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Abstract

We develop an axiomatic approach to decision under objective imprecision. The information is
described by a set of priors and a reference prior. We define a notion of imprecision for this
informational setting and show that a decision maker who is averse to information imprecision
maximizes the minimum expected utility computed with respect to a subset of the set of initially
given priors. The reduction of this set can be seen as a measure of imprecision aversion. This
approach allows us thus allows a lot of flexibility in modelling the decision maker attitude towards
imprecision. In contrast, applying Gilboa and Schmeidler (1989) maxmin criterion to the initial
set of priors amounts to assuming extreme pessimism.

Key words: decision making under uncertainty, set of priors, objective information.
Résumé

Nous proposons un approche axiomatique de la décision dans I'incertain avec une information
objective imprécise. L’information est représentée par un ensemble de croyances, associé a une
croyance de référence. Nous définissons une notion d’imprécision dans ce cadre, et montrons
qu’un décideur qui présente de l'aversion a l’égard de 'imprécision de ’information maximise
le minimum de l'espérance d’utilité, calculé par rapport a un sous-ensemble de 'ensemble de
croyances dont il dispose. Le degré de réduction de cet ensemble peut étre vu comme une mesure
de l'aversion & 1'égard de l'imprécision de linformation. Cette approche autorise un grand
degré de flexibilité dans la modélisation de 'attitude du décideur & ’égard de l'imprécision
de Uinformation, tandis que le critére maxmin de Gilboa and Schmeidler (1989), appliqué a
I'ensemble d’information initial revient & supposer un degré de pessimisme extréme.

Key words: décision dans I'incertain, ensemble de croyances, information objective.



1 Introduction

Ever since the contributions of de Finetti (1937) and Savage (1954) the subjectivist approach
to statistics and decision theory holds the view that probabilities do not “objectively” exist but
lie in the head of decision makers. These probabilities can hence at best be revealed through
choice behavior. Interestingly, economics has by and large adopted an opposite attitude and
retained von Neumann and Morgenstern (1947) approach, based on the idea that agents choose
among risky prospects, that is in situations where “probabilities objectively exist”: a wide spread
assumption is that agents share the same beliefs (e.g. the principal and the agent in incentive
theory) which are thus considered as reflecting “objective information”, or that agents have
enough data to come up with reliable estimate of some probability law of the evolution of some
parameter (e.g. dynamic macroeconomics). Game theory has adopted the Harsanyi doctrine
that difference in beliefs should be chased down to differences in information, or, in other words
that two agents with the same information should hold the same beliefs.

In this paper, we take the view that, in many decision problems, the relevant information
the agent has should be explicitly modelled, while allowing for more general form of information
than the precise probabilistic information assumed in von Neumann and Morgenstern (1947). A
gain from such an approach is that it makes it easy to compare the choice behavior of an agent
in a given information state with the same agent’s choice in a different information state. As an
example, consider a doctor having to do a diagnosis on a patient. The diagnosis and the ensuing
treatment could well be different according to whether the doctor has a long medical record about
the patient or has no information whatsoever about him. Thus, while the available actions (say
different treatments) are the same in these two situations, they still differ by the amount of
information the decision maker has. Another feature of this example is that, loosely speaking,
the doctor will most probably prefer to deal with the “known” patient rather than with the
“unknown” one, thereby showing a preference for acting in contexts in which information is of
higher quality. We thus model a decision problem as the choice of an act given an “informational
state”. We hence postulate that the decision maker has preferences over pairs (act, information),
with the idea that when comparing a given act in two distinct informational states, he’ll prefer
the situation in which the information is more precise.

We thus are left to define more precisely what we call an informational state. First, we
assume as usual that the sources of uncertainty can be captured by a set of states of nature.
Second, we concentrate our attention on situations in which the information can be represented
by a set of probability distributions over the state space, together with an anchor or reference
point. To illustrate this idea, take Ellsberg three-color urn experiment (Ellsberg (1961)), in
which the decision maker is told there are 30 Red balls and 60 Blue or Green balls in the urn,
according to the draw of a roulette wheel (with number from 0 to 60) that gives the number
of Blue balls. Then, the set of priors that is appropriate to model the available information is

simply the set of all probability distributions that place 1/3 on Red. The anchor of this set is



also rather naturally the distribution (1/3,1/3,1/3). Our main modelling assumption, that the
decision maker has preferences over pairs (act, information) would be in this example to assert
that the decision maker is able to compare say “betting on Blue when the information is as
above” versus “betting on Blue when the composition of the urn is known to be (1/3,1/6,1/2)”.
This notion of imprecise information represented by a set of priors and an anchor is the same
as the notion discussed in Hansen et alii (2001) and Wang (2001). Hansen and Sargent (2002)
thus provide another instance in which this modelling approach is natural, reflecting “agents’

fear of model misspecification”:

(...) the agent regards the model [for macroeconomists, a discrete time model is a
probability distribution over a sequence of vectors] as an approximation to another
unknown “true” model. The agent thinks his model is a good approximation in
the sense that the data are generated by another model that belongs to a vaguely
specified set of models near the approximating model. Hansen and Sargent (2002),

Introduction to Elements of Robust Control and Filtering for Macroeconomics.

With this setting in place, we suggest a partial order on the sets of priors with a common
anchor that reflects the degree of uncertainty, or imprecision in the information, the decision
maker faces. The definition of this order, independent from the agent’s preferences paves the
way towards a theory of uncertainty aversion in which uncertainty has an objective component.
Although the setting is restricted to situations that can be represented through a set of priors
and an anchor, we believe that the approach we develop is a first step towards a definition of
uncertainty aversion based on objective characteristics, in the same way that risk aversion is
based on second order stochastic dominance. The order we suggest is now described. Intu-
itively, assuming that the information available to the decision maker can be expressed by a
set of priors, the “size” of this set seems to be a good candidate to measure the imprecision
of the information: if the information available enables the decision maker to reduce the set
of compatible probabilities, then one can say that imprecision has objectively decreased. To
be able to translate this reduction of uncertainty in choice behavior, one needs to restrict the
comparison between families of probabilities that have a common anchor. As in situations of
risk in which the definition of risk aversion is based on the comparison of two differently spread
distributions that have a common mean, our definition of aversion towards imprecision relies on
the decision maker comparing two sets of probabilities that have the same anchor.

In our main theorem we establish that a decision maker exhibiting aversion towards impreci-
sion acts as if evaluating an act by the minimum over a revealed set of probability distributions
of its expected utility. The revealed set of distributions is a subset of the set of objectively ad-
missible probability distributions. More precisely, we reveal a coefficient of pessimism which is
the degree to which the decision maker keeps all the objective distributions. An extremely pes-

simistic agent will keep the entire set, that is the revealed set of priors will be equal to the initial



set of admissible priors. Conversely, a decision maker whose choices are not be affected by the
imprecision of the situation reduces any prior set of probability distributions to the maximum
and ends up acting only on the basis of the reference distribution. We then further characterize
the revealed set of priors. Under somewhat stronger axiom, it is shown that is consists of a
uniform shrinkage or contraction of the initial set around its anchor. The coefficient of this
contraction can then be taken as an index of pessimism.

