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1 Introduction

The problem of insider trading is a well studied subject. Many papers deal
with the behaviour of the prices and the portfolios when one or several agents
received private information. Markets with asymmetric information has been
studied with different points of view. This paper will use an extension of Kyle’s
model [5]. In fact, one of the main difference between works comes from the
presence or not of noise traders. Bhattacharya, Reny and Spiegel [2] develop a
model where this kind of agents is absent, and they are able to show that trades
could collapse. In our model, if the equilibrium exists such a phenomenon cannot
occur. Back [1] studied such equilibrium when the market is composed by one
risk free asset and a risky one. He concludes at the existence of an equilibrium
when the informed trader is risk neutral. Cho [4] shows that we can have the
same kind of results when the insider is risk averse with an exponential utility.
An other type of works deals with markets with more than one risky security.
Caballé and Krishnan [3] shows the existence of an equilibrium in a discrete time
model and Lasserre [6] proves that it is still true in a continuous time framework
and when the noise traders’ demand is not anymore a Brownian motion but an
Ornstein Ulhenbeck process.

The aim of this paper is to study the existence of an equilibrium when there
is partial asymmetric information in the market which means that the informed
trader does not have necessarily private information on all assets. We suppose
that agents can trade on two types of risky assets. The price of the first one
is a geometric Brownian motion and all the traders know the dynamics of this
price. The other is subject to asymmetric information. The market is waiting
for a public release of information on this security. Only one agent, the insider,
already knows this information by receiving a private signal. Excluding the
informed agent, traders are of two types : market makers and noise traders. In
fact, the modeling remains close to Back’s framework [1].

Our purpose is to allow a feed back effect on the price of the second asset.
We want to study the influence of the first security on the price formation of the
second asset. In fact, we show that when the insider is risk neutral, he prefers to
trade separately the two securities which is natural in a certain way since he does
not want to add noise in the price formation. We may think that such a model
will drive us to a possible collapse of the market, as in Bhattacharya and Reny’s
[2] paper since noise traders would prefer trading on the first asset. However
this kind of behaviour is not permitted by our model since we suppose that the
noise traders will always trade on the second asset for liquidity or hedge needs.
In fact, we show that the price of the second asset depends on the price of the
first one only through the coefficients of the covariance matrix of noise traders’
demand. This means that the insider trades in such a way that the correlation
between the two kinds of assets is exactly the same that the correlation given
by the market. It appears that the informed trader does not want to reveal is
information through the price of the second types of assets. However, we remark
the same type of behaviour for the insider. At the equilibrium, his strategy will
influence the global demand. In one hand, the global demand of the assets on



which he has private information will appear as an Ornstein Ulhenbeck process
regarding to the market maker. This is understandable if we consider that the
informed trader does not want to reveal his signal and appears as the other
traders present on the market. On the other hand, the cumulative demand is a
Brownian bridge regarding to the insider. In fact, as he knows the final price
(if we consider that is signal is the price of the assets when the information is
released), he can invert the price to determine the associated global demand,
and forced it to attain the level that realize the price he knows.

The plan of the paper is as follows. In Section 2, we expose the model.
Section 3 deals with the links between our model and filtering theory. We derive
the equilibrium in Section 4. The proofs of the results are in the Appendix.

2 The model

The market is composed by one risk-free asset and two risky assets. We suppose
without loss of generality that the risk-free rate is zero. Moreover, the different
assets can be indefinitely divisible and we assume that these assets are contin-
uously traded. Finally, we suppose that there is no constraint on the assets as
transactions costs.

We denote by ¢t = 1, the announcement date of a public release information,
and by ¢ = 0 the present date. The information is represented by a signal v,
which can be understood as the value of one of the two risky assets after the
release of information.

2.1 Type of the different agents

We consider three main types of agents.

There is a centralized market, meaning a market where a class of agents
organizes the market and they can see all trades, one usually calls them market
makers. In fact, we can consider that there is only one reasonable market maker
who determines the prices with all the information he has. We also assume that
this market maker is risk neutral, this can be justified by the fact that he has a
diversified portfolio.

At the date t = 0, a unique agent, different from the market maker, receives
a signal v, we call him the insider. He is conscious that he is the only agent to
get this extra information, and he tries to use it to maximize his utility. The
market maker is also conscious that there will be a release of information at t = 1
and that there is only one insider. It seems natural to think that the demand
of the insider depends on the signal, hence the market maker will observe the
different demands on the market to determine this signal. The insider will have
to hide his demand in order to not reveal his extra information. The signal v is
not necessary something illegal, it could be the capacity of a class of agents to
have precise forecasts of prices of the assets.

However, the insider’s demand is not directly observed by the market maker.
In fact, there exists a third class of agents. The market maker observes an
aggregate demand, this third class disturbs the market maker in his reading of



the insider demand. We usually call agents of this third class the noise traders.
Their presence can be explained for some reasons of hedging or liquidity. As for
market makers, we assume that there is a unique noise trader representing all
the class.

