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Abstract: Large deviation results for nonparametric estimators have been given
by Louani (in particular for the kernel density estimator and the Nadaraya-
Watson estimator). We complete these works by proving large deviation prin-
ciples for these two estimators under less restrictive assumptions. Moreover we
give sharp large deviation results. Two cases depending on the support of the
kernel are considered. For the proof we need an Edgeworth expansion. This last
one is proved using a version of Cramer’s condition.
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Université Paul Sabatier, Laboratoire de Statistique et Probabilités, 118 route de Narbonne,
31062 Toulouse Cedex, France.

0



1 Introduction

Before presenting our results, we recall some generalities on large deviations and
nonparametric estimation. One of the most classical examples in large deviation
theory involves the empirical mean of a n-sample. More precisely, let (Y1, . . . , Yn)
be independent and identically distributed (i.i.d.) real random variables with
zero mean. Consider the empirical mean

Ȳn =
1

n

n∑
j=1

Yj.

By the weak law of large numbers, as n→∞, Ȳn converges towards EY1 = 0 in
probability. Hence if A is a measurable set in R and 0 /∈ A, P(Ȳn ∈ A) converges
to 0. Large deviation theory gives a logarithmic equivalent for this deviation
probability. We recall the basic definition of a Large Deviation Principle (LDP)
on R (see, for example, [6] or [7]).

Definition 1.1. Let (εn) be a sequence of positive real numbers such that
εn ↘ 0 as n → ∞. We say that the sequence of real random variables (Zn)
satisfies a large deviation principle (LDP) with speed (εn) and rate function
I : R → [0,∞] (which means that I is a lower semi-continuous function) if

1) For any open set G ⊂ R,

lim inf
n→∞

εn log P(Zn ∈ G) ≥ − inf
x∈G

I(x). (lower bound)

2) For any closed set F ⊂ R,

lim sup
n→∞

εn log P(Zn ∈ F ) ≤ − inf
x∈F

I(x). (upper bound)

We say that I is a good rate function if its level sets are compact subsets of R.
In general, it could be more interesting to have a full expansion of the tail proba-
bilities (for example for the tests, see [9]). Bahadur and Rao [1] studied this kind
of problem for the empirical mean. In particular under suitable assumptions,
they obtained the following expansions:

P(Ȳn ≥ c) =
exp(−nI(c))
(2πn)1/2σcτc

[1 + o(1)], c > 0 (1)

or

P(Ȳn ≤ c) =
exp(−nI(c))
(2πn)1/2σcτc

[1 + o(1)], c < 0 (2)

where τc > 0 and σc > 0 are parameters depending on c.
If (1) or (2) holds for c ∈ R, we say that Ȳn satisfies a Local Sharp Large Deviation
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Principle (LSLDP) of order 0 at c (for more precision see [3]).
In this paper we study large deviation properties of nonparametric estimators.
Louani gave large deviation results for the kernel density estimator (see [10]).
The frame is the following: Let (X1, . . . , Xn) be an i.i.d. sample with common
density function f on the real line. Let K be a positive kernel and hn a sequence
of positive real numbers (hn is called the bandwidth). Then we define for any
n ∈ N∗, the kernel density estimator (see [14]) of f(x), x ∈ R, by

f̂n(x) =
1

nhn

n∑
j=1

K

(
x−Xj

hn

)
.

Louani also studied large deviation probabilities for the kernel regression estima-
tor (Nadaraya-Watson estimator) (see [11]). The frame is the following:
Let ((X1, Y1), . . . , (Xn, Yn)) be an i.i.d bivariate sample such that E|Y1| < ∞.
Then the Nadaraya-Watson estimator ([13]; [15]) of the regression function
r(z) = E(Y1|X1 = z), z ∈ R, is defined for any n ∈ N∗ by

r̂n(z) =

∑n
j=1 YjK

(
z−Xj

hn

)
∑n

j=1K
(

z−Xj

hn

) . (3)

Menneteau [12] studied uniform large deviations for local empirical processes and
his results can be used to obtain those of Louani.
In this paper, we prove large deviation principles for the two estimators under
more general assumptions than in [10] and [11]. We also give a LSLDP for both
of them (this means that we establish expansions of the same kind as (1) and
(2)). To obtain the LSLDP for the kernel density estimator f̂n(x), x ∈ R, we use
an Edgeworth expansion for a distribution function ([2]; [9]). First we assume
f(x) > 0 and we consider two cases depending on the support of the kernel.
The first case concerns kernels with compact support and the second one kernels
with unbounded support. The Edgeworth expansion has been given by Hall [8]
in the first case and we give the proof in the second case. A version of Cramer’s
condition [5] for each case is needed to get the Edgeworth expansion. We also
give a LSLDP for f̂n(x) when f(x) = 0. We follow the same approach to prove
the LSLDP for the Nadaraya-Watson estimator.
The paper is organized as follows: In Section 2, we deal with the large deviation
results for the two estimators. In Section 3, we give the LSLDP satisfied by the
kernel density estimator. Finally in Section 4, the case of the Nadaraya-Watson
estimator is treated quicker, the proof being quite similar.
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2 Large Deviations in Nonparametric Estima-

tion

In the paper, we consider a positive kernel K such that
∫

RK(z)dz = 1 and a
sequence of real numbers hn > 0 satisfying hn → 0 as n→∞.

2.1 Large deviations for the kernel density estimator

2.1.1 Notations and assumptions

Before stating our result, we introduce some notations and assumptions.
Let X be a real random variable with density function f . Let (X1, . . . , Xn) be
an i.i.d. sample having the same distribution as X.
For the kernel K and the bandwidth hn, we introduce the notation

Khn(x) = h−1
n K(x/hn).

The Lebesgue measure on R is noted λ and µK is the distribution function such
that dµK(z) = K(z)dz. We also consider the function introduced in [10]

I(t) =

∫
R
(exp(tK(z))− 1)dz (4)

which is used to define the rate function associated with the LDP.
Now we consider two assumptions on K and f (compare with [10]):

(A.1) ϕ0(t) =
∫

RK(z) exp(tK(z))dz is defined on ]−∞, a], a > 0.

