of mutation kernels kt(·, ·), that is,

π̃t(·) =
∫

π̃t−1(θt−1)kt(θt−1, ·) dθt−1,
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the distribution π̃0 being arbitrary. Sequential importance sampling is rarely an e�cient
algorithm, but the value of V sis

t (ϕ) may serve as a benchmark in some occasions, as we will
see in the following.

3.2. Sequential importance sampling and resampling in fixed parameter case
We have explained that in the �xed parameter case, that isΘt = Θ and πt(θ) = π(θ|y1:t),
πt is expected to get more and more informative on θ, and to eventually converge to a
Dirac mass at some point θ0. Sequential importance sampling and resampling algorithms
typically diverge in such a situation, since they generate once and for all the set of possible
particle values from π̃0, a majority of which being presumably far from θ0. The following
result quanti�es this degeneracy e�ect.

Theorem 4. Let ϕ : Θ → Rd, then under suitable regularity conditions, there exists
constants c1, c2 and c3 such that

V sis
t (ϕ) ∼ c1t

p/2−1, V r
t (ϕ) ∼ c2t

p/2, Vt(ϕ) ∼ c3t
p/2,

where p is the dimension of Θ, and V r
t (ϕ), Vt(ϕ) refer here to the sequential importance

resampling case, that is kt(θ, ·) = δθ.

The conditions mentioned above amount to assume thatπt is the posterior density of a model
regular enough to ensure existence and asymptotic normality of the maximum likelihood
estimator. Under such conditions, πt can be approximated at �rst order as a Gaussian
distribution centred at θ0 with variance I(θ0)−1/t, where I(θ0) is the Fisher information
matrix evaluated at θ0. Results above are then obtained through the Laplace approximation
of integrals, see the Appendix. It may seem paradoxical thatVt(ϕ) converges to zero when
p = 1, but if we rather study the quantity Vt(ϕ)/Vπt(ϕ), which measures the precision of
the algorithm relatively to the variation of the considered function, we see that this ratio
diverges even when p = 1, since usually Vπt(ϕ) ∼ I(θ0)−1/t as t → +∞.

That the sequential importance resampling diverges quicker than the sequential im-
portance sampling is not surprising: when particles are not mutated, the only e�ect of a
selection step is to deplete the particle system. In this respect, we have for any non constant
function ϕ,

V sis
t (ϕ) < V r

t (ϕ) ≤ Vt(ϕ).

The proof of this inequality is straightforward.
Due to its facility of implementation and results above, it may be recommended to use the

sequential importance sampling algorithm for studying short series of observations, provided
that the dimension ofΘ is low. But in general one should rather implement a more elaborate
particle �lter which includes mutation steps in order to counter the particle depletion. A
further-reaching implication of these results is the following. Consider a dynamical model
which involves a �xed parameter θ, and assume that the marginal posterior distributions
π(θ|y1:t), obtained by marginalizing out latent variablesx1:t, ful�l the regularity conditions
of Theorem 4. Then, following the argument developed in �2.5, we got that the rate of
divergence of the sequential importance resampling algorithm for this kind of model is at
least of order O(tp/2), where p is the dimension of this �xed parameter.
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3.3. Sequential importance sampling and resampling for Bayesian filtering and smoothing
For simplicity we assume thatπt(x1:t) = π(x1:t|y1:t) is the posterior density of a state space
model with latent Markov process (xt), xt ∈ X and observed process (yt), yt ∈ Y which
ful�l equations

yt|xt ∼ f(yt|xt) dyt,

xt|xt−1 ∼ g(xt|xt−1) dxt.

We distinguish two types of functions: those which are de�ned on common dimensions of
the spaces Θt = X t, say ϕ : x1:t → ϕ(xk), for t ≥ k, and those which are evaluated on the
`last' dimension of Θt, that is ϕ : x1:t → ϕ(xt). Evaluating these two types of functions
amounts to, respectively, `smoothing' or `�ltering' the states.

The sequential importance sampling algorithm is usually very ine�cient in such a setting,
whether for smoothing or �ltering the states. We illustrate this phenomenon by a simple
example. Assume the t-th mutation step consists in drawing xt from the prior conditional
density g(xt|xt−1), which is usually easy to implement. Consider two evolving particles
θ
(j)
t = x

(j)
1:t with weights w

(j)
t , j = 1, 2. We have

log
w

(1)
t

w
(2)
t

=
t∑

k=1

f(yk|x(1)
k )

f(yk|x(2)
k )

.