2.2 Insider and market maker information

Let (92, F, P) be a probability space. For all agents, the value of risky assets is a
vector V' at t = 0, except for the insider who receives the signal v. We suppose
that the signal has the following form :

v=v+¢

where v is the is the real value of the random variable V' after the release of
information and ¢ is a noise. But, here, we suppose that the insider perfectly
knows the value of V' at time ¢t = 1. Hence, v is a realization of V. Moreover,
we take an hypothesis done by Cho [4] :

Assumption 1 We suppose that the vector v is a smooth function of a Gaussian
random variable.
v="h(0) (1)
where O~ N(mo, 20) with EO Z 0
h: RN = RN is a smooth homeomorphism

We denote respectively by X; and Z; the insider’s demand and the noise
trader’s one at time ¢. The price vector is represented by P;. We denote respec-
tively

F¥ = (FX,0<t<1)
F?7 = (FZ,0<t<1)
P = (FP,0<t<1)

the filtrations generated by the processes X, Z and P.
Definition 2 We call cumulative demand the vector Y; defined by :

Vte[0,1] Yi=X:+2Z; (2)
We denote by FY = (Fty, 0<t< 1) the filtration generated by the process Y .

In fact, the market maker observes Y, but not X and Z separately, hence FM =
FY where FM is the filtration of the market maker at time ¢. However, FZ ¢
FM and FX ¢ FM. Generally, the filtration of the market maker is larger than
F}Y, because he has to consider some exogenous data from the market. In our
case, we take them equal.

The information F} of the insider comes from the signal received at time zero
and from the observation of the randomness of the market represented by the
process (Zi),c(0,1)» SO

vte[0,1] F,=0(@®)VF? (3)



The demand process X of the insider is Fi-adapted. By the meantime, as the
insider observes the prices, he knows the cumulative demand Y and so Z by
(??). Finally, we obtain the two following inclusions :

F? C F,and FY C F,

2.3 Rational price

As we saw before, we place ourselves in a model where there are continuous
trades in continuous time. This allows the different agents to pass orders at
every time and they will be executed immediately at the market price. Back [1]
shows rigorously the equilibrium found by Kyle [5] but in a more general way.
In fact, Back does not assume any kind of linearity of the prices with respect to
the demand or the linearity of the strategies. We assume, as in Cho [4], that the
prices depend on the whole path of the cumulative demand.

Definition 3 A pricing rule is a couple (H,\) defined by
H:[0,1] xR >R
where H is of class C'? ((0,1) x RY) and

Vse€[0,1] A(s) = < Alo(S) >\20(S) >

with ¥V (i,s) € {1,2} x [0,1] X (s) > 0 and \; (.) is a C* diffeomorphism. We
assume that H satisfies :
1
E </ H? (s,Zs)ds> < 40
0

1 T
and E / (8_H> B—Hds < 4o
0 dy Jy

We denote by H the set of all couples (H,\) having the previous properties.

Definition 4 An admissible price is a price such that Sy = H (t,V;) where U,
is defined by :

v, = /0 N($)dYs and (H.)) € H. (@)

Definition 5 We say that the admissible price S = (S, t € [0,1]) is rational if
vte[0,1] Si=E[V|F] (5)

Remark 6 The rational price is a price such that the expectation of the benefit
of the market maker conditionally to his filtration equals zero. It is the same
thing to say that the prices are F}Y -martingales i.e. we assume that there exists
a risk neutral probability associated to the market maker. We can see the prices
as the results of a Bertrand’s competition among the market makers.



2.4 Dynamics of the exogeneous price

We call S} the price process of the asset which we know the dynamics. We
consider that its dynamics has the following form :

dS} = S} (udt + odB}) (6)

where B} is a real Brownian motion and y, o are deterministic functions.

2.5 Demand of the noise trader

The modeling we take for the demand of the noise trader is essential because
it determines the price’s framework. In fact, if the insider wants to hide his
strategy and not to reveal his information, he has to stay close to the strategy
of the noise trader. We suppose that the demand process Z; of the noise trader
is an Ornstein Ulhenbeck process :

dZy = (ag (t) + a1 (t) Z¢) dt + & (t) dB; (7)
i
B;
bidimensional Brownian motion. We notice that the first component of the
Brownian motion By is the real Brownian motion which appears in (?7).

with V¢ € [0,1] € (¢) is a nonsingular 2 x 2 matrix, and B, = is a

2.6 Equilibrium

We denote by Wi+ the final wealth of the insider after the release of informa-
tion. It is a function of the insider’s demand X = (X;);c(y ;) and of the price
P = (P);cpo,1)- We assume that the insider has a utility function U (.) in the
Von Neumann-Morgenstein sense. The insider wants to maximize condition-
ally to his filtration, (Ft)te[ml]’ the expectation of the utility of his final wealth
EUW.+(P, X)) | F].