(A.2) f is continuous on R and ‖f‖∞ = supx∈R |f(x)| <∞.

Remark 2.1

(i) Using assumption (A.1), I ∈ C∞(] − ∞, a[). Indeed I(t) =
∫ t

0
ϕ0(s)ds

(t ∈]−∞, a]) where ϕ0 ∈ C∞(]−∞, a[) (as it is the Laplace transform of
µK ◦K−1). We note I ′ the derivative of I.

(ii) We can prove the large deviation result for f̂n(x), x ∈ R, if f is continuous
only on a neighborhood of x but for reasons of simplicity, we assume the
continuity on R. The same kind of remark concerning the regularity of the
density function is also valid for the other results in Section 2.2, Section 3
and Section 4.
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2.1.2 Result and proof

Large deviation results for the kernel density estimator f̂n have been given by
Louani [10] under the restrictive assumption that I is finite everywhere. In this
case an exponential change of probability can be used to prove the lower bound.
We give the LDP in a more general case using the assumptions above. Indeed,
we have the following theorem

Theorem 2.1. Assume that (A.1)−(A.2) hold and that limn→∞ nhn = ∞. Then,
for any x ∈ R, f̂n(x) − f(x) satisfies a LDP with speed (nhn)−1 and good rate
function Λ∗(u) = supt∈R{t(u+ f(x))− f(x)I(t)}.

Remark 2.2 As we have to establish a LDP on R, it is sufficient to prove the
convergence for the following tail probabilities (see, for example, [6]): For any
x ∈ R, any α > 0, we have

lim
n→∞

1

nhn

log P(f̂n(x)− f(x) > α) = −Λ∗(α) (5)

where Λ∗(α) = supt∈]0,a]{t(α+ f(x))− f(x)I(t)},
and

lim
n→∞

1

nhn

log P(f̂n(x)− f(x) < −α) = −Λ∗(−α) (6)

where Λ∗(−α) = supt∈]0,∞[{t(α− f(x))− f(x)I(−t)}.
For the left tail probability (6), the rate function is equal to infinity if α > f(x).
For the right tail probability (5), it is equal to aα if f(x) = 0.

Proof. For the left tail probability (6), the proof is the same as in [10] since I is
defined on R−.
So we only give the proof of the lower bound for the right tail probability (5) (for
the upper bound, we use the Chebycheff inequality).
The lower bound is usually proved in the large deviation theory by an exponential
change of probability using a parameter (see, for example, [6]).
Let x ∈ R such that f(x) > 0 and let α > 0.
If we consider the rate function Λ∗ evaluated at α, the existence of a parameter
τ ∈ R satisfying

I ′(τ) = ϕ0(τ) = (α+ f(x))/f(x), (7)

is not always guaranteed.
Indeed, with assumption (A.1), we know that

ϕ0(t) =

{ ∫
RK(z) exp(tK(z))dz if t ∈]−∞, a]
∞ elsewhere

Then it is clear that there exists α∗ ((α∗ + f(x))/f(x) = I ′(a)) such that for all
α > α∗, no τ satisfying (7) exists.
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To deal with this problem, we shall use the same arguments as in the proof of
the lower bound in [6, Theorem 2.2.3]:
First we suppose that K is bounded everywhere by a constant M > 0. In this
case the function I is finite and differentiable on R (see Remark 2.1 (i)).
Then we know that a parameter τ satisfying (7) exists. We use assumption (A.2)
to prove (5) as in [10].
Now, as in [6], we turn to the general case when K is not necessary bounded. We
consider

ΛM,α(t) = lim inf
n→∞

1

hn

log

(∫
z:K(x−z

hn
)≤M

exp

(
tK

(
x− z

hn

))
f(z)dz

)
− t(α+ f(x))

= lim inf
n→∞

1

hn

log

(
1− hn

∫
z:K(z)>M

f(x− hnz)dz

+ hn

∫
z:K(z)≤M

(exp(tK(z))− 1)f(x− hnz)dz

)
− t(α+ f(x)).

Using the assumptions (A.1)− (A.2) and Remark 2.1 (i), we get

ΛM,α(t) = −f(x)

∫
z:K(z)>M

dz + f(x)

∫
z:K(z)≤M

(exp(tK(z))− 1)dz − t(α+ f(x))

which is finite everywhere for any M > 0.
We fix M large enough to have λ{{z : K(z) > 0}∩ {z : K(z) ≤M}} > 0. Hence
lim|t|→∞ ΛM,α(t) = ∞ for M large enough.
For the rest of the proof we follow the same approach as in [6] by using the law of
f̂n(x)−f(x)−α conditioned on {K((x−Xj)/hn) ≤M, j = 1, .., n}. For this last
one, the lower bound is proved as in the case where K is bounded everywhere.

2.2 Large deviations for the Nadaraya-Watson estimator

2.2.1 Notations and assumptions

Let (X,Y ) be a couple of real random variables with joint density function f(x, y).
Consider the regression model:

Yi = r(Xi) + εi, i = 1, .., n.

((X1, Y1), . . . , (Xn, Yn)) is an i.i.d. bivariate sample having the same distribution
as (X, Y ). (εi)i=1,..,n are i.i.d. random variables.
For each i ∈ {1, · · · , n}, εi is assumed to be independent of Xi and to have R as
support.
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Let z0 be a fixed point in R. Let fX be the marginal density function of X, f ′1
the derivative of f with respect to the first variable and f(y|z0) the conditional
density function of Y when X = z0.
We suppose E|Y | < ∞. Then the Nadaraya-Watson estimator of the regression
function r(z) = E(Y1|X1 = z), z ∈ R, is defined by (3).
We also define for any α ∈ R, the random variables

Wjn,α = (Yj − r(z0)− α)K

(
z0 −Xj

hn

)
, j = 1, .., n,

and we consider the function introduced in [11]

Ir,α(t) =

∫
R2

[exp(t(y − r(z0)− α)K(x))− 1]f(z0, y)dxdy. (8)

We give the following assumptions for any α ∈ R:

(Ar.1) ϕr,α(t) =
∫

R2 |y − r(z0) − α|K(x) exp[t(y − r(z0) − α)K(x)]f(z0, y)dxdy is
defined on [−a1, a2] where a1 > 0 and a2 > 0 do not depend on α.