Assuming that the joint process (yt, x
(1)
t , x

(2)
t ) is stationary, we should be able to exhibit

conditions under which a central limit theorem of the like

t−1/2
t∑

k=0

log
f(yk|x(1)

k )

f(yk|x(2)
k )

D→ N (0, σ2) (13)

holds, where the limiting distribution is centred for symmetry reasons. Note this conver-
gence is with respect to the joint probability space of simulated processesx

(j)
t , j = 1, 2

and the observation process (yt), while all our previous results were for a given sequence of
observations. In this simple example however it is su�cient to assume the equations of the
considered state-space model de�ne a stationary joint Markov process(xt, yt), (xt referring
here to the `true' latent process) to ensure that both the observation process(yt) and the
processes x

(j)
t (simulated according to the same transitions as (xt)) are stationary. In this

way, (13) yields that the ratio of weights of the two particles either converges or diverges
exponentially fast. More generally when H particles are generated initially, very few of
them will have a prominent weight after some iterations, thus leading to very unreliable
estimates, whether for smoothing or �ltering the states. The algorithm su�ers from the
curse of dimensionality, in that its degeneracy grows exponentially in the dimension of the
space of interest Θt.

We now turn to the sequential importance resampling algorithm, and remark �rst that,
for ϕ : x1:t → ϕ(x1) and t > 0

Vt(ϕ) ≥ V r
t (ϕ) > V sis

t (ϕ),

provided ϕ is not constant. The proof of this inequality is straightforward. The sequential
importance resampling algorithm is even more ine�cient than the sequential importance
sampling algorithm in smoothing the �rst state x1, because the successive selection steps
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simply worsen the deterioration of the particle system in the x1 dimension. The same
remarks apply more generally to any statexk. This is consistent with our claim in �2.4 that
a selection step always degrades the inference on current states, but may possibly improve
the inference on future states. In this respect, the algorithm is expected to show more
capability in �ltering the states, as argued in �2.2, and we now turn to the study of the
�ltering stability.

The functional operator Et which appears in the expression ofVt(ϕ), see (9), summarizes
two contradictory e�ects: on one hand, the weight distortion due to the correction step,
and on the other hand the rejuvenation of particles due to application of kernelkt. Stability
will be achieved provided that these two e�ects compensate in some way.

For simplicity, we assume that the state spaceX is included in the real line and that
the studied �ltering function ϕ : x1:t → ϕ(xt) is real-valued. Recall that for the sequential
importance resampling algorithm, kt veri�es,

kt(x1:t−1, dx1:t) = δx1:t−1 .qt(xt|x1:t−1)dxt,

for some arbitrary conditional distribution qt(·|·). We assume that qt only depends on the
previous value xt−1, and therefore de�nes a Markov transition. The ability ofqt to `forget
past values' is usually expressed through its contraction coe�cient, see Dobrushin (1956),

ρt =
1
2

sup
x′,x′′∈X

||qt(·|x′)− qt(·|x′′)||1,

where || · ||1 stands for the L1-norm. Note ρt ≤ 1, and if ρt < 1, qt is said to be strictly
contractive. De�ne the variation of a given functionϕ by

∆ϕ = sup
x,x′∈X

|ϕ(x)− ϕ(x′)|,

then the coe�cient ρt measures the extent to which the application qt `contracts' the vari-
ation of the considered function, that is forx′, x′′ ∈ X ,

|
∫

qt(x|x′)ϕ(x) dx−
∫

qt(x|x′′)ϕ(x) dx| ≤ ρt∆ϕ. (14)

Furthermore, it is known, see for instance Künsch (2001), that ifqt is such that, for all
x, x′, x′′ ∈ X ,

qt(x|x′)
qt(x|x′′) ≤ C,

then its contraction coe�cient veri�es ρt ≤ 1−C. We therefore make such assumptions in
order to prove the stability of the sequential importance resampling algorithm.

Theorem 5. Assume that ∆ϕ < +∞ and there exist constants C, f and f such that,
for any t ≥ 0, x, x′, x′′ ∈ X , y ∈ Y,

g(x|x′)
g(x|x′′) ≤ C,

qt(x|x′)
qt(x|x′′) ≤ C, f ≤ f(y|x) ≤ f (15)

then Vt(ϕ) is bounded from above in t.
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This theorem is akin to previous results in the literature, see Del Moral and Guionnet
(2001), Legland (2001), and most especially Künsch (2001), except that these authors do
not study the stability of the asymptotic variance but rather of some distance (such as
the total variation norm of the di�erence) between the `true' �ltering densityπt(xt) and
the empirical density computed from the particle system. Furthermore, the aforementioned
references only consider the particular case where the instrumental distributionqt(xt|xt−1)
is set to g(xt|xt−1), while our theorem is more general. Unfortunately all these results,
including ours, require strong assumptions such as (15) that are unrealistic whenX is not
compact. Further research will hopefully provide weaker assumptions but this may prove
an especially arduous problem.