Definition 7 Let X be a class of strategies of the insider and H a class of pricing
rules. Given a pricing rule (H,)\), we say that a strategy X* is H-optimal on
the class X if :

Vte[0,1] VXeX E[UW: (H X)) /F]<EUW.+(H X)) /F)

Definition 8 We say that (H*,\*, X*) is an equilibrium on the space (H,X) if
it satisfies :

(i) The market efficiency condition : H* (t,U*) is the rational price for a given
strateqy of the insider X*, with Y* = X* + Z and ¥} = fot A* (s)dYy.

(ii) The insider’s optimality condition : X* is an optimal strategy for the given
pricing rule (H*, \*).



3 Representation of processes on the insider’s
filtration

3.1 Assumptions

As in Lasserre [6] we make two assumptions. For more details, one can refer to
the previous article.

Assumption 9 (H): We assume that
Qw)y=P@We.|F)(w<«<P@e.)=v() Vtel0,1] ppwe
Then, we consider the dynamics of Z on F; :
dZ; = epydt + edB, (8)
where Et is a F;-Brownian motion.
Assumption 10 (H’) We assume that the signal v has the form
vV="0; +c¢cZy

where ¢ is deterministic and v; LFZ. Hence, using enlarged filtration theory, the
process p has the following form :

pe = bo (t, Z1) + by (t, Z1) Z

For examples, we refer to Lasserre [6].

3.2 Dynamics of the state variables
We recall that the noise trader’s demand has the following form :

dZ; = (ao + b + (a1 + by) Z,) dt + ¢ (t) dB, (9)
For convenience, we write : dZ; = (Ao + A1 Z,) dt + £ (t) dB,.

The price S} has to be written under the insider’s filtration. With the as-
sumptions we made, we directly have :

ast = 8} ((u+Sbo+ b1 2) dt + SdB,) (10)

= ! ((ﬁ S0 Z,) dt + zdét) (11)

where i = u + Xbp and ¥ = (,0). For convenience, we write u instead of fi.
We still consider the class X of semimartingales which have the following :

t t
vt € [0,1] Xt:X0+/ asds+/ BsdB, (12)
0 0



1
We introduce some notations which will be helpful : X; = < §t2 ) ,
i
Vie {1,2} dX}=aldt+ pBdB,
where 3% is the i* row of the matrix £.
From (??) and (?7), we directly have the dynamics of ¥y :

Ay = X (a+ Ao + A1 Z) dt + X (8 +¢) dB; (13)

Finally, we have to compute the dynamics of the wealth of the insider under
F;. We do it exactly the same way it was done but with little changes. Indeed,
the insider can trade on two different assets. His final wealth has the following
form :

1
Wi+ = By —l—P(;FX()—F/ XsT_dPs + (5_512))(12
0

By using an integration by part, we obtain :
1 1
Wi+ = By + 07 Xg + / XSy + / (v — H)dX? - [$*,X7],
0 0

As we have done before, we consider the process W instead of W since it is a
continuous process. For more details, we refer to the previous paper. Hence the
dynamics of W under the insider’s filtration is :

aw, = (nggu +X!S'S0, Z+ (T —H)ay — B2 (B+¢)" AZ—i) dt

+ (X!S!S + (@~ H) p*) dB,

4 Characterization of the equilibrium

4.1 General results

We consider the following maximization problem :

J (t,r) = sup (E [U (WH_) | R: = r])
a,B

where R = (Xl,Sl,Z,\II,W). We have in fact the same proposition as in

the previous paper, however the proof is slightly different. The proof is in the

Appendix.

Proposition 11 Among the class X, the semimartingales which have a mar-
tingale part cannot satisfy the insider optimality condition.

Corollary 12 At the equilibrium, the dynamics of the insider’s strategy has to
be of the form
dXt = O[tdt (14)

where ay € RN is Fy-adapted.



For convenience, let us defined the differential operator K:

0 0 0
/CQO (t,?") = Bf + 690 (s1u + leblz) + %)\(AO + Alz)

8 Oy

8~ (:Ulslu +z1513b12) + B (AO + Aq2)

1 8 1 0%y

0% 0% 1 0%
25T T T

+tr <x15122 92 > + tr <s125 A 161/1) + —tr (55 2.2

0% 0% 0%
T T T
+tr <s125 65182> + tr <>\55 61/162) + tr (5:51312 628@)

0% 0%y
T T
+tr <x15122 63166> + tr <)\5w1s12 61/)6@)

A direct consequence of the corollary is that we consider in the rest of the paper
insider’s strategies which have the form given by (??). As we see in the proof of
this proposition, when (H, A, J) satisfies the Bellman inequation, we have some
necessary conditions for the existence of a solution :

">\2+3J(~ H)=0

M+ SR =0
)‘%W-i'a—é <0 (15)
82J>0
2
KJ<0

We remark that the first, the second and the fifth equations of (?? ) are close
to what we have before. In fact, if we find (H, A, J) such that the fifth one is
an equation instead of an inequation, we still have a solution. In fact, we look
for a solution when there is equality. Besides, the third and the fourth ones
will not directly help us in the resolution of the equilibrium even if they have to
be satisfied. Now we give a theorem which give sufficient conditions to have a
solution.