(Ar.2) ‖fX‖∞ <∞ and supu∈R
∫

R |y|f(u, y)dy <∞.

(Ar.3) f is continuous with respect to the first variable on R.

(Ar.4) For all t ∈ [−a1, a2],
supu∈R

∫
R2 | exp[t(y − r(z0)− α)K(x)]− 1|f(u, y)dxdy <∞.

(Ar.5) K(x) > 0 for all x ∈ R.

Remark 2.3

(i) The last assumption (Ar.5) is only needed to write the left tail probability
(9) by using the sum of the random variables Wjn,α, j = 1, .., n (see [11]).
This assumption is not necessary for the right tail probability (10).

(ii) We have assumed that a1 and a2 do not depend on α to obtain a LDP in
the sense of Definition 1.1. If they do, then we only have large deviation
results for the tail probabilities.

(iii) As in Remark 2.1 (i), assumption (Ar.1) assures that Ir,α ∈ C∞(]−a1, a2[).
Indeed ϕr,α is proportional to the Laplace transform of (U−r(z0)−α)K(V )
where (U, V ) is a couple of random variables admitting for density with
respect to the Lebesgue measure on R2

|v − r(z0)− α|K(u)f(z0, v)

µα(z0)
dudv,

with µα(z0) =
∫

R2 |v − r(z0)− α|K(u)f(z0, v)dudv = ϕr,α(0) <∞.
We note I ′r,α the derivative of Ir,α.
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(iv) If we suppose ϕr,α (and therefore Ir,α) defined on ] − a1, a2[ (as in Section
4) and (Ar.4) satisfied for all t ∈] − a1, a2[, we only need the assumptions
(Ar.3) and (Ar.5). Then the proof is the same as the one of Louani (who
assumes a1 = a2 = ∞) in [11].
In this case notice that the existence of a finite value for inft∈[−a1,a2] Ir,α(t)
(α ∈ R) is guaranteed since ε1 is independent of X1 and its support is R.

2.2.2 Result and proof

We give the theorem. As in Section 2.1, we prove it in a more general case than
in [11] (Remark 2.3 (iv)) with the assumptions above.

Theorem 2.2. Let the conditions (Ar.1)− (Ar.5) hold for any α ∈ R. Moreover
assume that limn→∞ nhn = ∞. Then r̂n(z0) − r(z0) satisfies a LDP with speed
(nhn)−1 and rate function Λ∗

r(α) = − inft∈R Ir,α(t).

Remark 2.4 As in Theorem 2.1, it is sufficient to prove the convergence for
the following tail probabilities: For any α > 0, we have

lim
n→∞

1

nhn

log P(r̂n(z0)− r(z0) > α) = inf
t∈]0,a2]

Ir,α(t). (9)

and

lim
n→∞

1

nhn

log P(r̂n(z0)− r(z0) < −α) = inf
t∈]0,a1]

Ir,−α(−t). (10)

If fX(z0) = 0 then Ir,α(t) = 0 for all α ∈ R and all t ∈ [−a1, a2].
Proof. We quickly give some elements of proof for (9) as it is very similar to the
one of Theorem 2.1. Let α > 0 and assume that fX(z0) > 0.
For the upper bound, we use, as in [11], the assumptions (Ar.1) and (Ar.3) −
(Ar.4).
For the lower bound, t→ I ′r,α(t) is non-decreasing and I ′r,α(0) = −α.
Then with assumption (Ar.1), the existence of τ such that I ′r,α(τ) = 0, is not
guaranteed for α large enough.
Therefore we use the same kind of proof as in [6, Theorem 2.2.3]. We are inter-
ested in the probability

P(r̂n(z0)− r(z0) > α) = P

(
1

nhn

n∑
j=1

Wjn,α > 0

)
.

For t ∈ R, we have

ΛM,α(t) = lim inf
n→∞

h−1
n log E

{
exp(tW1n,α)11|W1n,α|≤M

}
= −

∫
|y−r(z0)−α|K(x)>M

f(z0, y)dxdy

+ fX(z0)

∫
|y−r(z0)−α|K(x)≤M

(exp(t(y − r(z0)− α)K(x))− 1)f(y|z0)dxdy
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where we have used the assumptions (Ar.1)− (Ar.3).
ΛM,α is finite everywhere for all M > 0 and lim|t|→∞ ΛM,α(t) = ∞ for M large
enough. We conclude as in the proof of Theorem 2.1.

3 Sharp Large Deviations for the kernel density

estimator

3.1 Notations and assumptions

In this section, we are interested in the LSLDP satisfied by f̂n(x) when x ∈ R is
such that f(x) > 0. We will see in Section 3.4 a similar result when f(x) = 0.
We consider two cases depending on the support of the kernel: The first one con-
cerns kernels with compact support and the second one kernels with unbounded
support.
The proof of the LSLDP is essentially the same in the two cases. The main diffi-
culty lies in the Edgeworth expansion (see Lemma 3.2). This expansion has been
given by Hall in the first case [8, Theorem 5.5] and the proof is not so different
in the second case. Of course the assumptions which have to be satisfied by the
kernel K in this last case are stronger.
We use the same notations as in Section 2.2.1 and introduce a new function:

J(t) =

∫
R
z(exp(tK(z))− 1)dz.

We consider new conditions. Indeed for a sharper development of the tail proba-
bility, we need the existence of the parameter τ used for the exponential change
of probability.
Then we have to introduce an assumption on the definition domain of the func-
tion I (through ϕ0) less general than (A.1) to guarantee this existence. We also
need more regularity for the density function f . Other conditions upon K and f
are also given for each case. We first give the common assumptions for the two
cases:

(B.1) ϕ0(t) =
∫

RK(z) exp(tK(z))dz is defined on the open interval ] − ∞, a[,
a > 0.