Why might our result be of interest? Our main contribution in the paper is to provide a
link between the information available to the decision maker and his revealed set of beliefs. As
we mentioned, the decision criterion we axiomatize is less extreme than taking the minimum
expected utility over the entire set of priors compatible with the information. This answers
a criticism often formulated against the multiple prior maximin type of approach that it is
strongly biased towards extreme conservatism of the decisions selected. Take for instance the
global warming problem. Scientific evidence has somewhat restricted the set of possible values
for important parameters, without being able, at this stage, to actually assess what are the
exact effect of emission of various gas on the average temperature. Taking this evidence into
account and applying the maxmin expected utility approach would then “uniquely” determine
the optimal (conservative) environmental policy, leaving no room for any influence of the society
attitude towards uncertainty. In our setting however, the attitude towards imprecision of the
scientific evidence is an important element that, together with the evidence itself, dictates the
choice of the optimal environmental policy. Different societies, with different degree of impreci-
sion aversion, will choose different policies. More generally, we believe that modelling scientific
uncertainty requires the type of approach formulated here, as it seems difficult to deal with such
uncertainties in a probabilistic fashion: what does it mean for a scientific theory to be valid with
probability 1/37 In approach on the other hand, one can associate a prior with a theory (the
reference prior being the dominant theory at the time) and simply consider all theories (that
have passed some minimal adequacy tests) as possible.

Another important consequence of the approach followed in the paper is to be able to perform
comparative statics exercise, in which the imprecision of the information has changed. This is
indeed an important advantage over a purely subjectivist approach. Much of the results in the
literature on portfolio choice (under risk) for instance are based on some comparative statics on
the riskiness of the situation or on the degree of risk aversion. An application of the results of this
paper would be precisely to revisit some of this literature assuming imprecision. Interestingly,
the setting developed might provide some insights into, for example, the revision of the optimal
composition of a portfolio when market uncertainty increases or decreases.

Relationship with the literature. The Ellsberg experiments (Ellsberg (1961)) have es-
tablished that decision makers behave differently when facing a problem with uncertainty than
when facing a problem under rigk, i.e., in which a sharp probabilistic information is given. This

observation has led to a whole strand of literature that axiomatizes models of decision under



uncertainty that can represent the decision maker’s aversion to uncertainty (Schmeidler (1989),
Gilboa and Schmeidler (1989), Jaffray (1989)). Most of this literature follows the lead of Savage
(1954), in that the axiomatizations proposed are cast entirely in behavioral terms: the revealed
non-probabilistic beliefs are entirely subjective and are not explicitly related to any prior “ob-
jective” information . More recently, Epstein and Zhang (2001) go one step further and define in
purely behavioral terms what it means for an event to be considered “uncertain” by a decision
maker. It is interesting to note that the motivation on which all these constructions rest —the
Ellsberg experiments— is one in which the objective information given to the decision makers
should clearly identify the set of beliefs compatible with that information.

A few exceptions to this subjectivist approach of uncertainty have to be mentioned. Jaffray
(1989) assumed that the information the decision maker has can be represented by belief func-
tions and that the decision maker has preferences over such object (rather than mere lotteries as
in von Neumann and Morgenstern (1947)). Imposing an independence axiom on these objects
he obtained a representation based on the linear combination of a minimum and a maximum
of expected utilities. Another approach is based on the use of two-stage lotteries. Segal (1987)
shows that relaxing the reduction of compound lotteries axiom provide an explanation for the
Allais and Ellsberg paradoxes. In Segal (1990), rank dependent expected utility is axiomatized
via choice behavior over two-stage lotteries.

As mentioned above, Handsen and Sargent (2002) develop a model of robust control theory
where the reference model (a probability distribution) is given but not precisely known to the
agent, who therefore considers possible a set of priors around this reference point. Specifically,
agents have an estimation of the “true” model and, as econometrician would do, consider a
range of values around that estimate as possible, to take into account the possibility that the
true model is in fact different from the estimate. They hence propose a way to deal with ob-
jective information that might not be as crisp as a probability distribution but, rather, a set of
probability distributions together with a baseline scenario that is given by a probability distri-
bution. Hence, our setup is very similar to theirs. They however do not provide an axiomatic
foundation of the decision criterion retained. This axiomatization is done in Wang (2001) who
studied the link between this theory and Gilboa and Schmeidler (1989) representation. In doing
so, he axiomatizes the same functional form as in Gilboa and Schmeidler taking their set of
priors as objectively given: the objective of the agent is then to maximize the minimum of its
expected utility computed with all the probability distributions in the set of (objective) priors.
This model then has the feature that agents are extremely averse to the imprecision in their
probabilistic information. Indeed, taking the worst possible scenario to evaluate each act might
be a bit too extreme in many circumstances. The axiomatization of Hansen et alii (2001) crite-
rion (based on a principle of minimization of entropy) in Wang (2001) is also based on the same
idea of extreme uncertainty aversion. Hence, compared to Wang (2001), our approach uses a

setting that he called “multi-prior with a reference point” and develops within this setting an



axiomatization & la Gilboa and Schmeidler (1989) that is weaker in the sense explained above.

Organization of the paper. The paper is organized as follows. In section 2, we introduce
our informational setup, and define a partial order on the imprecision of information, indepen-
dent of the decision maker’s preferences. In section 3, we introduce a usual choice theoretic
framework that we link with our informational setup. A first step is then to simply recast
Gilboa and Schmeidler (1989) theorem in our setup, to obtain a first representation theorem,
in which the revealed set of priors is explicitly linked to the prior information. In section 4,
we take advantage of our informational setting and propose an axiom called “aversion towards
imprecision” that simply states that agents are averse to increases in the imprecision (defined
in section 2). This allows us (together with a few other axioms) to replace the “uncertainty
aversion” of Gilboa and Schmeidler, to come up with our main representation result. Next, we
provide a further characterization of the notion of pessimism in our setting. The last section

contains some concluding remarks. Proofs are gathered in an appendix.

2 Sets of priors with an anchor

In this section, we set up our general framework for representing uncertainty. As mentioned
in the introduction, we assume that uncertainty is represented through a family of probability
distributions together with a reference prior (see Wang (2001)). We’ll use interchangeably
the term anchor and center for this reference prior. This anchor is a prior that belongs to
(convex hull of) the given set of priors and has a particular salience in the decision problem
at hand. The decision problems the decision maker face can hence be decomposed in two
components: first the possible action he might take and, second, the available information
about the sources of uncertainty. In this section we concentrate on this second aspect. Although
unusual in the literature, this approach is rather intuitive to represent, for instance, Ellsberg

type of experiments as well as changes in the quality of the available information.

2.1 A general setting and some examples

We start with a general description of uncertainty. Throughout the paper the state space S will
be assumed to be equal to N. Let ¥ = 2N and let A(S) be the simplex on S. We represent
uncertainty via a closed set of possible probability distributions over S, that is, as a closed
subset P of A(S). This set consists of all the probability distributions that are compatible with
the available information. We consider finite settings in the sense that the number of relevant
states of nature for a given problem is finite: the set S(P) = U,cpSupp(p) is finite. Let C be
the set of set of priors having this property (i.e., closed sets of priors with finite support).

On top of this set of priors, the information available about the situation at hand allows
one to identify a reference prior, i.e., a probability distribution over S that is (explicitly or by

default) the baseline scenario. A situation will be the given of a pair [P, c| of a set of priors in



C, together with an anchor, such that ¢ € @(P), where ¢6(A) is the closed convex hull of A for
any set A. Let § be the set of all such possible situations.

To start with well-known examples, consider Ellsberg’s two experiments, which are the usual
motivation for studying models of decision under uncertainty that cannot be reduced to decision

under risk.

Example 1 (Ellsberg’s two color urns) Consider a decision maker facing two urns containing
a hundred balls (either black or white). He’s told that there are 50 white balls and 50 black balls
in the first urn, while the proportion of each color in the second urn is unknown. In both cases
there are two states of nature: “the ball drawn is white” and “the ball drawn is black”. The
information about the known urn can be represented by the single probability measure (.5,.5). A
natural description of the second urn is to consider that all probability distributions over black
and white are possible, i.e., the set of priors is the entire simplex. The distribution (.5,.5) is

also a natural anchor for this problem

Observe in particular that the typical Bayesian case (e.g., the urn with a known proportion
of white and black balls in example 1) is a particular case, in which the set of priors reduces to

a single probability distribution.