Theorem 13 Let (H,)\) € H, X7 € X, J € C*2([0,1],R) and X} = [, adt,
satisfy the conditions
(z) Z-do + (0 —H) =0

(iw) J(,s1,x1,2,¢,w) > U (w) Vsi,Ve,Vz, Vi, Vo
J(1,s1,21,2,¢%,w) =U(w) if H(1,¢) =70.
(v) E(af | FY") =0 where U = fot A(atds +dZs)
(vi) H(1,97) =7
Then (H, X\, a*) is an equilibrium.

The proof of this theorem is very close to the one we gave in [6], so we
refer to [6] for more details. This verification theorem is similar to the one we
have in complete asymmetric information. In fact, the new framework does not
change the structure of the theorem. However, the sufficient conditions seem
more complicate. We will see in the next section that the informed trader will
fix his demand in such a way that the cumulative demand in the first asset does
not influence the price formation of the second one.

4.2 Applications

We are going to study some particular cases. We will assume that the insider
is risk neutral on one hand and risk averse with exponential utility on the other
hand. In fact, this will permit us to compute equilibrium in assuming particular
form for the value function .J. In those two cases, we can have an interesting
result.

Lemma 14 If we consider (H, \, J, «) which satisfies the conditions (i) to (iii),
then H (ta,(/}la,(/}Q) =H (t7¢2)

This means that we are looking for a price which does not depend on the cu-
mulative demand in S}. This can be explained by the fact that the insider does
not want to add noise in the price formation of the second asset

4.2.1 Risk Neutral Insider

We assume that the utility function has the following form : U (z) = z. Now we
are able to compute the equilibrium using Lipster and Shiryaev theory [7]. In
fact, we can say that the insider prefers to split his strategy in two parts, one for
each assets without direct correlations. So an optimal strategy could be seen as
a classical approach of stochastic control with a Black and Scholes price in one
hand, and a Back approach for the second asset. We do not say here that this is
the only way to attain the equilibrium since we do not have the unicity of such
an equilibrium, however, such a strategy will be optimal, hence will constitute
an equilibrium. From now, let us assume that € is constant over time. We know
that the computations are slightly different when ¢ is not constant, but we refer
to Lasserre [6] for more details.



Let us define the following couple (H*, a*) :

* Fay N Yy
H* (1,77) = E (1 (8)) where@~]\/<m0+‘/me,Eo (1—t)>

1%
Q;

*

o, = €2 . +e2 -~

t 1 2,17%22 —1 _ _ >0 2
=V 5 h™* (0) —mo s§_1+a§_2Yt

where a}* is Fj-adapted and satisfies E (a}* | F;") = 0. Such a process a}*

exists. For example, a}* = 0 works. Let us define the vector \*
=117

Proposition 15 (H*, \*, a*) is an equilibrium. Moreover, we have the follow-

ing relation :
H(l,y)=h + 0
= m -
Y 0 8%71 8%72?/

Example 16 We suppose that h has the following form : h(x) = €%, which
means that v has a lognormal distribution. Then the price is :

= 2 1
mo+ e +3Z0(1-t)
H* (V) =e = VAEi+do

This is the form of a classical Black and Scholes’ price.

4.2.2 Risk Averse Insider

We now assume that the utility function has the following form : U (z) = —e™"".
From lemma 4.5, we can say that the insider still prefers to split his strategy on
the two assets. But, it need more computations in this case to show that the
price remains the same as in the total asymmetric information case. Let us focus
on the equation satisfied by H if the conditions of theorem 4.3 are satisfied.

Lemma 17 If conditions (i), (ii) and (iii) of theorem 4.3 are satisfied then
(H,\, j) is a solution of :

- Al o0H
0 = 9@-m (55 -nEat) g ) (16)
L (OH L (e 9 o
" ( ot + 2t7‘ </\€E /\8’(/12 + ne1,2 (51,1 +52,2) Bz, 8¢2
OH ([ 8j r0j n OH
7705152716% <651 a:m) tr (Ase 32y 90

10



Our goal is to solve such an equation. But as we saw in [6], the price can not
depend on the signal U, since the market maker does not observe the private
signal, hence if H satisfies such an equation, we will necessarily have

Al OH
)\_g -1 (5%72 +5§72) ES =0
hence, as A only depends on ¢, differentiating with respect to 1, we get
o _
op3
Now using (??), if we differentiate (??) with respect to 12, we obtain :

n 0°H

0 (17)

So, we can conclude that ﬁ% = q and H (t,v2) = Py + qi»2, where ¢

is a constant.