(B.2) ϕ1(t) =
∫

R |z|K(z) exp(tK(z))dz is defined on the open interval ] −∞, b[,
b ≥ a > 0.

(B.3) f is continuously differentiable on R, ‖f‖∞ <∞ and ‖f ′‖∞ <∞.
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Remark 3.1

(i) If limz→0K(z) <∞ then a = b and if limz→0K(z) = ∞ then b > a.
For most classical kernels, we have a = b = ∞ but for example if
K(z) = −C1 log(z)1[0,1/2[ + C2 exp(−z)1[1/2,∞[, where C1 and C2 are
normalization constants, we get a < b <∞.

(ii) As in Remark 2.1, I ∈ C∞(]−∞, a[) by using (B.1) and J ∈ C∞(]−∞, b[)
follows from (B.2). We note I ′′ (respectively J ′′) the second derivative of I
(respectively J).
Notice that (B.2) implies

∫
R |z|K(z)dz <∞ and reciprocally a kernel such

that
∫

R |z|K(z)dz = ∞ cannot satisfy (B.2).

3.1.1 Assumptions for kernels with compact support

We give the assumptions satisfied by K in the first case:

(B.4) K has a compact support [A,B].

(B.5) µA,B ◦K−1 << dλ where µA,B is the uniform measure on [A,B].

Remark 3.2 The assumptions (B.4) and (B.5) are needed to derive a version
of Cramer’s condition for the random variable hnKhn(x − X). This condition
used by Hall [8, Lemma 5.6] to prove the Edgeworth expansion is the following:
For each k > 0, there exists C(k, x) > 0 such that

sup
|t|>k

|E exp(ithnKhn(x−X))| < 1− C(k, x)hn (11)

for n large enough.
Indeed the characteristic function will be considered over a new distribution.
There is no important difference between the proof under the original distribu-
tion and the one under the new distribution. Then we will not give this last one.
The following assumption on K which appears in [8] is equivalent to (B.5):
There exists a partition of the interval [A,B]: A = y0 < y1 < .. < B = yn such
that K ′ exists and on each segment ]yj−1, yj[, K

′ is bounded and is either strictly
positive or negative.
For example, the uniform kernel does not satisfy condition (B.5) while the kernel
K(t) = −2−1 log |t|1[−1,1](t) does.

3.1.2 Assumptions for kernels with unbounded support

We also give the assumptions satisfied by K and f in the second case:

(B.6) K has an unbounded support.
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(B.7) For all τ ∈]−∞, a[ and all p ∈ N∗,
∫

RK
1/p(z) exp(τK(z))dz <∞.

(B.8) supn∈N∗ supt>0 |
∫

R sin(tK(z))f(x− hnz)dz| <∞.

Remark 3.3 The assumptions (B.7) − (B.8) are used to prove a version of
Cramer’s condition for hnKhn(x − X) when K has an unbounded support (see
Lemma 3.3). This version is more general than the one for kernels with compact
support (11).
These assumptions are quite restrictive. For example, the Cauchy kernel does
not satisfy (B.7).
We verify that (B.8) holds for the exponential kernel K(z) = 2−1 exp(−|z|): For
all t > 0, we have∫

R
sin(tK(z))f(x− hnz)dz =

∫ ∞

0

sin(2−1t exp(−z))f(x− hnz)dz

+

∫ ∞

0

sin(2−1t exp(−z))f(x+ hnz)dz

For the first integral (it is the same proof for the second), we make the change of
variable u = t exp(−z). For all t > 1, we get∣∣∣∣∫ t

0

sin(2−1u)

u
f
(
x+ hn log

(u
t

))
du

∣∣∣∣ ≤
∣∣∣∣∫ t

1

sin(2−1u)

u
f
(
x+ hn log

(u
t

))
du

∣∣∣∣
+ 2−1‖f‖∞.

We use an integration by parts for the integral above and finally (B.8) follows
from condition (B.3). Notice that this last one is needed to prove (B.8).
We can also prove it for the Gaussian kernel with the same arguments and more
generally for kernels of the following type: K(z) = C exp(−ϕ(z)) where C is
the normalization constant and ϕ a convex function such that ϕ(z)/|z|p →∞ as
|z| → ∞ for all p < 1.
Of course these kernels also satisfy (B.7)

3.2 Main Theorem

Under the preceding notations and assumptions, we have the following theorem,

Theorem 3.1. Let the conditions (B.1)− (B.3) hold.
Assume conditions (B.4)− (B.5) in the first case or (B.6)− (B.8) in the second
case. Moreover suppose that limn→∞ nh2

n = c ≥ 0 where c is a constant.
Then for any x ∈ R such that f(x) > 0, any α > 0 and n large enough,

P(f̂n(x)− f(x) > α) =
exp[−nhnΛ∗(α) + cH(τ)]

τ(2πnhnf(x)I ′′(τ))1/2
(1 + o(1)) (12)
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where τ ∈]0, a[ and H(τ) = − (f 2(x)I2(τ)/2 + f ′(x)J(τ)).
Similarly, for any α and x such that 0 < α < f(x) and n large enough, we have

P(f̂n(x)− f(x) < −α) =
exp[−nhnΛ∗(−α) + cH(−τ)]
τ(2πnhnf(x)I ′′(−τ))1/2

(1 + o(1)) (13)

where τ > 0.

Remark 3.4 It is possible to obtain a LSLDP of higher order (see [3]) but the
calculation is more complicated and we will not make it here.
Proof. In order to prove (12) (the same arguments are used to prove (13)), we
follow the same approach as in [1] and more recently in [3].
Let x ∈ R such that f(x) > 0 and let α > 0. We consider the normalized
cumulant generating function of f̂n(x)− f(x), for t ∈]−∞, a[,

Λn(t) =
1

nhn

log E{exp(tnhn(f̂n(x)− f(x)))}

=
1

nhn

log E{exp(tnhnf̂n(x))} − tf(x).