3.4. Resample-move algorithms, variance estimation

We term as `resample-move algorithm' any particle �lter algorithm which includes an
MCMC step in order to reduce degeneracy, as described in �2.2. It seems di�cult to
make general statements about such algorithms and we will rather make some informal
comments.

The �xed parameter case is especially well-behaved. Basic particle �lters diverge only
at a polynomial rate, as seen in �3.2, in contrast with the exponential rate for state-space
models. Adding (well calibrated) MCMC mutation steps should consequently lead to stable
algorithms in many cases of interest. In fact it is doubtful that a mutation step must be
performed at each iteration to achieve stability. Chopin (2002) argues and provides some
experimental evidence that it may be su�cient to perform move steps at a logarithmic rate,
that is the n-th move step should occur at iteration tn ∼ exp(αn).

Situations where a latent process intervenes seem less promising. Smoothing the states
is especially a di�cult problem, and we do not think that there is any solution for circum-
venting the curse of dimensionality that we have pointed out in previous section. Even if
mutation steps are performed at every iteration, the MCMC transition kernels should them-
selves su�er from the curse of dimensionality, in that their ability to rejuvenate particles of
dimension t is likely to decrease in t.

Resample-move algorithms remain an interesting alternative when the considered dy-
namic model includes a �xed parameter θ. MCMC mutation steps should avoid depletion
in simulated values of θ, and make it possible at least to �lter the states and estimate
the parameter under reasonable periods of time. Unfortunately the corresponding MCMC
transition kernels will often depend on the whole past trajectory, so that long term stability
remains uncertain.

In such complicated setups it is necessary to monitor at least numerically the degeneracy
of the considered particle �lter algorithm. We propose the following method. Runk, say k =
10, parallel independent particle �lters of sizeH. For any quantity to be estimated, compute
the average of the k corresponding estimates. This new estimator is clearly consistent and
asymptotically normal. Moreover, the computational cost of this strategy is identical to
that of a single particle �lter of size kH, while the obtained precision will be also of the
same order of magnitude in both cases, that is to sayVt(ϕ)/(kH). This method does not
therefore incur unnecessary computational load, and allows for assessing the stability of the
algorithm through the evolution of the variability between thesek estimates.
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Appendix

A1. Proof of Theorems 1 and 2
The proof works by induction of Lemmas 1, 2 and 3 for Theorem 1, and Lemmas 1, 2 and
4 for Theorem 2. Assume for a given t > 0 that, for any ϕ ∈ Φ(d)

t−1,

H1/2





1
H

H∑

j=1

ϕ(θ̂(j,H)
t−1 )− Eπt−1(ϕ)





D→ N{0, V̂t−1(ϕ)}. (16)

Lemma 1 (Mutation). Let ψ : Θt → Rd, assume the functionµ : θt−1 7→ Ekt(θt−1,·){ψ(·)−
Eeπt

(ψ)} belongs to Φ(d)
t−1 and there exists δ > 0 such that Eeπt

‖ψ‖2+δ < +∞, then

H1/2





1
H

H∑

j=1

ψ(θ(j,H)
t )− Eeπt

(ψ)





D→ N{0, Ṽt(ψ)}.

Proof. We assume �rst that is ψ is real-valued (d = 1). The generalization to d > 1
will follow directly from Cramer-Wold Theorem.

Let ψ = ψ − Eeπt
(ψ), µ(θt−1) = Ekt(θt−1,·){ψ(·)}, σ2(θt−1) = Vkt(θt−1,·){ψ(·)} and σ2

0 =
Eπt−1(σ

2). We have Eπt−1(µ) = 0, and by Jensen inequality

σ2
0 = Eπt−1

[
Vkt(θt−1,·) {ψ(·)}] ≤ {Eeπt

|ψ|(2+δ)}2/(2+δ) < +∞,

which makes it possible to apply the law of large numbers for particle �lters toσ2,

H−1
H∑

j=1

σ2(θ(j,H)
t−1 ) → σ2

0 almost surely. (17)

De�ning

ν(θt−1) = Ekt(θt−1,·){|ψ(·)− µ(θt−1)|2+δ} (18)
≤ 21+δ{Ekt−1(θt−1,·)|ψ(·)|2+δ + |Ekt−1(θt−1,·)ψ(·)|2+δ} (19)
≤ 22+δ{Ekt−1(θt−1,·)|ψ(·)|2+δ} (20)

where (19) comes from Cr inequality, and (20) from Jensen inequality, we deduce that

Eπt−1(ν) ≤ 22+δEeπt
|ψ|2+δ < +∞.

