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Summary. For smooth models, the posterior distribution, centered at the MLE, has a

second order asymptotic expansion in which the leading term depends on the prior

density and its derivative. Recentering the posterior distribution at the posterior

mean results in a prior-free second order expansion. Recentering at the posterior

mode also leads to a different second order expansion with a leading term

depending on the prior. Accuracy of the normal approximations to a posterior

distribution based on these centerings are discussed.
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1. Introduction.

The classic normal approximation to a posterior distribution states that the

posterior distribution of is approximately where is a

maximum likelihood estimator, and ) the j-order derivative of the log likelihood

The performance of this approximation is questionable since it does not

account for the contribution from the prior distribution. One has to bring in the prior

information to the normal approximation in order to have more credible

approximations. Another choice for centering the posterior distribution is the

posterior mean. The fact that the posterior mean is almost always consistent under

natural conditions [Doob (1949)] supports its appropriateness as an estimator for a

location parameter. The recently developed MCMC method can be used to

computing posterior means and integrals.

 To improve on the normal approximation, Johnson (1969, 1970) expanded

the posterior distribution for a smooth parametric model at the MLE in an asymptotic

series with the standard normal being the initial term. Among the expansions, the

second order term expansion provides information on the magnitude of the error of

the normal approximation and gives a second order correction term which may be

used to correct the normal approximation. Johnson‘s leading correction term which

dictates the magnitude of the normal approximation depends on the prior density. In

section 2, we show that centering at the posterior mean leads to a second-order

expansion for the posterior distribution which is prior-free. Second order posterior

expansion centering at the posterior mode is also discussed. We compare the

accuracy of the these approximations to a posterior distribution based on its there

second order expansions (Section 3). The expansions are manipulated via two

lemmas (Section 2) that may have general interest. The first lemma is a law of large

numbers for an average of functions of symmetric statistics in the spirit of Doob

(1949) and Blackwell and Dubins (1962). The second lemma discusses how

recentering and rescaling by constants alter second order asymptotic expansions.

2. Centering an asymptotic expansion of a posterior distribution.

Throughout this note, regularity conditions on the smoothness of the

likelihood function are assumed [see Johnson (1970)]. In particular, we

assume that has four derivatives (in ) which are dominated by integrable

random variables in a compact neighborhood C of the "true" parameter and that

the prior density has two bounded derivatives and strictly positive on C. Let



, then from Johnson [1967 and 1970; see also Ghosh, Sinha and

Joshi (1982)],  we have the following expansion

What it states is that if the posterior distribution is centered at the MLE and

rescaled by (both of them do not depend on the prior), the effect of the
prior distribution appears in at the leading correction term. Howewer, according

to Johnson (1970) [see also page 51 in Ghosh (1994)],

that is the term in (2.1) is the result of a "Bayesian bias", defined as the

difference between the posterior mean and the centering in question. Eliminating the

"Bayesian bias" leads to a one-term expansion (Theorem 1 below) which is free of

the effect of the prior distribution. In the following we denote by the standard

deviation of the posterior distribution of  . Unless otherwise specified, asymptotic

expansions of conditional distributions are expansions with probability one. This

improves other previous asymptotic expansion, which are either in probability or L1

expansions (See Bickel and Ghosh (1990)).

Theorem. Assume that (2.1) holds then, uniformly in z,
(i)

is valid with probability one;

(ii) replacing does not alter the expansion in (i).

The proof of this Theorem is based on the following two lemmas. Lemma 1 is

a law of large numbers for an average of functions of symmetric statistics; its proof is

based on a backward martingale convergence result due to Blackwell and Dubins

(1962). Lemma 2 though obvious is a very usefull tool (which may also be used to

understand Bartlett corrections, see Bickel and Ghosh (1990) for results in that

direction). It describes how a distribution expanded in terms of and

up to an error can be standardized, i.e., recenterred and rescaled, to

an expansion in terms of and with the same error. Through out

this paper we denote



. Suppose X1,...,Xn,... are i.i.d. random variables, and for each n≥ 1, Tn
is a symmetric statistic of X1,...,Xn. Suppose g(t,x) is a function of two variables, and

that (i) |g(t,y)|≤ h(y) where h(X1) is integrable and (ii) for each y, g(t,y) is a

continuous function in t.
 Then with probability one implies

with probability one.