We want a sharper development of this function than in the proof of the large
deviation theorem (Theorem 2.1). Then for the function θ : R → [0, 1] and
n ∈ N∗, we set Ln,θ(t) =

∫
R z(exp{tK(z)} − 1)f ′(x− θ(z)hnz)dz.

This function is defined on ] −∞, b[ by using the assumptions (B.2) and (B.3).
Moreover the dominate convergence theorem allows us to write Ln,θ as:

Ln,θ(t) = f ′(x)J(t) + o(1). (14)

Notice that Ln,θ ∈ C∞(]−∞, b[) (Remark 3.1 (ii)) and for k ≥ 1, its derivatives
can be written :

L
(k)
n,θ(t) =

∫
R
zKk(z) exp(tK(z))f ′(x− θ(z)hnz)dz = f ′(x)J (k)(t) + o(1). (15)

Noting ψn the Laplace transform of hnKhn(x−X), we have, for t ∈]−∞, a[,

ψn(t) = E{exp(thnKhn(x−X))}
= 1 + hnf(x)I(t)− h2

nLn,θ(t). (16)

As nh2
n = c+ o(1) and using the expression (14) of Ln,θ, we obtain

Λn(t) = f(x)I(t)− tf(x) +
c

nhn

H(t) + o

(
1

nhn

)
(17)

where H(t) = −(f 2(x)I2(t)/2 + f ′(x)J(t)).
I is a convex and differentiable function on ]−∞, a[. Moreover limt→−∞ I ′(t) = 0
and limt→a− I

′(t) = ∞. Then there exists a parameter τ ∈]0, a[ such that

α+ f(x) = f(x)I ′(τ) (18)
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and
Λ∗(α) = τ(α+ f(x))− f(x)I(τ). (19)

This parameter τ is used for the exponential change of probability which allows
us to prove (12).
Consider the exponential change of probability:

dPn

dPn,0

= exp(τhnKhn(x−X)− logψn(τ))

where Pn (respectively Pn,0) is the new (respectively original) distribution of
hnKhn(x−X).
We note En and V arn respectively the expectation and the variance over the
distribution Pn. These notations will be used in the rest of the proof.
Now, we can express the tail probability

P(f̂n(x)− f(x) > α) = P

(
1

n

n∑
j=1

Khn(x−Xj) > f(x) + α

)

=

∫ ∞

f(x)+α

exp[−τnhnu+ nhnΛn(τ) + τnhnf(x)]dQn(u)

where Qn is the distribution of f̂n(x) = n−1
∑n

j=1Khn(x−Xj) over Pn.
The expressions (17) and (19) yield

P(f̂n(x)− f(x) > α) = exp[−nhnΛ∗(α) + cH(τ) + o(1)]

×
∫ ∞

f(x)+α

exp[−τnhn(u− (f(x) + α))]dQn(u).

In order to evaluate the integral, we consider, using (18),

Un =
(nhn)1/2(f̂n(x)− f(x)I ′(τ))

(f(x)I ′′(τ))1/2
=

(nhn)1/2(f̂n(x)− (f(x) + α))

(f(x)I ′′(τ))1/2
.

The following lemma enables us to show the asymptotic normality of Un under
the distribution Pn.

Lemma 3.1. Let (B.1)−(B.3) hold and assume that limn→∞ nh2
n = c ≥ 0. Then

the distribution of Un under Pn converges to the standard Gaussian distribution.

Proof. This result was found by Parzen [14] for f̂n considered over the original
distribution. Here f̂n is considered over Pn.
We first give some expressions that will also be useful further:
From classical results on exponential models, (14), (15) and (16), we have

Enf̂n = En{Khn(x−X)}

= h−1
n

ψ′n(τ)

ψn(τ)

= f(x)I ′(τ)− hn(f ′(x)J ′(τ) + f 2(x)I(τ)I ′(τ)) + o(hn) (20)
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and

V arnf̂n = n−1V arn{Khn(x−X)}

= (nh2
n)−1ψ

′′
n(τ)

ψn(τ)
− n−1(Enf̂n)2

= (nhn)−1 (f(x)I ′′(τ) + o(1)) . (21)

We use the Lyapounov central limit theorem for triangular arrays (see [4]) to
prove the lemma.
As limn→∞ nh2

n = c, the convergence in distribution of Un will be assured if the
condition of Lyapounov is satisfied.
Noting Wkn = n−1(Khn(x−Xk)−EnKhn(x−Xk)), for k = 1, .., n, the condition
of Lyapounov is: There exists δ > 0 such that

lim
n→∞

∑n
k=1 En|Wkn|2+δ

(
∑n

k=1 EnW 2
kn)1+δ/2

= 0.

This is equivalent to

lim
n→∞

En|Khn(x−X)|2+δ

nδ/2(V arnKhn(x−X))1+δ/2
= 0.

Then, we can easily verify this condition and prove the lemma by using (15),
(16), (20), (21), the assumptions (B1)− (B3) and limn→∞ nh2

n = c.

Hence we can write

P(f̂n(x)− f(x) > α) = exp[−nhnΛ∗(α) + cH(τ) + o(1)]

×
∫ ∞

0

exp[−τ(nhnf(x)I ′′(τ))1/2u]fUn(u)du, (22)

where fUn is the density function of Un.
For every integer k > 1, we note

µk,n = h−1
n En|K((x−X)/hn)− EnK((x−X)/hn)|k (23)

and we consider U∗
n = (nhn)1/2(f̂n(x)− Enf̂n(x))/µ

1/2
2,n .