Note this inequality ensures that the expectations de�ning ν in (18) (and similarly these
de�ning µ and σ2) are �nite for almost every θt−1. It follows that

H−1
H∑

j=1

ν(θ(j,H)
t−1 ) → Eπt−1(ν) almost surely,
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and combining this result with (17), we get the almost sure convergence of sequence

ρH =

∑H
j=1 ν(θ(j,H)

t−1 )
{∑H

j=1 σ2(θ(j,H)
t−1 )

}(2+δ)/2
= H−δ/2

H−1
∑H

j=1 ν(θ(j,H)
t−1 )

{
H−1

∑H
j=1 σ2(θ(j,H)

t−1 )
}(2+δ)/2

→ 0. (21)

Let TH = H−1/2
∑H

j=1 ψ(θ(j,H)
t ), St−1 denote the sigma-�eld generated by the random

variables forming the triangular array (θ(j,H)
t−1 )j≤H , that is the particle system at time t− 1,

and µH = E(TH |St−1). Conditionally on St−1, the ψ(θ(j,H)
t )'s form a triangular array of

independent variables which ful�ll Liapounov condition, see (21), and have variances whose
mean converges to σ2

0 , see (17). Therefore (Billingsley, 1995, p. 362) the following central
limit theorem holds

(TH − µH)|St−1
D→ N (0, σ2

0). (22)
We have also, by applying (16) to functionµ,

µH = H−1/2
H∑

j=1

µ(θ(j,H)
t−1 ) D→ N

{
0, V̂t−1(µ)

}
. (23)

The characteristic function of TH is

ΦTH
(u) = E{exp(iuTH)},

= E[exp(iuµH)E{exp(iuTH − iuµH)|St−1}],
where E{exp(iuTH − iuµH)|St−1} is the characteristic function of TH − µH conditionally
on St−1, which according to (22) converges to exp(−σ2

0u2/2). It follows from (23) that

exp(iuµH)E{exp(iuTH − iuµH)|St−1} D→ exp(−σ2
0u2/2) exp

[
iuN

{
0, V̂t−1(µ)

}]
.

The expectation of the left term converges to the expectation of the right term according
to the dominated convergence theorem, and this completes the proof.

Lemma 2 (Correction). Let ϕ ∈ Φ(d)
t , assume function θt 7→ 1 belongs to Φ(1)

t , then

H1/2

{∑H
j=1 w

(j,H)
t ϕ(θ(j,H)

t )
∑H

j=1 w
(j,H)
t

− Eπt(ϕ)

}
D→ N{0, Vt(ϕ)}.

Proof. Let ϕ = ϕ−Eπt(ϕ) and apply Lemma 1 to the vector functionψ = (υt.ϕ, υt)′:

H1/2





1
H

H∑

j=1

(
υt(θ

(j,H)
t )ϕ(θ(j,H)

t )
υt(θ

(j,H)
t )

)
−

(
0Rd

1

)



D→ N{0, Ṽt(ψ)}. (24)

Then resorting to the δ-method with function g(x, y) = x/y we obtain

H1/2

∑H
j=1 υt(θ

(j,H)
t )ϕ(θ(j,H)

t )
∑H

j=1 υt(θ
(j,H)
t )

D→ N (0,V) (25)

where V = {(∂g/∂x, ∂g/∂y)(0, 1)}Ṽt(ψ){(∂g/∂x, ∂g/∂y)(0, 1)}′ = Ṽt{υt.(ϕ − Eπtϕ)}. We
can replace the υt(θ

(j,H)
t )'s by weights w

(j,H)
t in the above equation since they are propor-

tional.
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Lemma 3 (Selection, multinomial resampling). Let V̂t(ϕ) = Vt(ϕ) + Vπt(ϕ) and
assume the particle system is resampled according to multinomial scheme, then, under the
same conditions as previous Lemma,

H1/2





1
H

H∑

j=1

ϕ(θ̂(j,H)
t )− Eπt

(ϕ)





D→ N{0, V̂t(ϕ)}.