Example 2 (Elisberg’s three color urn) Consider a decision maker who has to bet over the
color of a ball drawn from an wrn that contains 30 red balls and 60 green and blue balls in
unspecified proportions. The decision maker hence knows that Pr(Red) = %, and nothing else,
which constitutes the set of priors compatible with the available information. The center of this

set is the distribution (1/3,1/3,1/3).

In the two examples above, it seems natural to appeal to symmetry considerations to deter-
mine the anchor of the set of priors. However, this is not necessarily the case. The following
example captures the idea, developed by Handsen and Sargent (2002) that agents might only
have estimates of some important parameters (the law of motion of the system in a macroeco-

nomic setting).

Example 3 (Statistical inference) Consider the common practice of sampling a given population
to assess the probability p of appearance of a particular feature in this population. The common
practice in statistics is to consider as “possible” all the parameters value that fall into the 95%
confidence interval around the estimate of p. Thus, the set of priors is this interval and the

anchor the estimate of p.

Another example that can be treated in our example is the case of two-stage lotteries. Segal
(1987) in particular argued that both Allais and Ellsberg paradoxes could be explained through

a relaxation of the reduction of compound lotteries axiom. His setup can be seen as a particular



case of ours, since he works with second order probabilities. Thus, our set of priors can be taken
to be the support of this second order distribution and the anchor is simply the mean of the
distribution.

Finally, consider the case in which the decision maker asks their opinion to different experts,

who come up with different assessments of the situation.

Example 4 (Aggregation of expert’s opinions) Assume the decision maker asks two equally
reliable experts to assess the probability of occurrence of a given event. The first expert comes up
with the evaluation (1,0) (the event will occur with probability 1) while the second expert comes
up with the evaluation (0,1) (the event will occur with probability 0). The decision maker,
acknowledging the disagreement of these two experts will keep these two distributions as possible.
The center of this set might depend on the reliability of the experts. If both are equally reliable,
the center is simply the distribution (1/2,1/2).

This example can be extended to models representing situations in which scientific theories
compete for explaining a particular phenomenon. Scientific theories are then viewed as proba-
bility distributions over a state space. The set of priors therefore amounts to the set of theories

and the anchor is then the dominant theory, challenged by the new ones.

2.2 Comparison of imprecise information

The representation of uncertainty through sets of priors has a direct implication for the com-
parison of two situations. Very naturally, a situation will be considered more imprecise than an
other if the set of probabilities considered possible in the second situation is included in the set

of probabilities in the first situation.

Definition 1 Let P, P2 € C. The set P1 C A(S) is more imprecise than the set Pz if co (P1) 2

This definition calls for several comments. First, the “amount” of imprecision in a given
situation depends on the size of the family of probabilities compatible with the information.
However, mere set inclusion is not enough in our view. Indeed, our motivation here is to
characterize an objective notion of imprecision, with the idea that a decision maker will always
prefer a given decision in the least imprecise situation. Hence, our definition of what it means
for a situation to be more precise than another has to be guided by what one would intuitively
consider as the choice behavior of a decision maker in more or less imprecise situations. In other
words, we need to define the notion of “more imprecise than” keeping in mind the type of choice
behavior we want to analyze. Thus, although it seems sensible to say that the situation in which
the decision maker knows that there are 1 white and 99 black balls in an urn is more precise

than the situation in which the decision maker has no information whatsoever on the proportion



of white and black balls, it seems also sensible to assume that the decision maker would prefer
to bet on white in the unknown urn rather than in the known urn. This gives rise to a more

specific definition of “more imprecise than”:

Definition 2 Let P, Py € C and c1,c0 € A(S). The situation [Py, c1] is a center preserving

increase in imprecision of the situation [Pz, ca] if
1. P1 is more imprecise than Pa, i.e., €6 (P1) 2 o (P2).
2. C] = Ca.

This definition captures the intuition that an urn with 100 balls, in which it is known that
there are at least 20 white and 20 black balls is more precise than an urn whose composition is
unknown (but for the fact that it is made of black and white balls). Another intuitive feature
that is embedded in our definition is slightly more subtle. Consider Ellsberg’s experiments again.
In the two color urns experiment, consider an experiment in which there are two balls in each
urn. The situation can be described by the set P; = {(1,0),(0,1)} of probability distributions
over {white, black} and center (1/2,1/2). Now consider the same story, but with three balls in
each urn. The set of compatible priors is P2 = {(1,0),(2/3,1/3),(1/3,2/3),(0,1)} and its center
is (1/2,1/2). Intuitively, the imprecision of the two situations are the same, as our intuition
tells us that the number of balls is immaterial here, and indeed our definition asserts precisely
that these two situations are identical as far as imprecision is concerned, since the convex hull
of the two sets coincide and their centers are identical.

We define now the notion of a contraction of a situation, which will be used in section 3 to
exhibit the revealed beliefs of the decision maker from the objective data. The contraction of a

situation corresponds to a center preserving decrease in imprecision.

Definition 3 For all [P,c| € S and o €]0, 1], call the a-contraction of [P, c] the situation [P%, c]
with P* = {p* € A(S)|p* =ap+ (1 — a)e,p € P}.

To illustrate the notions of uncertainty and contraction as defined above, consider Ellsberg’s

three color urn again.

Example 5 (ezample 2 continued). We compare here the original situation (no information
on the proportion of blue and green balls) to the situation in which the information is that there
are at least 20 green balls and 20 blue balls, the remaining 20 being either green or blue. More
precisely, let pr, pg, and pp denote respectively the probability of drawing a red, green, or blue
ball. Then, Py = {p € A({R,G,B})|pr = 1/3} and ¢; = (1/3,1/3,1/3) while Py = {p €
AR, G, BY)lpr = 1/3,p(G) = 2/9,p(B) = 2/9} and ¢; = (1/3,1/3,1/3).

Clearly, [P1,c1] is a center preserving decrease in imprecision of [Pz, c2]. It is also easy to
show that [Pz, c2] is a 1/3-contraction of [P, c1).

Graphically, this can be represented in the simplex as follows:



The particular form of contraction we defined amounts to a reduction in imprecision.
Lemma 1 Let [P,c] € S. Then, [P*,c] is a center preserving decrease in imprecision of [P, .

With the description of the informational environment in place we can now turn to the

modelling of choice behavior and preference representation.

3 Maxmin expected utility revisited

We now turn to the description and representation of a decision maker’s preferences in a situation
of uncertainty. In this section, we develop a decision making setup in which we model explicitly
the decision maker’s imprecise information and the use he makes of it. We first introduce our
general decision theoretic setting and then recast Gilboa and Schmeidler (1989)’s analysis in our

terms, thus relating the revealed set of priors to the available information.

3.1 Setup

As Schmeidler (1989), Gilboa and Schmeidler (1989), among others, we use the framework of
Anscombe and Aumann (1963). This is mostly for the sake of simplicity, as it enables us to
build on their representation theorem. Let X be a set (the set of outcomes) and let Y be the set
of distributions over X with finite supports (roulette lotteries).We recall that S = N is the state
space, and ¥ = 2¥. An act f is a mapping from S to Y. We denote by A the set of acts (horse
lotteries). Finally, let k, be the constant act that gives the distribution y € Y in all states, and
A€ the set of constant acts. We denote 9, the lottery giving x € X with probability one.