Then, with FUn (respectively FU∗n) standing for the distribution function of Un

(respectively U∗
n), we have, clearly, FUn(u) = FU∗n((u−Bn)/An) where

An =

(
µ2,n

f(x)I ′′(τ)

)1/2

and Bn =
(nhn)1/2(Enf̂n(x)− f(x)I ′(τ))

(f(x)I ′′(τ))1/2
. (24)
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One can easily verify by using (20), (21) and (23) that limn→∞An = 1 and
limn→∞Bn = 0.
Set

αn = τ(nhnf(x)I ′′(τ))1/2An

= τ(nhnf(x)I ′′(τ))1/2(1 + o(1)) (25)

and

βn = τ(nhnf(x)I ′′(τ))1/2Bn = τnhn(Enf̂n(x)− f(x)I ′(τ))

= −τc(f ′(x)J ′(τ) + f 2(x)I(τ)I ′(τ)) + o(1).(26)

where we have used (20) and the assumption limn→∞ nh2
n = c.

Therefore, we write (22) as

P(f̂n(x)− f(x) > α) = exp[−nhnΛ∗(α) + cH(τ) + o(1)]

× exp(−βn)

∫ ∞

−Bn
An

exp(−αnu)fU∗n(u)du

=
exp[−nhnΛ∗(α) + cH(τ) + o(1)]

αn(2π)1/2
× In exp(−βn)

where In = αn(2π)1/2
∫∞
−βn

exp(−u)(FU∗n(u/αn)− FU∗n(−Bn/An))du.

We have used an integration by parts, two changes of variable (see the proof
of the Bahadur-Rao Theorem in [6]) and noticed that the lower bound of the
integral is −αnBn/An = −βn.
Now it remains to prove that limn→∞ exp(−βn)In = 1.
The following lemma yields an Edgeworth expansion. Using this last one, the
end of the proof will be nearly the same as the one of the Bahadur-Rao Theorem
in [6].

Lemma 3.2. Under the preceding notations (in particular (23)) and the assump-
tions of Theorem 3.1,

lim
n→∞

(nhn)1/2 sup
x∈R

∣∣∣∣FU∗n(x)− Φ(x)− µ3,n

6(nhn)1/2(µ2,n)3/2
(1− x2)φ(x)

∣∣∣∣ = 0, (27)

where Φ(x) is the standard normal distribution and φ(x) the standard normal
density.

Proof. This result has been proved by Hall [8, Theorem 5.5] in the case of kernels
with compact support (and under the original distribution but it is nearly the
same proof under the new one). For kernels with unbounded support, we can also
apply Hall’s proof by using the assumptions (B.7) and (B.8). In fact the main
difficulty is to obtain a version of Cramer’s condition for hnKhn(x − X) which
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guarantees the uniformity of the expansion.
More precisely, to prove his result, Hall uses a lemma [8, Lemma 5.7]. This lemma
yields an uniform expansion for the density function of U∗

n + n−dZ where Z is a
N (0, 1) random variable independent of Xj, j = 1, .., n and d a positive constant.
For the lemma and the rest of the proof of (27), the constant d > 0 has to be
large enough.
In the proof of his lemma, Hall needs a version of Cramer’s condition for kernels
satisfying the assumptions (B.4) and (B.5). Indeed this condition (11) yields the
following result used in his proof: For all a > 0,

sup
|t|>k0(nhn)1/2

∣∣vn

(
t/(nhn)1/2

)∣∣n = O(n−a)

for n large enough, where k0 > 0 and vn(t) = E exp(ithnKhn(x−X)).
Hall’s proof remains valid for kernels with unbounded support if we show a more
general result with d chosen large enough: For all a > 0,

sup
k0(nhn)1/2<|t|<n2d

∣∣v∗n (t/(nhn)1/2
)∣∣n = sup

k0<|t|<n2d−1/2h
−1/2
n

|v∗n(t)|n = O(n−a) (28)

for n large enough, where v∗n(t) = En exp(ithnKhn(x−X)).
For this, we use the following version of Cramer’s condition:

Lemma 3.3. Let the conditions (B1) − (B.3) and (B.6) − (B.8) hold. Assume
that limn→∞ nh2

n = c ≥ 0. Then for each k > 0 and each q > 0,

sup
k<|t|<nq

|En exp(ithnKhn(x−X))| ≤ 1− C(k, x)hn (29)

for n large enough, where C(k, x) > 0.

Remark 3.5 We give the proof for the characteristic function over the orig-
inal distribution for reasons of simplicity in the notations. Indeed there are
very few differences with the proof of (29). Condition (B.7) yields the result∫

RK
1/p(z)dz <∞ which is used below.

Proof. We have, under the original distribution, for t ∈ R,

|vn(t)|2 − 1 = −4hnAn(t)×Bn(t) + h2
nC

2
n(t)

where An(t) =
∫

R sin2(tK(z)/2)f(x−hnz)dz, Cn(t) =
∫

R sin(tK(z))f(x−hnz)dz
and Bn(t) = hn

∫
R cos2(tK(z)/2)f(x− hnz)dz.

Let k > 0 and q > 0. Then we have to prove

sup
n∈N∗

sup
t>0

∣∣∣∣∫
R

sin(tK(z))f(x− hnz)dz

∣∣∣∣ <∞ (30)
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and

inf
k<|t|<nq

(∫
R

sin2

(
tK(z)

2

)
f(x− hnz)dz

)
× inf

k<|t|<nq

(
hn

∫
R

cos2

(
tK(z)

2

)
f(x− hnz)dz

)
> ε(k, x) (31)

for n large enough, where ε(k, x) > 0.
In fact (30) is the assumption (B.8).
For the first term in (31), as f(x) > 0 and f is continuous on R, there exists
Ax > 0 and Bx > 0 such that f > Bx on ]x−Ax, x+Ax[. Then for all t ∈]k, nq[
and n large enough, we have∫

R
sin2

(
tK(z)

2

)
f(x− hnz)dz ≥ Bx

∫ Ax
hn

−Ax
hn

sin2

(
tK(z)

2

)
dz

≥ 2−1(β − α)Bx

(
1− 1

β − α

∫ β

α

cos(tK(z))dz

)
≥ 2−1(β − α)Bx (1− |E exp(itK(U))|)

where U follows an uniform distribution on the interval ]α, β[ chosen such that
K is finite and strictly positive there.
As |E exp(itK(U))| = 1 if and only if t = 0 (the distribution function of K(U) be-
ing non-lattice), we have

∫
R sin2(tK(z)/2)f(x−hnz)dz > 2ε(k, x) for all t ∈]k, nq[

and n large enough, with ε(k, x) > 0.