Remark 18 The function H is linear on ¢». As in [6], we can say that there is
no equilibrium if the signal v is not Gaussian. In the following, we assume that
v is Gaussian.

Let us define H*, \* and X* as follows :

T
L x5 (1)
y = (1’n(e%,2+e%,2)A; o) <1—t>+1>

where A3 (1) = ﬁ (77\/5%,2 +65,%0 + \/(7720)2 (ef2+e32) + 420)
H (t,97*) = mq + ¥7*

where U2* = [ X5 () dY?* and Y2 = X?* + 72
1 t v — mo — \1’2*
X = —— t t) Z, —5d

where 1(5(t 3 ) ( )
. e e (e 1)+ (t-1 0
e(t)=pn(l—-06-0t)— LOP 0 51— 72

(5-1) _
X(t)209—00P<(6 . 1) 5(10_t)>P—1

> PlexT

Proposition 19 (H*,\*, X*) is an equilibrium.

Remark 20 Concerning the second asset, the conclusion is exactly the same as
in the risk neutral case. However, we can see the influence of the second asset
on the strategy on the first asset. His strategy does not consist on the usual
strategy of this kind of portfolio optimization.

11



5 Conclusion

We show the existence of an equilibrium when the insider just has partial infor-
mation on the assets. Our results can be extend to a multivariate model where
there are d assets without private information and N assets with. For more
details about the technical methods, we refer to Lasserre [6]. In this paper, we
suppose that the noise trader’s demand is a Brownian motion, and not an Orn-
stein Ulhenbeck process as in the previous paper. We take this assumption to
simplify the computations, the equilibrium should still exist in such a case.

Appendix
Proof of Proposition 77 .
The state variables are X!, S',Z,¥ and W. If we note R =
_\T
(Xl, S Z, 0, W) , we know that the function J satisfies the Jacobi Bellman

inequation :

oJ
— +LpJ ) <0
i‘??(at+R>—

Their dynamics are as follows:

dX} = aydt+ p"dB;

is! = =3! ((u WAL Zdét)

dU, = Xa+ Ao+ A1Z)dt+ \(B+¢)dB,

dw, = <X§S§u + X}SIAZy+ (0 —H)aa — 2 (B+¢)" A%—Z)

+ (X} S/ + (v — H) 8*) dB;

with ¥ = (0,0) € M; > (R). We need to compute the expression % + LgJ :

12



%—Lt] +LgJ = %t] + BBJ a1 + S_J (s1pp+515b12) + 2—1/])\(044-140 + Aq2)
+% <x151,u+a:1312b12+ (W —H)ay — 3% (B + )T gZ)
+? (Ao + Ay2) + ;tr (66 %) + 151" (51")T %

55%22T2—i + ltr </\ B+e)(B+e) A g;2>
i ((mlz = H) ) (msS + (5 — H) 8)" %)

+tr 3125

82
> +tr <[31’ s 2T8x1881>

8%J o0°J
1,. 1,..T
+ir [ BA (B +e) 161/})-{—757“(6 5 8m162>

+tr

(

(

Eﬂl’ (1513 + (v — H) 8>) %)
82J

q

(

+tr

siZ(B+e)" >+tr<>\(6+s)aT 82‘]>
! 0s10¢ ooz

2
15 w1812+ (v—-H )BQ")T 0 J)

Hr 9200

+tr

3 onT 02
812 :Ulle-i—(v H)p ) 63166>

+tr <>\ (B+e) (zis1Z+ (0—H) 62’.)T %)

For convenience, we show the announced result in a particular case, for more
details, we refer to Lasserre [6]. We assume that the insider is risk neutral. We
are going to do something classical in this kind of problem, which consists to
assume that the function J has the following form when the agent is risk neutral,
J(t,ﬂ?l,Sl,’(ﬁ, ~) =w+ J(t,:ﬂl,Sl,’gZ}).

dJ a J %7 8% 9%

Hence, 5= =1 and 5= = = 5219% = DsiPE — DubE — = 0. So we can write

13



oJ oJ af oJ oJ
§+LRJ = 5 +8 - +8s (slu+51blz)+%A(a+Ao+Alz)
o] O0H
+o (Ao + Ar2) + (z1sip+ (0 — H) oy — B (ﬂ-I-E)T)\—
Dz Em
1 AW RN J e J
+5tr <55 W) 38" (B ) + 55y 557

1 a2j 1 T 092
+§t7" <>\ (B+e) (B+5) 61/J2> +ir (B 1% 61‘1681>
a2j BQJ

1, T

ir (WH)B axlazp) o (Slzg 651az>
a2j BQJ

T 1,..T

+tr (SlE (B+e) >‘6516¢> i <B c 61‘162>

02J
+tr </\ (B+e) €T8¢Bz>

We find the maximum with respect to as in using the argument that this max-
imum could not be infinite so necessarily :

a7
—A v—H)=0 A.18
e + (7 H) (A18)
With the same argument, we can say that if the maximum in a4 is finite, then
a7 a7
— M+ =—=0 A.19
o, T B, (A.19)

The main part of the proof is to show that necessarily 5 = 0, so we have to find
the maximum of the following quantity

2]
0y?