Proof. The proof is most similar to the proof of Lemma 1. Denote St the sigma-
�eld generated by the random variables (θ(j,H)

t , w
(j,H)
t )j≤H and let ϕ = ϕ − Eπt

(ϕ), TH =
H−1/2

∑H
j=1 ϕ(θ̂(j,H)

t ) and µH = E(TH |St). Conditionally on St−1, TH is, up to factor
H−1/2, a sum of independent draws from the multinomial distribution which produces
ϕ(θ(j,H)

t ) with probability w
(j,H)
t /

∑H
j=1 w

(j,H)
t . Then, as in Lemma 1, we have

(TH − µH)|St
D→ N (0, σ2

0)

where this time σ2
0 = Vπt(ϕ), which is the limit as H → +∞ of the variance of the

multinomial distribution mentioned above. Proof is completed along the same lines as in
Lemma 1.

Lemma 4 (Selection, residual resampling). Let V̂t(ϕ) takes the value given by (7)
and assume the particle system is resampled according to residual resampling scheme, then,
under the same conditions as Lemma 2,

H1/2





1
H

H∑

j=1

ϕ(θ̂(j,H)
t )− Eπt(ϕ)





D→ N{0, V̂t(ϕ)}.

Proof. The proof is identical to the proof of previous Lemma, except that conditionally
on St, TH is H1/2 times a constant plus a sum of independent draws from multinomial dis-
tribution which produces ϕ(θ(j,H)

t ) with probability r(Hw
(j,H)
t /

∑H
j=1 w

(j,H)
t ). This yields

a di�erent value for σ2
0 ,

σ2
0 = Eeπt

{r(υt).ϕ2} − 1
Eeπt

{r(υt)} [Eeπt
{r(υt).ϕ}]2 .

A2. Proof of Theorem 3
Let ϕ : Ξt → Rd and ϕ = ϕ−Eπt(ϕ) = ϕ−Eπm

t
(ϕ) for a given t ≥ 0. To simplify notations

it is assumed that d = 1, but the adaptation to the general case is straightforward. All
quantities related to the `marginalized' particle �lter are distinguished by them-su�x. For
instance, Em

t (ϕ) stands for function ξt 7→ Ekm
t (ξt,·){υm

t (·)ϕ(·)}, in agreement with the de�-
nition of Et(ϕ) in (10). In this respect, the marginal weight functionυm

t (·) is π̃m
t (·)/πm

t (·),
and if we de�ne the `conditional' weight function υc

t (λt|ξt) = πc
t (λt|ξt)/π̃c

t (λt|ξt), we have
the identity

υt(θt) = υm
t (ξt)υc

t (λt|ξt).

It follows from (12) that

Eπc
t−1
{Et(ϕ)} = Ekm

t
{υm

t .ϕ.Eeπc
t
(υc

t )} = Em
t (ϕ),
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since Eeπc
t
(υc

t ) = 1, and by induction we show similarly for k ≤ t that

Eπc
k
{Ek+1:t(ϕ)} = Em

k+1:t(ϕ).

Hence, for k ≤ t,

Eeπk
[υk.Ek+1:t{ϕ}]2 = Eeπm

k

[
υm

k .Eeπc
k
{υc

kEk+1:tϕ}2
]
,

≥ Eeπm
k

[
υm

k .{Eeπc
k
υc

kEk+1:tϕ}2
]
,

≥ Eeπm
k

[
υm

k .Em
k+1:t{ϕ}

]2
,

by Jensen inequality. From the closed form (9) ofVt(ϕ) we deduce the inequality V m
t (ϕ) ≤

Vt(ϕ) for the case when the selection step follows the multinomial scheme. Alternatively, if
the selection step consists in residual resampling, letϕ = ϕ−Eeπt

{r(υt)ϕ}/Eeπt
{r(υt)}, then

Rt(ϕ)−Rm
t (ϕ) = Eeπt

{r(υt)ϕ2} − Eeπm
t
{r(υm

t )ϕ2}+
{Eeπm

t
r(υm

t )ϕ}2
Eeπm

t
r(υm

t )

≥ Eeπm
t

[{Eeπc
t
r(υt)− r(υm

t )}ϕ2
]
,

and since Eeπc
t
(υt) = υm

t , we have Eeπc
t
bυtc ≤ bυm

t c, hence Eeπc
t
r(υt) ≥ r(υm

t ), and conse-
quently Rt(ϕ) ≥ Rm

t (ϕ) for any ϕ. It follows from (11) that the desired inequality is also
veri�ed in the residual case.