We now describe the decision maker’s preferences in the setup we introduced, thus taking
into account explicitly the probabilistic information (that could be imprecise) the decision maker
has when he takes a decision. The decision maker’s preferences is a binary relation > over A x S,
that is on couples (f,[P,c]). As usual, > and ~ denote the asymmetric and symmetric parts,
respectively, of > . In Ellsberg’s two urns example, the preference of the decision maker to bet
on, say, Black in the known urn rather than on Black in the urn with an unknown proportion
of black and white balls would be written: (f, [P1,c1]) = (f, [Pz, c2]) where f is the act “betting

3 3

on Black”, P; = {(1/2,1/2)} = ¢; and P, = A({black, white}) and ¢z = ¢;.



3.2 An extension of Gilboa and Schmeidler’s multiple prior representation

We start with an extension of the multiple prior model of Gilboa and Schmeidler (1989) taking
into account the information given to the decision maker. The following six axioms are mere

restatements of axioms proposed by Gilboa and Schmeidler (1989) in our setup.
Axiom 1 (Weak order) = is complete and transitive.

Axiom 2 (Certainty-Independence) For all f,g € A, h € A%, [P,c € S, a €]0,1], (f,[P,¢]) =
(g: [pc]) And (O‘f + (]— - O‘)h’: [PC]) - (O‘g + (]— - O‘)h’: [P C])

Axiom 3 (Continuity) For all f, g, h € A, and all [P,c] € S, if (f,[P.c]) = (¢,[P.¢]) =
(h,[P,c]), then there exist o and 3 in |0,1] such that (af + (1 — a)h,[P,c]) = (g9,[P,c]) =
(ﬁf + (]— - O‘)h’ [P C])

Observe that > induces a preference relation tfp » on Y which is simply the restriction of

= on A° X {[PC]}

>

Axiom 4 (Monotonicity) For all f,g € A, and all[P,c] € S, if f(s) i%’,c; g(s) for alls € S(P)
then (£, P, ) = (0, [P, ).

Axiom 5 (Non-degeneracy) For all [P,c] € S, there exist f,g € A such that (f,[P,c]) =
(g:[P.<])-

Axiom 6 (Uncertainty aversion) For all f,g € A, [P,c] € S, and all o €]0,1[, if (f,[P,¢]) ~
(9:[P.cl) then (af + (1 —a)g.[P,c]) = (. [P.d).

Gilboa and Schmeidler have proved that Axioms 1 to 6 hold if, and only if, for all [P, ¢] there
exist an unique (up to a positive linear transformation) affine function Upce Y — R, and an

unique, non-empty, closed and convex set Fjp . of probability measures on 25, such that for all
fig€ A, (f,[P,c) = (9,[P;c]) if and only if:

min uppe o fdp > min /up-ogdp.
Pe]:[’/’,c]/ [Pre PEF[p ) [Poc.

However, this result falls short of a representation theorem in our setup since it considers only
a given [P, c]. Our setup hence calls for an extension of Gilboa and Schmeidler’s axioms, to be
able to compare acts in possibly different states of information, i.e., in situations characterized
by different degrees of imprecision.

The first new axiom we introduce requires some further definitions. The aim of this con-
struction is to ensure that the only relevant information upon which the decision maker is acting

is the set of induced probability over outcomes and not the states of the world themselves.
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For any ¢ onto mapping from S to § (i.e ¢(S) = 5), for any f € A, we say that f is
w-measurable if f(s) = f(¢) for all s,s" € § such that ¢(s) = p(s). If f is g-measurable, define
f? by f#(s) = f(s') where s’ € p~1(s) for all s € S.

For any ¢ onto mapping from S to S, for any p € A(S) and [P,c] € S, define p¥ by
p¥(s) = p(p1(s)) for all s € S and P¥ by P¥ = {q € A(S)|qg = p¥,p € P}. If ¢ is a bijection,
note that for all p € A(S), there is a unique ¢ € A(S) such that ¢¥ = p.

Definition 4 (Equivalence) For all f,g € A, [P1,c1],[P2,c2] € S, (f,[P1,c1]) and (g, [P2;c2])
are equivalent if there exist @1 and o two onto mappings from S to S, such that f is p1-
measurable, g is po-measurable, P{' = PY*, ¢ = ¢#2, and f¢' = g¥2.

In particular, remark that if f is p-measurable, then (f, [P, ¢]) is equivalent to (f¥, [P¥, c?]).

3

Example 6 Consider the acts f and g defined by f(1) = 1 and f(s) = 0 for s > 2 and
g(1)=¢g(2) =1, and g(s) =0 for s > 3. Consider P1 = {p € A(S)|p(1) = .5, p(2) +p(3) = .5}
and ¢ = (1/2,1/4,1/4) on the one hand and P> = {p € A(S)|p(1l) +p(2) = .5, p(3) = .5}
and cg = (1/4,1/4,1/2) on the other hand. It is easy to see that (f,[P1,c1]) and (g,[P2,c2])
are equivalent. Indeed, define p1: S — S by p1(1) =1, p1(2) = p1(3) =2 and p1(s) = s — 1
for s > 4 and w2 : S — S by pa(l) = v1(2) = 1 and wa(s) = s — 1 for s > 3. Then,
it is straightforward to see that f is p1-measurable, g is pa-measurable and that P = P32,
&t =5, and O = gen.

The next axiom states that the decision maker is indifferent among two equivalent represen-

tations of a couple (act, situation).

Axiom 7 (Equivalence indifference) For all f,g € A, [P1,c1],[Pasc2] € S, if (f,[P1,c1]) and
(9, [P2; ca]) are equivalent then (f,[P1,c1]) ~ (g, [Pa2;ca]).

This axiom implies in particular that for constant acts, the statistical information given does

not matter, as shown in the following lemma.

Lemma 2 Aziom 7 implies that for oll f € A°, for all [P1,c1];[P2,c2] € C, (f,[P1,c1]) ~
(f:[P2; c2])-

Let fs(p)g denote the act that gives f on S(P) and g on S\S(P). The following axiom
states that what happens outside of the “support of the set of priors™ (i.e., outside of S(P)) is

irrelevant for the decision maker.
Axiom 8 (Irrelevant states) For all f,g € A, [P,c] € S, (f,[P;c]) ~ (fs()a: [P: )

We can then state a first extension of Gilboa and Schmeidler’s (1989) result.
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Theorem 1 Azioms I to 8 hold iff there exists an unique (up to a positive linear transformation)
affine function u: Y — R, and for oll [Pi,¢;] € S, there exists a unique, non-empty, closed and

convez set Fip, ., of finitely additive probability measures on 25 such that:
1. Forallp € Fipe, p(S(P)) =1,
2. For all ¢ onto mapping from S to S, Fipe o = {pﬂp € f['pyc:},

and such that for oll f,g € A, (f,[Pi,cil) = (9, [Py, ¢4]) iff:

min /uofdpz min /uogdp.
PEFIP; 4] PEF[P; c;]

In this representation theorem, JF; is the revealed set of probabilities associated to the in-
formation [P;,¢;]. Note that the revealed family does not come with an anchor. To illustrate
this theorem, go back to Ellsberg two-urn experiment. In the known urn, our representation
result forces the revealed beliefs to be equal to the probability distribution (.5,.5). In the un-
known urn, the revealed family can be any family of probability distributions over the state
space {black,white}. For instance, it could be equal to {(p,1 — p)|3/4 > p > 1/4}, or to
{(p.1 =p)|2/3=p=>1/2}.

This theorem provides a representation of preferences that has the advantage of being more
flexible than Gilboa and Schmeidler (1989) result applied to objective sets of priors as in Wang
(2001). Indeed, the decision maker behaves as a maxmin multiple prior, but not necessarily with
respect to the entire family of probability distributions.

Finally, the theorem rests essentially on axioms that are similar to the ones in Gilboa and
Schmeidler (1989). In particular, we used their uncertainty aversion axiom. However, the
machinery we put in place in the previous section was precisely designed to be able to replace
this axiom, based on the mixture of acts, by the comparison of two situations that can be ranked

according to our (partial) order of “more imprecise than”.