2] 1

T\OH 1 ﬁl (8) —+ tABBTA

oY
0%J 0%J 2]
T 1,. T 1,.
()\B A 2>+tr (6 512 awlaS1>+>\(ﬁ+a)B 50,00

L=-F>(F+e) A

o

8%J 0%J 0%J
T 1,..T T
r (leB A6318w> + tr (6 € —6:1:162> + tr <)\Bs 61/162)

Using (??) and (??), in differentiating them with respect to 9, we see that some
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terms of II collapse, so we get

. 1 v 1, o 02T
= =8 iTagg + 0 () Gr +g (Wﬂ Aaw)

2] 0%J
1, . T T
+tr ([3 518 8w1881> +tr (leﬂ /\8S18¢>

Then, differentiating (??) with respect to s;, we obtain :

/\

5y

8]
8s1 8¢2

N = g (8 )Tﬂﬂt (wTA

) +810'ﬂ2’1A2

Finally, recalling that H only depends on t and ¥, when we differentiate (?7)

with respect to s1, we get Bs a v = 0. Hence, the expression we have to maximize
is now :

—6 (8" )Ta—‘]+1t (AﬂﬂT)\ J)

2,. 0T
N 502

1/}

We switch the partial derivatives of H by those of J using (??) and (?7?), and
finally, we get a quadratic form in the coefficients of the matrix [ :

M= v(’ﬁ ‘3‘2 3,452 - 2 (3 )
61/)1 11 1,2 61/}2 2,1 2,2

It is quite clear easy that we have two conditions for the existence of a
maximum of the expression II which are :

927 825
A toz <0 (A.20)
161/11

a‘f

oz ="

In the case where those inequality are satisfied, the maximum of this expres-
sion is zero and this occurs if and only if :

Bi1=P12=P021=P5,.2=0

which means : 8 = 0. In any other case, the expression II has a infinite maximum
which means that no equilibrium could exist.
Proof of Lemma ?? Let us assume that (H, A, J, a*) satisfies the conditions
(i), (i) and (iii).

We first show the result in the risk neutral case, hence U (z) = . We assume
that the value function J has the following form :

J(tawlaslazaip:ﬂ;) = ﬁj+ j(t,:ﬂl,Sl,Z,’QZJ)

15



We have

oJ
—X=H-7v
oy ’
hence v
~ 2 H(1 -0
J(t,R):/ MdyQ_‘_A(t:ipl:Z:Slawl)
0 Az
But we also know that R R
)\ ﬂ+ﬂ —0
18¢1 8561 n
so we have :
DA Y2 1 9H DA
AM=— + A —— (¢ d — =0
16¢1+ 1/0 /\26%(,%,@1) Yt o
A DA Y2 1 9H
>\1a—1/}1(t,¢1,2’,81,w1)+a—xl(t,¢1,Z,S1,$1) ——>\1/0 ga—%(tﬂﬁlay)dy

We remark that the left hand side does not depend on 5, hence we take ) = 0
in the right hand side :

0A 0A
v(ta,(/}laslawl) )\1—(t,'¢11,81,$1)+—

81/}1 61’1 (t,¢1,81,$1):0

So finally we have :

Y2 1 9H

v(t7¢17¢2) o A_Qa—z'bl(tadjlay)dy:o

which means that necessarily : g—ﬁ (t,v1,y) = 0, hence H does not depend on
1. The proof for the risk averse case is slightly the same. Here, the utility
function is U (z) = —e~"® where n > 0. We assume then that the value function
has the following form :

J(t,x1,51,2,0,@) = — e~ MHi(tE1,51,2,9)

Hence, we can compute the partial derivatives of J

o]  0j

% = %JforUE{CUhSl,Zatﬂﬁ}
dJ

0w~ "

So conditions (i) and (ii) become :

a .
a—%M = n(-H)
v 9
18¢1 - 8561

16



We obtain exactly the same kind of equations as in the risk neutral case, hence
the conclusion is the same.
Proof of Proposition 7?7 This is a direct application of the fact that the
insider can choose to trade S} and S} separately. On one hand, the strategy
of a risk neutral agent on an asset such as S} can be everything. On the other
hand, we compute the price and the strategy a? as it was done in Lasserre with
the following system
do =0

{ dY? = aidt + &> -dB,

and we look for a strategy which has the form : of = §; (£,Y?) + 6> (¢, Y?) ©.