For the second term in (31), notice that cos2(u) ≥ 1− 2p|u|1/p for all u ∈ R and
all p > 1. Then for all t ∈]k, nq[,

hn

∫
R

cos2

(
tK(z)

2

)
f(x− hnz)dz ≥ 1− p21−1/phn|t|1/p

∫
R
K1/p(z)f(x− hnz)dz

≥ 1− p21−1/p
(
nh

p
q
n

) q
p

∫
R
K1/p(z)f(x− hnz)dz.

If 2q < p, then limn→∞ nh
p
q
n = 0. Choosing p large enough, the assumptions (B.7)

and (B.3) yield hn

∫
R cos2(tK(z)/2)f(x − hnz)dz ≥ 1/2 for all t ∈]k, nq[ and n

large enough. This completes the proof of (31).
In conclusion, for each k > 0 and each q > 0, we have

sup
k<|t|<nq

|vn(t)|2 ≤ 1− 2C(k, x)hn ⇒ sup
k<|t|<nq

|vn(t)| ≤ 1− C(k, x)hn

for n large enough, where C(k, x) > 0.
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We apply this lemma with n2d−1/2h
−1/2
n (d chosen large enough) in place of nq.

We get for all a > 0 and n large enough,

na sup
k0<|t|<n2d−1/2h

−1/2
n

|v∗n(t)|n ≤ na exp(−C(k0, x)nhn).

The assumption limn→∞ nh2
n = c which implies limn→∞ nhn/ log n = ∞, yields

formula (28). Therefore we can apply Hall’s proof to obtain the Edgeworth
expansion (27).

Now as in the proof of the Bahadur-Rao Theorem in [6], using the equality
αnBn/An = βn, we consider

Jn = (2π)1/2

∫ ∞

−βn

αn exp(−u)

(
Φ

(
u

αn

)
+

µ3,n

6(nhn)1/2(µ2,n)3/2

[
1−

(
u

αn

)2
]

. φ

(
u

αn

)
− Φ

(
−Bn

An

)
− µ3,n

6(nhn)1/2(µ2,n)3/2

[
1−

(
−Bn

An

)2
]
.φ

(
−Bn

An

))
du

with φ(t) = Φ′(t) = (2π)−1/2 exp(−t2/2).
Clearly, (27) yields limn→∞ |In − Jn| = 0. After a Taylor expansion of Φ(u/αn)
and using (24), (25), (26), we obtain

lim
n→∞

Jn = lim
n→∞

(2π)1/2

∫ ∞

−βn

αn exp(−u)
(

Φ

(
u

αn

)
− Φ

(
−Bn

An

))
du

= lim
n→∞

exp(βn),

completing the proof of the theorem.

3.3 The case where f(x) = 0

In the case where f(x) = 0, f̂n(x) also satisfies a LSLDP but with a change of
speed. Indeed, we are interested in the probability P(f̂n(x) > αh2

n) where α > 0.
We use notations and assumptions very similar to the case where f(x) > 0 and
one can make the same kind of remarks.
We consider the functions

J2(t) =

∫
R
z2(exp(tK(z))− 1)dz

and

J3(t) =

∫
R
z3(exp(tK(z))− 1)dz.

Let K have an unbounded support. Then we suppose that the following condi-
tions are satisfied:
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(Bo1) f(x) = f ′(x) = 0 and f ′′(x) > 0.

(Bo2) ϕ2(t) =
∫

R z
2K(z) exp(tK(z))dz and ϕ3(t) =

∫
R |z|

3K(z) exp(tK(z))dz are
defined respectively on ]−∞, a[ and ]−∞, b[ with b ≥ a > 0.

(Bo3) limn→∞ nh4
n = c ≥ 0.

(Bo4) f is three times continuously differentiable on R, ‖f ′′‖∞ <∞ and
‖f (3)‖∞ <∞.

(Bo5) For all τ ∈]−∞, a[ and all p ∈ N∗,
∫

R z
2K1/p(z) exp(τK(z))dz <∞.

(Bo6) supn∈N∗ supt>0

∣∣∫
R z

2 sin(tK(z))f ′′(x− θ(z)hnz)dz
∣∣ <∞

where θ(z) ∈]0, 1[.

(Bo7) α and x are such that α > J ′2(0)f ′′(x)/2.

The last condition is used to have a parameter τ > 0. We will not study here the
case 0 < α ≤ J ′2(0)f

′′(x)/2 which seems to be more complicated.
Notice that if K has a compact support, we need assumption (B.5) from section
3.2 in place of (Bo5)−(Bo6). We give only the result for the right tail probability
(it is the same for the left one).

Theorem 3.2. Under the preceding notations and assumptions, we have, for n
large enough,

P(f̂n(x) > αh2
n) =

exp[−nh3
nΛ∗

2(α)− cf (3)(x)J3(τ)/6]

τ(πnh3
nf

′′(x)J ′′2 (τ))1/2
(1 + o(1))

with τ ∈]0, a[ and Λ∗
2(α) = τα− f ′′(x)J2(τ)/2.

Remark 3.6 We have a change of speed in this particular case, (nh3
n)−1 in

place of (nhn)−1. The expansion depends on the second and third derivatives of
f as the Taylor development has to be sharper.
Proof. We give a few elements of proof in this particular case: Considering

Wn(x) =
1

nh3
n

n∑
j=1

K

(
x−Xj

hn

)
,

we can write P(f̂n(x) > αh2
n) = P(Wn(x) > α).

Then with the assumptions (Bo1)− (Bo4), we have, for t ∈]−∞, a[,
Λ2n(t) = (nh3

n)−1 log E exp(tnh3
nWn(x)) = f ′′(x)J2(t)/2−hnf

(3)(x)J3(t)/6+o(hn)
and Λ2(t) = limn→∞ Λ2n(t) = f ′′(x)J2(t)/2.
Using assumption (Bo7), the rate function evaluated at α is

Λ∗
2(α) = sup

t∈]0,a[

{tα− (f ′′(x)J2(t))/2}

= τα− f ′′(x)J2(τ)/2,
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with τ ∈]0, a[ such that J ′2(τ)f
′′(x) = 2α.