4 A representation theorem for imprecision averse decision mak-
ers

This section contains the main result of the paper. We build on the previous theorem in which we
now replace Gilboa and Schmeidler’s axiom of uncertainty aversion by an axiom that describes
the decision maker aversion towards increases in the imprecision of the information at hand. In
order to prove our theorem we however need to add a few other axioms, that require defining

some operations on sets of probabilities, to which we now turn.

4.1 Replication and set mixture

We define here two notions, namely that of replication and of set mixture that will prove useful

in the sequel.
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Definition 5 (Replication) Let [P,c] € S, a € [0,1], and 8" C N such that S'NS(P)=10. Let

3

@ be a bijection from S to S such that (S(P)) = S'. The (a,p)-replication of [P, c| denoted

[73](%&79&):6%79&)] is given by:

p](%a,w) ={gec A(SP)US)|lg=ap+ (1 —a)p¥,pc P}

and
cgg’@ =ac+ (1 —a)c¥

In the definition, ¢ = ap + (1 — «)p¥ is the probability distribution on S(P) U S’ defined by
q(s) = ap(s) if s € S(P) and q(s) = (1 — a)p¥(s) if s € §.
Note that 73](%1’@ =P and 73](%0";) = P,

Example 7 Consider an uwrn with one ball, that could be black or white. Consider the “repli-
cation” of this urn, with one ball that could be red or green. Replication could be thought of as,
for instance, taking the initial urn, painting the ball in red if it was originally black or in green
if it was originally white. Define ¢(B) = R and (W) = G. Then the 1/2-replication is the
probability density that puts weight 1/2 on the two events (B, R) and (W, G) and zero elsewhere.
It corresponds to the description of the urn that is composed of putting together the two urns

described.

The next operation on sets of probability distributions we introduce is the mere mixture of

probabilities in the set.

Definition 6 (Set mizture) Let [Py, ¢;], [Pj,c;] € S, and e € [0, 1], the a-mixture of ([P;, ¢i] , [Py,

>

3

denoted P](\?’i’j ) cg\?’i’j ) , 18 given by:

Pir™ = {qg € AS(P)US(P)g = api + (1 — a)p;,pi € Pi,p; € Py}

and

cg\i’i’j) = ac; + (1 — a)c;
We will also sometimes write Pﬁ’i’j),cg\?’i’j)} = a[P;, ¢i] + [Py, ¢j)-

Remark 1 A particular instance of set mizture, that will be heavily used in the sequel, is the
mizture of [P,c] with [P¥,c¥¢]. We will denote it [P](\?’(;),CS@’@}.

1t is obuvious to check that the center of the replicated family is the same as the center of this
mized family, i.e., cg™ = ¢,
Example 8 Consider an urn with a hundred balls that could be black or white and another urn
with o hundred balls that could be red or green. The 1/4-mizture is situation obtained by building

an urn by taking 25 balls from the first wrn and 75 from the second urn.
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The next lemma establishes that the set mixture operation yields a situation that is less

precise than the situation obtained wvia replication.

Lemma 3 Let[P,c] € S and o € [0,1]. Let  be a bijection from S(P) to S', with S'NS(P) = 0.

Then, |Py" ey is a center preserving increase in imprecision of [Pp ", cp’"’]

This lemma, establishing that the replication operation decreases imprecision compared to
the mixture operation, is at the heart of our next representation result, based on a form of
the uncertainty aversion axiom of Gilboa and Schmeidler (1989) that is entirely based on the

comparison of the same act in two different informational environments.

4.2 Representation of imprecision averse preferences

Our next step is to replace Gilboa and Schmeidler’s axiom of uncertainty aversion. Indeed,
there is a natural objective notion of uncertainty aversion in our setup: if a situation becomes
more uncertain (in the sense of “center preserving increase in imprecision” as defined above), an
uncertainty averse decision maker will prefer any given decision in the less uncertain situation
to the same decision in the more uncertain situation. As it turns out, this reformulation of
uncertainty aversion, that we name “imprecision aversion” or “aversion towards imprecision”,
encompasses Gilboa and Schmeidler’s notion of uncertainty aversion provided some other natural

axioms.

Axiom 9 (Awversion towards imprecision) For all f € A, [P1, 1], [Pz, c2] € S such that [Py, c1]

3

is a center preserving increase in imprecision of [Pa, ca], (f,[P2,c2]) = (f;[P1,c1)).

>

Remark 2 Aversion towards imprecision only compares situations with the same anchor (i.e.,

Ccl = C2}.

An imprecision neutral averse decision maker is such that for all f € A, [P1,¢1],[P2,¢c2] €S

such that [Py, ¢1] is (center preserving) more imprecise than [Pa, ca|, (f,[P1,c1]) ~ (f; [Pz, c2]).
For instance, in the three-color-urn example, an imprecision averse decision maker would prefer
to bet on blue when it is known that the proportion of blue balls is 1/3 than betting on blue
when the only information is that the proportion of blue balls is anything between 0 and 2/3,
while an imprecision neutral decision maker would be indifferent between these two bets.
Before introducing two further axioms, consider the following example, in which we illustrate

how a decision maker “should” react to replication and mixture operations.

Example 9 (Replication and mizture)

Consider a decision maker facing two urns containing each a hundred balls. He is told that
there is an unknown proportion of black and white balls in urn 1, and an unknown proportion
of red and blue balls in urn 2. The decision maker is indifferent between betting on black in urn

I or on blue in urn 2.
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o The mizture story: urn 3 is built by putting together all the balls of urn I and in urn 2.

Urn 3 is clearly an %—mixture of urns 1 and 2. Hence, according to axiom 10 below, the
decision maker is indifferent between betling on black and blue in wrn 3, betling on black

in urn 1 and betting on blue in urn 2, which seems to be a sensible choice.

o The replication story: the decision maker is told that in fact, there is exactly the same
number af black balls in urn 1 as the number of red balls in wrn 2. This new information
does not modify his indifference between betting on black in urn I or on blue in urn 2. All
the balls in urn 1 and 2 are now put together in urn 4. Consider the following bet: a ball is
drawn in urn 1 and whatever the color, a non biased coin is tossed; the decision maker wins
if the coin lands on tails. The decision maker is indifferent between this last bet and betting
on black and blue in urn 4. According to Gilboa and Schmeidler’s uncertainty aversion
aziom, the decision maker should prefer the coin toss to the initial bets (black in urn 1 on
the one hand and blue in urn 2 on the other hand). Urn 4 is clearly an %—replication of
urn 1 (urn 2 being itself o 1- replication of wrn 1). The last bet correspond to an ex post
randomization. The idea is hence that ex post randomization can be equivalently described

by replication.

The two following axioms capture the intuition we had about the decision maker preferences

about replication, mixture, and randomization.

Axiom 10 (Mizture independence axiom) For all [Py, ¢;) € S, i = 1,2,3 such that (S(P1) U S(P2))N
S(P3) =10, for all o €[0,1), and for all f,g € A such that f(s) = g(s) for all s € S(P3),

(f:[Prea)) = (g [P cal) & (£ 1P, 30) = (. P, ™)

Recall that in our setup, the decision maker is an expected utility maximizer in situations of
risk (i.e., whenever evaluating a lottery). The mixture independence axiom thus expresses the
fact that an ex ante randomization among different situations does not have any bearing on the

decision maker’s choice, since such a randomization does not reduce imprecision in any sense.

Axiom 11 (Replication indifference) For all [P,c| € S, for all replication [73](%0"@, cgg’@], for all
f.g € A such that f(s) = g(s) for all s € S\ S(P),

(@f + (1= 0)g,[P.d]) ~ (fsry¥s [P cip )
In the previous axiom, observe that fgp)g¥(s) = f(s) = g(s) for all s € S\(S(P) U p(S(P)).