A3. Regularity conditions and proof of Theorem 4
Let π0(θ) denote the prior density and p(y1:t|θ) the likelihood of t �rst observations, so that
through Bayes formula,

πt(θ) = π(θ|y1:t) ∝ π0(θ)p(y1:t|θ).
Let lt(θ) = log p(y1:t|θ). The following assumptions holds almost surely.

(a) The maximum θ̂t of lt(θ) exists and converges as t → +∞ to θ0 such that π0(θ0) > 0.
(b) The matrix

Σt = −
{

1
t

∂2lt(θ)
∂θ∂θ′

}−1

is positive de�nite and converges to I(θ0), the Fisher information matrix at θ0.
(c) There exists ∆ > 0 such that

0 < δ < ∆ ⇒ lim sup
t→+∞

[
1
t

sup
‖θ−bθt‖>δ

{lt(θ)− lt(θ̂t)}
]

< 0.

(d) Functions π0(θ) and lt(θ) are six times continuously di�erentiable, the partial deriva-
tives of order six of lt(θ)/t are bounded over any compact setΘ′ ⊂ Θ, and the bound
does not depend on t and the observations.

(e) ϕ : Θ → Rd is six times continuously di�erentiable,ϕ′(θ0) 6= 0.
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For convenience, we start with the one-dimensional case (p = 1). The Laplace approxi-
mation of an integral (see for instance Tierney et al., 1989) is
∫

ψ(θ) exp{−th(θ)} dθ =

(2π/t)1/2σ exp{−tĥ}
[
ψ̂ +

1
2
{σ2ψ̂′′ − σ4ψ̂′ĥ′′′ +

5
12

σ6ψ̂ĥ′′′ − 1
4
σ4b̂ĥiv}t−1 + O(t−2)

]

where hats on ψ, h and their derivatives indicate evaluation at the point which minimizes
h, and σ = −1/ĥ′′. This approximation remains valid for a function ht depending on
t, provided that the �uctuations of ht or its derivatives can be controlled in some way.
Conditions (c) and (d) above allow for instance for applying this approximation to functions
h1

t (θ) = −lt(θ)/t and h2
t (θ) = −2lt(θ)/t, see Schervish (1995, p. 446) for technical details.

It is necessary however to assume that ψ(θ0) 6= 0, so that ψ is either strictly positive or
strictly negative at least in a neighbourhood of θ0. Since V sis

t (ϕ) = V sis
t (ϕ + λ) for any

λ ∈ R we assume without loss of generality thatϕ(θ0) 6= 0. V sis
t (ϕ) equals

∫
ψ1(θ)p(y1:t|θ)2dθ − 2Eπt(ϕ)

∫
ψ2(θ)p(y1:t|θ)2dθ + {Eπt(ϕ)}2 ∫

ψ3(θ)p(y1:t|θ)2dθ{∫
π(θ)p(y1:t|θ)dθ

}2 , (26)

where ψ1 = π0(θ)2ϕ(θ)2/π̃0(θ), ψ2 = π0(θ)2ϕ(θ)/π̃0(θ) and ψ3 = π0(θ)2/π̃0(θ). Combining
the appropriate Laplace approximations, we get that

V sis
t (ϕ) =

1
2
(πΣt)−1/2t1/2 {ψ1(θ̂t)− 2Eπt(ϕ)ψ2(θ̂t) + Eπt(ϕ)2ψ3(θ̂t) + At−1 + O(t−2)}

{π0(θ̂t) + Bt−1 + O(t−2)}2

=
1
2
(πΣt)−1/2t1/2

[
{ϕ(θ̂t)− Eπt(ϕ)}2{1− 2B/π0(θ̂t)t−1}+ A/π0(θ̂t)2t−1 + O(t−2)

]

where A is the sum of O(t−1) terms corresponding to the three Laplace expansions of the
numerator, and B is the O(t−1) term of the denominator. Since ϕ(θ̂t)− Eπt(ϕ) = O(t−1),
Σt = I(θ0) + O(t−1) and ψ(θ̂t) = ψ(θ0) + O(t−1) for any continuous function ψ, we get
through appropriate derivation that

V sis
t (ϕ) =

I(θ0)ϕ′(θ0)2

4π0(θ0)2
t−1/2 + O(t−3/2).

Derivations in multi-dimensional cases are much the same, except that notations are more
cumbersome. When p > 1, the factor t−1/2 in Laplace expansion is replaced by t−p/2,
so that in the ratio (26) we get a factor tp/2, and since the tp/2 order cancels as in one-
dimensional case, the actual rate of divergence is tp/2−1, and this completes the �rst part
of the proof.