For the rest of the proof, we use the same arguments as in the case where f(x) > 0.

Remark 3.7 More generally the speed of the LSLDP increases with the number
of successive derivatives equal to zero at x: Let k > 1 be an integer.
We suppose f(x) = .. = f (2k−1)(x) = 0, f (2k)(x) > 0, limn→∞ nh2k+2

n = c ≥ 0,
and others assumptions on f and K which can be easily deduced from the case
k = 1. Then we obtain the following result for any α > J ′2k(0)f

(2k)(x)/(2k)! and
n large enough:

P(f̂n(x) > αh2k
n ) =

exp
[
−nh2k+1

n Λ∗
2k(α)− cf (2k+1)(x)J2k+1(τ)

(2k+1)!

]
τ( 2π

(2k)!
nh2k+1

n f (2k)(x)J ′′2k(τ))
1/2

(1 + o(1))

where Λ∗
2k(α) = τα−f (2k)(x)J2k(τ)/(2k)! and J2k(t) =

∫
R z

2k(exp(tK(z))−1)dz.

4 Sharp Large Deviations for the Nadaraya-Wat-

son estimator

We use the same notations as in Section 2.2 and consider assumptions for kernels
with unbounded support (for kernels with compact support, we only need the
assumptions (Br.1) − (Br.3) below). They are quite similar to those regarding
the kernel density estimator and one can make the same kind of remarks. Let z0

be a fixed point in R such that fX(z0) > 0. Then we introduce the new function

Jr,α(t) =

∫
R2

x[exp(t(y − r(z0)− α)K(x))− 1]f ′1(z0, y)dxdy. (32)

We assume that the following assumptions are fulfilled for any α ∈ R:

(Br.1) f is continuously differentiable with respect to the first variable on R and
fX is continuous on R.

(Br.2) ϕr,α(t) =
∫

R2 |y − r(z0) − α|K(x) exp[t(y − r(z0) − α)K(x)]f(z0, y)dxdy is
defined on the open interval ]− a1, a2[, with a1 ∈]0,∞] and a2 ∈]0,∞].

(Br.3) For all m ∈ N∗ and all t ∈]− b1, b2[⊃]− a1, a2[,

sup
u∈R

∫
R2

|x|(|y−r(z0)−α|K(x))m exp[t(y−r(z0)−α)K(x)]|f ′1(u, y)|dxdy <∞.
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(Br.4) For all p ∈ N∗ and all t ∈]− a1, a2[,

sup
u∈R

∫
R2

(|y− r(z0)− α|K(x))1/p exp[t(y− r(z0)− α)K(x)]f(u, y)dxdy <∞.

(Br.5) supn∈N∗ supt>0

∣∣∫
R2 sin(t(y − r(z0)− α)K(x))f(z0 − hnx, y)dxdy

∣∣ <∞.

Remark Assumption (Br.3) assures that (Y − r(z0) − α)K((x − X)/hn) has
finite moments (under the new distribution obtained after an exponential change
of probability) of all orders.
We have the following theorem, very similar to Theorem 3.1.

Theorem 4.1. Let the conditions (Br.1)− (Br.5) hold for any α ∈ R. Moreover
suppose that limn→∞ nh2

n = c ≥ 0 where c is a constant. Then, for any α > 0
and n large enough,

P(r̂n(z0)− r(z0) > α) =
exp[nhnIr,α(τ) + cHr,α(τ)]

τ(2πnhnI ′′r,α(τ))1/2
(1 + o(1)) (33)

where τ ∈]0, a2[ and Hr,α(τ) = −(I2
r,α(τ)/2 + Jr,α(τ)).

Similarly, if K also satisfies condition (Ar.5), for any α > 0 and n large enough,
we get

P(r̂n(z0)− r(z0) < −α) =
exp[nhnIr,−α(−τ) + cHr,−α(−τ)]

τ(2πnhnI ′′r,−α(−τ))1/2
(1 + o(1)) (34)

where τ ∈]0, a1[.

Remark If z0 is such that fX(z0) = 0 then we have the same kind of results as
in Section 3.3.
Proof. The proof of (33) is very similar to the one of Theorem 3.1, so we omit
the details. Let α > 0.
Using (Br.1)− (Br.3) and limn→∞ nh2

n = c, we have, for t ∈]− a1, a2[,

Λn,α(t) =
1

nhn

log E exp

(
t

n∑
j=1

Wjn,α

)

= Ir,α(t) +
c

nhn

Hr,α(t) + o

(
1

nhn

)
where Hr,α(t) = −(I2

r,α(t)/2 + Jr,α(t)).
Then there exists a parameter τ ∈]0, a2[ such that I ′r,α(τ) = 0 and the rate
function associated with the LDP is inft∈]0,a2[−Ir,α(t) = −Ir,α(τ).
As in the proof of Theorem 3.1, we consider the new distribution Pn,α of W1n,α
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obtained after an exponential change of probability using τ . We express the tail
probability,

P(r̂n(z0)− r(z0) > α) = exp[nhnIr,α(τ) + cHr,α(τ) + o(1)]

×
∫ ∞

0

exp(−τnhnu)dQn,α(u)

where Qn,α is the distribution of Vn,α = (nhn)−1
∑n

j=1Wjn,α over Pn,α.

We set Un,α = (nhn)1/2Vn,α/(I
′′
r,α(τ))1/2 and as in lemma 3.1, the distribution of

Un,α under Pn,α converges to the standard Gaussian distribution. For the rest
of the proof, we follow the same approach as in the case of the kernel density
estimator. Using (Br.1)− (Br.5), Hall’s proof (in [8]) is applied to W1n,α in place
of hnKhn(x−X). Then we obtain an Edgeworth expansion of the same kind of
(27) and we get the result (33).
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