Lemma 4 Assume that azioms 7, 8, and 10 hold. Let [P,c] € S, f,g € A, 8" C N such that
S'NS(P) =0, and ¢ a bijection from S to S such that p(S(P)) = S’. Then,

Va € [0,1], (f,[P.c]) ~ (9, [P,c]) = (f.[P.c]) ~ (9, [Ps]) ~ (fg(p)gw, [7)](%&795):4?795)])
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In example 9, we had the intuition that replication does reduce imprecision while it is not the
case of the mixture operation. The following lemma shows that this intuition is correct. It shows
the strong link between Gilboa-Schmeidler’s uncertainty aversion axiom and our imprecision
aversion axiom: indeed, the lemma shows that the type of behavior that they associate with
(subjective) uncertainty aversion can be deduced from a notion of aversion to the imprecision of
the information over some important features of the decision problem, that we represent through

the fact that a set of probability distributions are compatible with the information.
Lemma 5 Azioms 7 to 11 imply axioms 2 6.

Remark that Aversion towards Imprecision (axiom 9) is not necessary to deduce Certainty
Independence (axiom 2).

We next introduce an axiom stating a Pareto-like condition. If an act is preferred to another
one for any situation in which the information is precise and given by a probability in the set of

priors, then the same preference must hold when the information is given by this set.

Axiom 12 (Pareto) For all[P,c] € S, if for allp € A(S) such thatp € P, we have (f, [{p}.c]) =
(9. [{p}. <), then (f.[P.p]) = (g.[P.p))-

Not surprisingly, this axiom implies the axiom “irrelevant state” that asserts that the decision
maker does not consider as relevant the part of the act whose payoffs depend on the realization

of events which are ruled out by the available information.
Lemma 6 Axiom 12 implies ariom 8.

The next theorem is our main result. It provides a characterization of our set of axioms, in
which the notion of uncertainty aversion is captured by the aversion towards the information

imprecision.

Theorem 2 Azioms 1, 3 to 5, 7, and 9 to 12 hold if, and only if, there exist an unique (up to
a positive linear transformation) affine function u :' Y — R, and for oll [Py, ¢;] € C, there exist

unique, non-empty, closed and convex sets Fp, ., of probability measures on 25, satisfying
1. ‘7:[771'76{ CP;
2. For all v onto mapping from S to S, ]:[7,_5@ f] = {pﬂp € f['pi’ci:}

3. If [Pi,ci] . [Py. ¢c5] € S are such that S(P;) N S(P;) =0, then for all o € [0,1],
f[?ﬁ’i’j),cg\‘}’i’j): = aFp e, T (1= ) Fp, o

4- If [Pi; ci] is a center preserving increase in imprecision of [Py, c;] then Fip, o 2 Fpjes
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5. For [P,c] € S, for all replication {73](%&’@) ggw)} ,
7:[7,<a,w Loy = {op+ (1 —a)p?lpe Fpe}
R R

such that for oll f,g € A, (f,[Pi,cl) = (9, [P}, c5]) #f, and only if:

,C

min /uofdp> min /uogdp.
/]

PPy P21

The theorem provides an axiomatization of the maxmin multiple prior model where the
revealed set of priors is somewhat constrained by the available information. These constraints
are reflected in conditions 1 to 5 and put some structure on this revealed set. For instance, given
two situations that can be compared according to the partial order “more imprecise than” that
we defined in the previous section, it must be the case that the revealed set of priors in the less
imprecise situation must be included in the revealed set of priors in the more imprecise situation
(condition 4).

4.3 Characterizing pessimism

Our aim in this section is to further specialize the representation theorem obtained above. We

do so by strengthening the aversion to imprecision of information axiom.

Axiom 13 (Dominance) For all f,g € A, [P1,c1],[P2,c2]l € S, if (f,[{c1},c1]) = (¢, [{ca}e2])
and for all p € Py , there exists ¢ € Py such that (f, [{p}.p]) = (9,[{q},q]), then (f,[P1,c1]) =
(9. [P2; c2])-

The next lemma shows that this axiom is indeed a strengthening of the aversion to imprecise

information axiom.
Lemma 7 Aziom 18 implies arioms 9 and 12.

The last representation theorem we derive gives a particular form for the revealed set of
priors: under the dominance axiom, it has to be equal to a contraction of the set of compatible

priors. The degree of contraction can then be seen as an index of pessimism.

Theorem 3 Azioms 1, 3 to 5, 7, 10, 11, and 18 hold if, and only if, there exist an unique (up

to a positive linear transformation) affine function v 1Y — R, and o € [0, 1], such that for all

[Pl:cl] 3 [pZ:CZ] S S; fOT all f,g S A;

(f:[Prc1]) = (9. [P, c2])
if, and only if,
o mzn fuofdp—i—(l—a Juo fde; = mzn fuofdp>

pEco(P1) peco(P
o mzn fuogdp—i—(l—a Juogdea = min [uogdp
peco(P2) pEco(Pe)
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The parameter « in the above representation theorem can be interpreted as a degree of
pessimism of the decision maker. If & = 0, he behaves as an expected utility maximizer with
respect to the anchor probability, while if @ = 1, he behaves as a maximizer of the minimum

expected utility with respect to all the distributions compatible with his information.

4.4 Comparative imprecision aversion

We end this section by showing that a decision maker is more averse towards imprecision than
another if, in any given situation, his revealed set of priors is included in the second decision
maker’s revealed set. Assume from now on that the set of consequences X is equal to [0, M] C R
and assume that preferences respect the natural order on [0, M], i.e., if z,y € [0, M] and = > v,
then, in any possible situation, the decision maker prefers getting the constant degenerate lottery
ks, giving him x in all the states to getting ks, .

Let Yg be the set of lotteries over {0, M }, i.e., the set of lotteries whose outcome consist only
of the two extreme prizes. y € Yp can be written (0,p; M,1 — p). Similarly, let Ap be the set
of acts defined on Yp, i.e., acts that can be written f(s) = ys with ys = (0,1 — ps; M,ps) € Y
for all s € §.

Definition 7 Let =, and =y be two preference relations defined on A x S. We say that =y is
more imprecision averse than =, if for all y € Yp and all f € Ap, and for oll [P,c] € S,

(ky; [P.cl) =a (f:[P:cl) = (ky; [P.c]) = (£ [P )

and

(k?ﬂ [P=C]) ~a (f [P=C]) = (k?ﬂ [P,C]) b (f [P= C])

where ky is the constant act giving the binary lottery y in all states.

Note that this definition differs from the one in Ghirardato and Marinacci (2002) and Epstein

(1999), in that we restrict attention to comparisons among binary lotteries and binary acts.

Definition 8 Let (f,[P,c]) € A x S. Call the probabilistic binary equivalent of (f,[P,c|) the

lottery Pe(f: [PC]) = (0 I —p M:p) € Yp such that (f [PC]) ~ (kPe(f,['P,c:): [P:C]); where
kpe(fy['pﬂ:) is the constant act giving Pe(f,[P,]).

Note that, under continuity, such a probabilistic binary equivalent always exist. Probabilistic
binary equivalent can be associated to the probability p of getting M in the lottery Pe(f, [P, c]).

Denote T1(f, [P, ) this quantity, ic.. Pe(f, [P,c]) = (0,1 — TL(f, [P, c]); M, 11(£, [P, )
Normalize utilities so that «(dg) = 0 and u(dp7) = 1.