In the speci�c case of the sequential importance sampling, qt(θ, ·) = δθ and π̃t = πt−1,
and according to (9),

Vt(ϕ) = V sis
t (ϕ) +

t∑

k=1

Eπk−1

[
πt

πk−1
{ϕ− Eπt(ϕ)}

]2

, (27)

then through a direct adaptation of expansions above we obtain a divergence rate forVt(ϕ)
of order (

∑t
k=0(t− k)p/2−1) = O(tp/2). For the residual case, it follows from (11) and (27)
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that

V r
t (ϕ) = V sis

t (ϕ) +
t−1∑

k=0

Rk[
πt

πk
{ϕ− Eπt

(ϕ)}].

The di�culty in this case is that the non continuous functionr(·) intervenes in the expression
of Rk(·), see (8). It is clear however that the Laplace expansion generalizes to cases where
regularity conditions for the likelihood and other functions are ful�lled only locally around
θ0. The additional assumption that πt(θ0)/πt−1(θ0) is not an integer for any t > 0 allows
r(υt) for being six times continuously di�erentiable in a neighbourhood around θ0, and
therefore makes it possible to expand the terms of sum above, which leads to a rate of
divergence of order O(tp/2) in the same way as in multinomial case.

A4. Proof of Theorem 5
As a preliminary, we state without proof the following inequality. Letϕ,ψ : R → R such
that ϕ ≥ 0, sup ψ ≥ 0 and inf ψ ≤ 0, then

∆(ϕψ) ≤ sup ϕ.∆ψ. (28)

Due to particular cancellations, the weight functionυt(x1:t) only depends on xt−1 and
xt in the state space case,

υt(x1:t) = υt(xt−1, xt) ∝ f(yt|xt)g(xt|xt−1)
qt(xt|xt−1)

. (29)

Straightforward consequences of this expression are the identities,

πt(xt|xt−1) =
qt(xt|xt−1)υt(xt−1, xt)∫
qt(x|xt−1)υt(xt−1, x) dx

, (30)

πt+1(xt+1|xk) =
∫

πt(xt|xk)qt+1(xt+1|xt)υt+1(xt, xt+1) dxt∫
πt(xt|xk)qt+1(x|xt)υt+1(xt, x) dxtdx

, (31)

for k < t + 1, where πt(xt|xk) denotes the conditional posterior density ofxt given xk and
the t �rst observations, that is πt(xt|xk) = π(xt|xk, y1:t) = π(xt|xk, yk+1:t). We start by
proving some useful lemmas.

Lemma 5. The conditional posterior density πt(xt|xk), k < t, de�nes a Markov transi-
tion from xk to xt whose contraction coe�cient is less than or equal to (1− C−2)t−k.

Proof. For xk, x′k, xk+1 ∈ X , k < t,
πt(xk+1|xk)
πt(xk+1|x′k)

=
g(xk+1|xk)p(yk+1:t|x′k)
g(xk+1|x′k)p(yk+1:t|xk)

≤ C2,

since g(xk+1|xk) ≤ Cg(xk|x′k) and

p(yk+1:t|x′k) =
∫

g(xk+1|x′k)p(yk+1:t|xk+1) dxk+1,

≤ C

∫
g(xk+1|xk)p(yk+1:t|xk+1) dxk+1.

Therefore the contraction coe�cients of Markov transitionsπt(xk+1|xk) and πt(xt|xk) are
less than or equal to, respectively, (1− C−2) and (1− C−2)t−k.
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Lemma 6. Let λ a density on X and h(x|x′) a conditional density de�ning a Markov
transition on X , then for any x′ ∈ X , y ∈ Y,

∫
f(y|x)h(x|x′) dx

Eλ(x′′){
∫

f(y|x)h(x|x′′) dx} ≤ 1 + ρhCf ,

where ρh is the contraction coe�cient of h(·|·) , and Cf = f/f − 1.

Proof. It follows from the de�nition of ρh, see (14), that, for x′, x′′ ∈ X ,

|
∫

f(y|x)h(x|x′) dx−
∫

f(y|x)h(x|x′′) dx| ≤ ρh(f − f),

and therefore

sup
x′∈X

{
∫

f(y|x)h(x|x′) dx} ≤ Eλ(x′′){
∫

f(y|x)h(x|x′′) dx}+ ρh(f − f),

so that

supx′∈X {
∫

f(y|x)h(x|x′) dx}
Eλ(x′′){

∫
f(y|x)h(x|x′′) dx} ≤ 1 + ρh

(f − f)
Eλ(x′′){

∫
f(y|x)h(x|x′′) dx} ,

≤ 1 + ρh

(
f

f
− 1

)
.