Proof of Lemma ?? We are looking for a particular form of the value function.
Actually, let us suppose that :

J(t,ml,sl,gb,ﬁ) = e nwtj(tzi,81,9)
j(lawlagla,(/}) =0
Hence, we can rewrite the derivatives.
aJ _ 8%J _ 27 8J j _
s =10 5= =0, 5, =3 ;theny—t,wl,sl,z,@b,

9%y _ (9% 0j 0j — —
Byou = (ayau By Du J when y = z1, 51, 2,9 and u = xy, 1, 2,%. The first

equation becomes : ai?pj A2 —n (v — H) = 0. The second equation remains the
same : 2L\, +3 BJ =0
The th1r(1ib equatlon of the previous system becomes :

0 = 9 + T (sip + 81b12) — 0 (18100 + 7151 3b12) (A.21)
+%A (Ao + A12) + 55%02 (Z—Zé + (;—;)2>
gj (Ao + A12) + ;tr (ASETA ((‘% + ai <ai)T>>
+%tr (55T (g—iﬁ + g <gi> >> + ;x%s%UQnQ
+ir (lesT)\ <3flg¢ + 686’]1 gi)) —nzs70° §j1
(e 2 o (sner (2 2100

T BQj aj aj Taj
tr (ASE <626@/} 0z 61/1)) tr (nwlsls 62)

Let us differentiate the first equation two times with respect to v

035 0’H

T WAL W
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2 .
Now, we remark that 851&1}2 = % = 0, since H does not depend on s; and

on z, and we differentiate (??7) with respect to 15, hence we get, by substituting
9% _ .
0Y20Y? *

A . n 02H 2 [(95\"
0 = B0, + = tr ()\55 A <_)\_2 907 +261/161/12 <%> (A.22)

dj 82]' T 82]'
+51 <tr (E )\651 61/161/12) —tr <17)\53712 5000,

r0j 0% )
+tr | dee’ =
! < = 0z 0YOPs

Then, we differentiate the first equation with respect to ¢ :

8% ., 98j _  OH
2500t T 280, "ot
9% OH N,
/\28¢28t —ﬂW‘FA—Q’?(U—H)

_ _noH X o 1 r( nPH & (95\"
0 = N 875+>\%n(v H)+2tr Age” A )\28¢2+28¢8¢2 B
025 aj dj 0%
v T YJ5 TZJ
+51tr< € Aaww) <651 w1n>+tr (Ase 628@/}81/}2)

; 0% (0i\" 0%
Now, our goal is to compute 5050, (—) . But we know that s —=1— =

O \ OY 0¢ 02
oH n ( 0 > ki _AL;_j
Loz — T However, we also know that = < A1 0T >

OH )
A2 Y | 2L o0 =\ L (-H)
by looking at the two first equations of the system. Hence,
82j ( dj > r 0 0
= dj OH 2~ OH
Opdps \ O Nadergs a0 H) g
Hence the equation becomes :
noH X\, n . 0*H
0 = ——+= —H)— ——tr e X
T v ACRE R s C i e
0j OH - 0H
+ner2 (€11 +€2,2) 7 ! - (el +e3,) (0— H) 57—
ox 8¢2 ’ ’

%) aj 0j
1 ICA TZJ
+s1tr <Es A " ¢2> ( 5 arm) +tr (Asg 3 §¢5¢2>
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So we get

_ _n(oH 1 7\ O°H (N, OH
0 = " ( e + 2tr (Ase >\31/J2 +n(w—H) 22 n (6172 +5272) 90n
+ne1,2 (61,1 +€2,2) D2 00 sitr <Es /\)\2 3¢> <8$1 211
dj n OH
_ TXJ Y
r (A‘% 92 Ay a¢> (A.23)

Finally, the equation given in the lemma is obtained by substituting ¥ by (o, 0).
Proof of Proposition 7?7 To show this proposition, it suffices to remark that
the insider prefers to trade the two assets separately. Hence the equilibrium
is just two equilibrium put together. On one hand, he trades on a asset with
asymmetric information, and we refer to [6]. On the other hand, it is a classical
stochastic control problem. The price process has the following dynamics

ast = S} ((u+ Sbo + Sb1 2,) dt + SdF, )

where p and ¥ are deterministic. For convenience, we defined pu = p + Xbg. So,
we need to know the dynamics of Z since it appears as a state variable

dZ; = edB;
Then the wealth process can be written :
d‘/t = Tt (,u + Ebth) dt + 7Tt0'dBt

where 7 is the amount in the first asset. The optimization problem can be solved
by a Bellman approach. We consider the function J

J (t,z,v) = sup (E (—efnvl | Zy =2,V = U))
mell

We know that J is solution of the Bellman equation

oJ 1 7027 oJ 02T 1, 0T\
ot + 2tr <E€ 82’2> +s1;p <7Tt (1Eb12) ov + e OvOz + 2™t B2 ) T

and the terminal condition is
VYo J(1,z,0) =U (v) = —e "