Proposition 1 = satisfy all axioms of theorem 2. If [P1,c1] is a center preserving imprecision
increase of [Pz, ca), then, for oll f € A, 1I(f, [P2, ca]) < II(f,[P1,c1]).
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Proof. Straightforward. m

Theorem 4 Let >, and = be two preference relations defined on A x S, satisfying all axioms
of theorem 2. Then, the following assertions are equivalent

(i) = is more averse towards imprecision than =,

(7’7’) Jor all (f [PC]) € Ap xS, Ha(f: [P C]) = Hb(f: [PC])

(iii) for all [Pl € S, Fipp - C Fip

This theorem provides an easy way of comparing two decision makers in terms of their
attitudes towards imprecision: the decision maker operating the largest contraction on the set

of compatible priors is the one who is the less averse towards imprecision.

5 Discussion and concluding remarks

We have axiomatized a decision criterion that links the completely subjective set of priors
revealed by choice behavior in Gilboa and Schmeidler (1989) to the available information. Our
approach is based on the idea that the latter can be represented through a set of priors together
with a reference prior, as in Handsen and Sargent (2002) and Wang (2001). However, contrary
to Wang (2001), our main axiom of aversion towards information imprecision is sufficiently weak
to enable us to model a wide array of pessimistic behavior, from full pessimism (maxmin over
the entire set of priors) to imprecision neutrality (expected utility with respect to the reference
prior). This approach, based on a description of information independent of the choice behavior
of the decision maker, parallels the usual approach to risk, in which risk aversion is based on
second order stochastic dominance. Our hope is that it will provide a useful benchmark in
economics to pursue comparative statics exercise, in which the precision of the information
is changed. Hence, the framework seems susceptible to be applied to study a wide range of
question, as the impact of information campaign on choices, the reaction of markets after say,
central bank announcements, ... Another potential source of application is to model scientific
uncertainty, for instance to provide guidance in environmental policies or in issues like new
sanitary “risks” (like the mad cow disease for instance).

Much remains to be done to have a full fledge theory of reaction to different pieces of
(objective) information. In this paper, we chose to model information through a set of priors
together with a reference prior. This in particular encompasses situations in which a second
order probability distribution is given (as in Segal (1987)). However, this is clearly not the only
way to model prior information. In ongoing research, we drop the idea of a reference prior to

model the more general case in which the only given is a set of priors.
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Appendix

Proof. [Lemma 1] Let « €]0, 1]. Since ¢ € co(P), ap+ (1 —a)c € co(P) for all p € P, thus
proving that co (P) 2 co(P?), i.e., that condition (1) of Definition 2 is satisfied.
Condition (2) is obviously satisfied. m

Proof. [Lemma 2] Consider ¢; defined for i = 1,2 by ¢;(s) = 1 for s € {1, max(S(P;))},
wi(s) = s+ 1 — max(S(P;)) for s > max(S(P;)). Since S(P;) is a finite set, ¢; is an onto
mapping. Remark then that f is trivially ¢;-measurable for ¢ = 1,2 since it is a constant act,
Pit =t =PY? = c8? and f9 = f¢2 and thus (f, [P1,c1]) and (f, [Pz, c2]) are equivalent. m

Proof. [Theorem 1] (=)
Building on Gilboa and Schmeidler (1989)’s representation result, we know there exist Fp, .-
as well as up, ., such that (f, [Py, ¢i]) = (g, [Pi, ¢i]) iff:
min /U['piyci: o fdp> min /U[Pz—,cz—: o gdp.

PEFPp;e5] PEFP;,c4]

Hence, we need to show first that the utility function can be taken independently of the
situation and, second, that the representation can be extended to acts associated with different
situations.

Let [P, ¢;] and [Pj,c;] be two given situations in S. We know that the decision maker
is Expected Utility Maximizer over constant acts. Lemma 2 implies that up, ., and up, .-
represent the same expected utility over constant acts (which implies that ié’i, Ci::ifpjy cj::ig).
Hence, they can be taken to be equal, i.e., uip, o; = up, ¢, = u.

To show that the representation can be extended to compare acts associated to different
contexts, let (f, [P, ci]) = (9,[Ps,¢5]). Since S(P;) and S(P;) are finite and f(s) and g¢(s)
have finite support, there exist T and = in X such that for all s € S(P;) U S(P;), for all
r € Supp(f(s)) U Supp(g(s)), 6z =% 6, =* 6. Hence, by axioms 4 and 8 we know that
(kz, [P, ci) = (f.[Picil) = (e, [Picil) and (kz [Py c5]) = (9, [P es]) = (ke [Py, cj]) where
kz (resp. kg) is the constant act giving 0z (resp. Jg) in all states. By axioms 1 and 3, there
exists A; such that (f, [Ps, ci]) ~ (Aikz + (1 — Ai)kg, [Ps, ¢]). Similarly, there exists A; such that
(9, [Pj, ¢5]) ~ (Njkz + (1 = Aj)ke, [Py, ¢5]). Thus,

(f: [chz]) = (9': [Pj=cj]) A ()‘ikf + (1 - )‘i)k@ [plcl]) = ()‘jkE + (1 - )‘j)k@ [Pj=cj])

S Nkz+ (1= Nk = Nz + (1 — A\)ky
Now, (f, [Pi, ci]) ~ (Aikz + (1 — X)) kg, [Pi, ¢;]) implies that minpef[pwi. Juo fdp = u(Ndz+(1—
Ai)dz). We also have that minPEF[pj,cj] [uogdp = u(Ajdz+(1—N;)dz) and u(Xidz+ (1—X)d,) >
u(Aj0z + (1 — A;)dz), which implies that
min /uofdpz min /uogdp
]

pe}—[Pi <4 pe}—[Pj 1G5

20



'To prove condition 1, consider p* € Fp o and suppose that p*(S(P)) = q # 1. Consider T
and x in X such that u(dz) > u(d;) and let f be defined by f(s) = déz for all s € S(P), f(s) =6,
for all s € S\S(P), and g by g(s) = éz for all s € S. Then

min /u o fdp < /u o fdp* = qu(®) + (1 — @Q)u(z) < u(T) = min /u o gdp

PEF[Pc] PEFP.q

and thus (g, [P,c]) = (f,[P,c]) which is a violation of axiom 8 since g = fg(p)g. Thus, for all
pE Fipe. p(S(P)) = 1.

To prove condition 2, consider ¢ an onto mapping from S to S, and [P, ¢] € S. Suppose first
that Fp oo € {p¥lp € f['])7c:} and that there exists p* € Fips v such that p* ¢ {p¥|p € f['pyc:}.
Observe that since Fip . is a convex set, (f['pyc:)(; = {p‘f|p € ,7:[7;76:} is also convex since by
definition of p¥, for all a € [0,1], for all p1,p2 € A(S), (ap1 + (1 — @)p2)¥ = apf + (1 — a)ps.

Hence, using a separation argument, we know there exists a function ¢ : § — R such that
[ pdp* < minpé(f[p,c])v [ ¢dp. Since S(P¥) is a finite set, there exist numbers a,b with a > 0,
such that Vs € S(P¥), (ap(s)+b) € u(Y). Then, for all s € S(P¥) there exists y(s) € YV
such that u(y(s)) = a¢(s) + b. Define f by f(s) = y(s) for all s € S(P¥), f(s) = 6, for all
s € S\S(P¥), where x € X. Define g by g(s) = y(p(s)) for all s € S, that is f = ¢¥. Thus
(9,[P,c]) is equivalent to (f, [P¥,c¥]) and we have that for all p € Fip ., [uogdp = [uog¥dp?
and thus
min /uogdp = min S&/uog‘;dp: min /uofdp

PEF[P.q pe(Fip.q) pe(Fip.a)”

= min /(a¢—|— bydp > /(a¢—|— b)dp* >  min /u o fdp
pe(Fip.a)” PEFPe e
which shows that (g, [P, c]) > (f,[P¥,c¢¥]) which is a violation of axiom 7.