Lemma 7. Let ρ = 1− C−1, ρ2 = 1− C−2, then for k < t,

∆Ek+1:t {ϕ− Eπt(ϕ)} ≤
t−k∏

i=1

(1 + ρρi−1
2 Cf )ρt−k

2 ∆ϕ.

Proof. Let ϕ = ϕ− Eπt(ϕ). Note the arguments of Ek+1:t(ϕ) are x1:k in general, but
in the case considered in �3.3 it only depends on xk and is therefore treated as a function
X → X . For the sake of clarity we treat the case k = t − 2 but the reasoning easily
generalizes. The following decomposition is deduced from the identity (30).

Et−1:t(ϕ)(xt−2) = Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)Et(ϕ)(xt−1)},
= Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)}Eπt−1(xt−1|xt−2){Et(ϕ)(xt−1)}.

It comes from (29) that the �rst term veri�es

Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)} ∝
∫

f(yt−1|xt−1)g(xt−1|xt−2) dxt−1,

where the proportionality constant can be retrieved by remarking that the expectation of
this term over πt−2 equals one, and therefore,

Eqt−1(xt−1|xt−2){υt−1(xt−2, xt−1)} =
∫

f(yt−1|xt−1)g(xt−1|xt−2) dxt−1

Eπt−2(xt−2){
∫

f(yt−1|xt−1)g(xt−1|xt−2) dxt−1}
≤ 1 + ρCf
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according to Lemma 6. Note πt−2(xt−2) denotes the πt−2-marginal density of xt−2. It
follows from the decomposition above and the inequality in (28) that

∆Et−1:t(ϕ) ≤ (1 + ρCf )∆ψ

where ψ is the function

ψ(xt−2) = Eπt−1(xt−1|xt−2){Et(ϕ)(xt−1)}
= Eπt−1(xt−1|xt−2)

[
Eqt(xt|xt−1){υt(xt−1, xt)ϕ(xt)}

]
.

Note that ψ does take positive and negative values, since the expectation ofEt−1:t(ϕ) over
πt−2 is null. We now decompose ψ in the same way as for Et−1:t(ϕ), that is

ψ(xt−2) = Eπt−1(xt−1|xt−2)

[
Eqt(xt|xt−1){υt(xt−1, xt)}

]
Eπt(xt|xt−2){ϕ(xt)},

by consequence of identity (31). The expectation of the �rst term overπt−1(xt−2) equals
one, so that

Eπt−1(xt−1|xt−2)

[
Eqt(xt|xt−1){υt(xt−1, xt)}

]

=
∫

πt−1(xt−1|xt−2)f(yt|xt)g(xt|xt−1) dxt−1 dxt

Eπt−1(xt−2)

{∫
πt−1(xt−1|xt−2)f(yt|xt)g(xt|xt−1) dxt−1 dxt

} ,

≤ 1 + ρρ2Cf ,

according to Lemma 6. Resorting again to inequality (28), we get

∆ψ ≤ (1 + ρρ2Cf )ρ2
2∆ϕ,

which leads to the desired inequality, and this completes the proof of Lemma 7.

To conclude the proof of Theorem 5, remark thatEeπk
(υk) = 1, therefore

υk(xk−1, xk) =
f(yk|xk)g(xk|xk−1)/qk(xk|xk−1)

Eeπk(x1:k) {f(yk|xk)g(xk|xk−1)/qk(xk|xk−1)} ,

≤ C2,

and since the expectation of the function Ek+1:t {ϕ− Eπt(ϕ)} over πk is null, the function
Ek+1:t {ϕ− Eπt(ϕ)} is ensured to take positive and negative values, so that

sup
xk∈X

|Ek+1:t {ϕ− Eπt(ϕ)} (xk)| ≤ ∆Ek+1:t {ϕ− Eπt(ϕ)}

and �nally,

Eeπk

[
υ2

kEk+1:t {ϕ− Eπt(ϕ)}2
]

≤ C4
t−k∏

i=1

(1 + ρρi−1
2 Cf )2ρ2(t−k)

2 (∆ϕ)2,

≤ C4 exp(2ρCf

t−k∑

i=1

ρi−1
2 )ρ2(t−k)

2 (∆ϕ)2,

≤ C4 exp{2ρCf/(1− ρ2)}ρ2(t−k)
2 (∆ϕ)2.

It follows from (9) that Vt(ϕ) is bounded from above by a convergent series.
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