We assume that the function .J has the following form .J (t,v) = —e "0+i(5:2),
Hence the Bellman equation becomes

_ 051 o (0% 05057
0 = gD + 2tr (55 (822 + 55
+sup <_777Tt <,u + Xbi1z + EgT@> + 171.?02772)

0z 2
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with terminal condition Vz j(1,2) =0

. . . $hyz1+5eT 2
The maximum is attained for =} = %ﬁé So, we get

N 2
i 25 i9; T ,u+2b12+26T8—i
0 , 1 ((aa_a_ ))( %),

- _t —_—
ot + 2 ! 0z2  0z0z 202

Hence to have the optimal portfolio, we need to compute j. We remark that we
can simplify this expression by developing it :

1 25 1 1 0j
9 + -tr <€ET@> — — (u+ Zhy2)? (1 + Xby2) seT — g

ot 2 0z2 202 o2 0z

Using Feyman Kac formula, we can solved this partial differential equation
. Q 1 ! 2
j(t,z)=E [_F (L+3b1Zy,) du | Zy = 2]
t

where dZ, = edBY — 5eXT (u + b1 Z,) with B a Q Brownian motion. We
remark that under QQ, Z is an Ornstein Ulhenbeck process. Hence we are able to
compute explicitly the function j . Considering the remark we made, we have
that conditioning on Z; = z, we have

Yu >t Z, =e "W, / e qds +/ e~ dBO
¢ t

1 1
51,11) 81711)

where C' = Lt 1.2
51,2b1,1 61,251,2

that C is singular, so we have two cases to study.
(1) If§ = 8171bi1 + 81721)%’2 75 0, then

C = €1,1 bi2 1 0 bil €1,2
€1,2 _bil 0 0 bi2 —€1,1

B 5 0\ o
- o(30)r

(s—u)

) = LeXTSh and a = 5eXTp. We remark

thus, we can compute e

(s—u) 0
C(s—u) _ € -1
e =P ( 0 1 ) P

(ii) If § = 0, then C? = 0, hence e“~%) =T, + C (s — u)

We assume that § # 0, which seems the more credible assumptions since € and
b, are not correlated.

u U _§(s—u)
/ CWads = P < t © ds 0 ) P la
\ 0 1

P < % (eé(t_u) - 1) 0 ) P14

0 u—t
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hence, we can write

Yu € [t,1]
d(t—u) 0 1 (0(t—u) _ 1 0
Q — ] — € -1 5 (e ) -1
E[Zu|Zt—z]—P<< 0 1>P z-l-( 0 u—t P a
‘ (A.24)
In fact, we only need to know % to compute 7, so we focus on this computation
dj 9 1 /! )
— = —EY-— b, Z Zy =
o) = 2P g [ e+ Ihz) ) Z=

o ("o 1
= &[/t E [—20_2 (,LL-l-Ebl ) |Zt—z]du]

The last equality comes from the Fubini theorem for a nonpositive function.
But, we can show that EQ[— i (1 + $by Z,, Y du | Z, = 2] is a quadratic form
Wlth respect to z (it suffices to compute the first moments of a Ornstein Ulhen-
beck process). Hence, (u,z) = E%[—555 (u+ Sb1 Zy, ) du | Z; = 2] is continuous
on compact sets of the form [¢,1] x K, hence we can switch the derivative and
the integral which leads

/62 o L+ S0 2,) du | Z, = 2]Jdu

We are going to show that we can switch the conditional expected value and the
derivative. In fact, we need to show that the family % (Zy) | Z¢ = z is uniformly

integrable in some neighborhood of z. We know that % (Z,) = A+ BZ,, hence
af ! Q i !
E{ 5 (Zu)|Zi=2 =||A+ BE®[Z, | Z; =2]|| < 400 Vz' € B(z,1)

So, we can switch the derivative and the conditional expectation. By the way,
9 (2) = —Lpf” — 6672 where 6 = by is the first line of the matrix b;. Finally
we get :

0

1
&[EQ[——

1
5,2 (L + by Z,) du | Zp = 2]] = —;MeT —00TEV[Z, | Z, = 2]

by using (?7?), we get

0 1 2 1 7 T _C(t—u
oo By (S0 Z0) du | Zy=2]) = —— " — 99T

0z
—06TP< % (ea(tfu) _ 1) 0 >P_1a
0 u—t

To conclude, we see that
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where

A(t)=—1p" (1-1)—60"P ( a2

and B (t) = -7 P < s

Now, we are able to compute explicitly X}*

5 (D — 1)+ L (t-1) 0

0
1 (eé(t—l) _ 1) 0
0 1-¢ >

Pt
T
st

L1
X = p—ray (@ (t) +x (t) Zt)

where

p(t)=p(—-06—0t)— LOP

L(OtD — 1)+ (t-1) 0
0 3 (1-1)

X(t) = 08 — ofP ( (=) —1) 0 : ) p

0 s(1—t
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