. Write where is the symmetric field

consisting of symmetric functions of By the extended backward martingale

convergence theorem of Blackwell and Dubins (1965), with probability one

The above convergence only requires exchangeability of the Xi s. Here the Xi s are

i.i.d., and the Hewitt-Sawage zero-one law then implies that is a trivial field.

Therefore, is a constant. The constant must be

Suppose and  are Expansions (i) and (ii) are

equivalent.

. Straightforward by Taylor expansions. The uniformity follows from the

boundedness of the functions in z (and their derivatives) appearing in (i). This

Lemma also holds if is replace Notice that the linear term )

typically leads to a Bartlett type correction (see also Bickel and Ghosh(1990)).

. To show (i), assume (2.1). It suffices to transfer the Bayesian
bias ) in (2.1) and to control all the terms in the expansion with probability

one.
First we show that and are with probability one. Write

Since under the assumptions, the MLE converges to and C contains an open

neighborhood which contains for all but finitely many n’s. Therefore,

for all but finitely many ns.

Since ç ô is a symmetric function of the data x1,...,xn, Lemma 1 applies to yield,

Hence (2.3) and (2.4) combine to yield that ) is of order O(n) with probability

one. The same argument entails that is also of order O(n), and we conclude
that an and dπ  are O(n-1/2) with probability one ) is continuous on C].



Second, put

and  in Lemma 2 to obtain

follows.

To show (ii), integrating the expansion in Theorem 1(i), or applying Lemma

2.4 in Johnson (1970), results in

Lemma 2 states that replacing by does not change the

expansion in (i).    ·

The uniform errors of the approximations are o(n-1/2) with probability one.

These error bounds can be upgraded to O(n-1), but only in probability. This is due to

the fact that the original expansion remain valid up to O(n-1), in probability and that

the rate of convergence of to a limiting distribution is

n1/2.

Another possible location for centering is the posterior mode which

captures a part of the prior information. Assume in addition that has four bounded

derivatives. Put 

and denote aπ  analogously as

Let be a posterior mode such that Johnson's argument gives

Comparing with Theorem 1 (i), the "Bayesian bias" results in an extra term

in the expansion which may explain by the fact [integrate (2.6) to see it] that

. Because the second order terms in the posterior expansions centered

only depends on the data, it is easy to invert these expansions without any further

assumptions to get second order valid uniform approximation of posterior

probabilities. This is in great contrast to inverting an Edgeworth expansion for a

sampling distribution which typically depends on unknown parameters [See for

instance Hall (1983)].



Let and be two sequences of distributions which have N(0,1) limit

with the ratio of two variances tending to unity (the subscript n is suppressed). The

second-order efficiency of relative to is

and the criterion for performance is beats if ties with in case

of equality." This criterion was used in Singh (1981) to compare the accuracy of

normal approximation and Efron's bootstrap approximation to a sampling

distribution. This criterion can be applied to compare performance of approximations

to posterior distributions, and Bertail and Lo (1996) apply this criterion to compare

the performance of normal and the weighted bootstrap approximations [Newton and

Rafetery (1994)]. Here we consider the comparison of posterior distributions

centered at the posterior mean, at the posterior mode, or at the MLE. Let
(i.e., centered at the posterior mean) and 

(i.e., centered at the posterior mode). From the Edgeworth expansion for the

distributions for and 

and

Hence That is, centering at the posterior mean is always better than

centering at the posterior mode in terms of second-order efficiency.
The efficiency of (centered at the MLE) relative to (centered at the

posterior mode) has also been investigated. In that case we have
 

Notice that (by Lemma 1), and denote

(3.1), (3.2), and (3.3) state that centering at the MLE beats centering at the posterior
mode if (otherwise centering at the posterior mode is better), and

centering at the MLE is better than centering at the posterior mean if

The following table summarizes the ranking of the three centerings.



Table 3.1

For Jeffreys type prior i.e , and for all Centering at

the posterior mean beats centering at the posterior mode, which beats centering at
the MLE for all "true" parameter value
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