Suppose now that Fipe oo 2 {p?|p € f['pyc:} and that there exists p* € {p¥|p € f['pyc:} such
that p* ¢ Fpe v . Using a separation argument, we know there exists a function ¢ : § — R
such that [ ¢dp* < min,e Fipe e [ ¢dp. Since S(P¥) is a finite set, there exist numbers a, b with
a > 0, such that Vs € S(P¥), (a¢(s) +b) € u(Y). Then, for all s € S(P¥) there exists y(s) € Y
such that u(y(s)) = a¢(s) +b. Define f by f(s) = y(s) for all s € S(P¥), f(s) = &, for all
s € S\S(P¥), where x € X. Define g by g(s) = y(p(s)) for all s € S, that is f = ¢¥. Thus
(9, [P, ) is equivalent to (f, [P¥,c¥]) and we have that for all p € Fip ., [uogdp = [uog¥dp?
and thus

min vogdp = min /u og¥dp= min /u o fdp
PEF[p / pe(]:['p@])v pe(Fp.g v
= min /(a¢—|— b)dp < /(a¢—|— b)dp* < min /u o fdp
pe(Fip.qg)” PEF [Py 2]

which shows that (g, [P, c]) < (f,[P¥, ¢¥]) which is a violation of axiom 7.
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(«=) The only axioms besides Gilboa and Schmeidler’s are axioms 7 and 8.

Consider (f, [P, c]) and (g,[Pj,c;]) which are equivalent, that is, there exists ¢; and ¢;
two onto mappings from S to S, such that f is p;-measurable, g is p;-measurable, P/* = Pf 7,
¥ =¥ and f¥ = ¢g¥. Remark that for all p € Fip, ., . Juo fdp= [wo fPdp¥ and thus

min uo fdp= min /u o f¥dp
pe}-["’ivcz': / pe(]:['/’ivcil)%
Observe also that for all p € Fip .-, [uogdp = [wog¥7dp and thus

min uogdp = min uog¥id
= ]/ e >/ o

PjiC; pe f[”’jvcj]

¢
Since condition 2 holds, we have ,7-"[7,_%- (i) = (‘7:[771 o )W and ,7:[7)% e = (f[Pj,Cj:) 7

3%
Since by hypothesis [P/, ¢[*] = [73(” i ] and f¥ = g%/ we have that min,c Fip Juo fdp=
minpef[pj@j] [ wogdp and thus (f, [P, Cl]) ~ (g, [Pj,c;]) which shows that ax1om 7 holds.

Condition 1 obviously implies axiom 8. m
Proof. [Lemma 3] Let [P, c] € S. By definition,
R = = Cyp

Condition (1) of Definition 2 is also satisfied: for all ¢ € 73(0"“&)) there exists a (unique)
p € P such that ¢ = ap + (1 — a)p¥. Hence, ¢ € 73](\4’““) and therefore 73(0"““) C 73(0"““). ]

Proof. [Lemma 4] Let (f,[P,c]) and (g, [P, c]) be given, such that (f,[P,c]) ~ (g, [P, c]).
Without loss of generality, let S(P) = {1,...,n}.

Cousider the bijection ¢ : S — S such that p(s) =s+nforall se {l,...,n}, p(s)=s—n
forallse {n+1,..,2n} and ¢(s) = s for all s > 2n.

Consider now the onto mapping v» : § — § such that ¢(s) = s for all s € {1,...,n}, ¥(s) =
s —n for all s > n and the act ggp)g¥: gs(p)g¥ is -measurable and thus (gsp)g¥; [P¥, ¢?]) is
equivalent to ((gg(p)g“a)w, [(P¥)?, (c“)d’]). By axiom 7,

(95795 P%,¢]) ~ ((9s19%)” + [ (P)*, ()]

Observe that [(p¢)¢= (cw)w] = [P,c] and for all s € {1,...,n}, (gg(p)g‘f)d) (s) = g(s). Thus, by

axiom &, we have that

(9.1P.c) ~ ((95779°)" - [P ()°]) ~ (gspy9”, [P )

Since S(Py) N S(P) =0, by axiom 8, we also have
(£, [P.cl) ~ (fspyg®: [P.cl) and (gs(pyg¥. [P¥.c¥]) ~ (fs(pya”, [P¥. )
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Thus, since (fS gg/ [P C]) ~ (gS('P)gw: [PC]) and (fS gg/ [7)9/ Cg}]) ~ (gS('P)gw: [PQ&:CWD: by
axiom 10, we have that

(fS(P)Qﬁ [731(\?’?) CE\[“]) ~ (95(79)9“&: {731(\?’?) CE\? Q/)D

Consider again the onto mapping . By axiom 7,
(95(79)9“5: {731(\?’?) CSw’Q/)D ~ ((95(¢)9¢)¢= [(7’1(\?’@)1# (05\4’“)1#])

Observe that |(PL%¥ v, eyl = P,c] and for all s € {1,....,n}, (99(p)9% qz)(s = g(s).
M M ()
Thus, by axiom 8, we have that

(0:1Ps ey ~ ((95m9%)" [P (] ) ~ (950m9% s [P e77)])
and hence, we get that (f, [P, ) ~ (g, [P, ) ~ <fS(P)9'¢; [pj(\%@}cgg,g&)b- -

Proof. [Lemma 5] We first check axiom 2. Let (f,[P,c]) > (g,[P,¢]) and h € A° (i.e., h
is a constant act). By axiom 7, (af + (1 — a)h, [P, c]) ~ (afspyh + (1 — a)h,[Pc]), and hence
by axiom 11,

(af + (1= )b, [P.c]) ~ (fsepphs [P, i)

Define ¢ : § — S such that ¢(S(P)) = S(P) and ¢ o p(S(P)) = {s*} where s* € S\ S(P).

By axiom 7,
(Fsmohs [P, 5]) ~ < Fsamh¥)P, [(73(&»)) (el @>>¢D

Now recall the that 73(0"““ ={ql¢g=ap+ (1 — a)p¥,p € P)} and hence
@ = [y = 1—a)s p
<pR ) - {T|T—04p—|—( _O‘) gboga(S'P):pe )}
Thus, this set is actually the mixture of two underlying sets and hence:
. )\ ? o)\ ? .
((fS(P)h’QJ)(z)’ |:(P](? 9/)> ; <C$% 9/)> :|> - <(f8(7’)h’9/)¢ :O‘[P:C] + (1 - O‘) [{5(1)04;(7’)}:5(1)04;(7’)])

Hence, we have so far established that

(O‘f + (]— - O‘)h’: [P C]) ~ ((fS('P)h’w)gb :O‘[P: C] + (]— - O‘) [{5(1)04,&(7’)}: 6(1)095(7’)])

A similar statement is true working with ¢ instead of h.

Now, by axiom 7 and by construction, we have:

((Fsh®)®[P.]) ~ (£.1P.]) = (9, [P.]) ~ ((g56h%)* . [P. <))
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and
£\ P £\ P
((£5)h#)  [{gopter s pmpie] ) ~ ((956)h9) s [Gpaptr} Sgacir)] )

Hence, axiom 10 implies that
((Fs)h)? . alPocl + (1 = 0) [{Spoutm)} - Bs0pim)] ) = ((956mh°)" - APl 4 (1= @) [{(Bgnsir)} O]
which in turn implies that
(af + (1= a)h,[P,d) = (ag + (1 — a)h, [P, c])
thus proving axiom 2.

We now check that 6 holds as well. Let (f,[P,c]) and (g¢,[P,¢]) be given, such that
(f.[P,c]) ~ (g,[P,c]). According to lemma 4, we have that

(f.[P.c]) ~ (g, [P.c]) ~ (fs<7>>9“= [7’5\?’@”53’@})

In lemma 3, it was shown that [73](\?’“&) ; cgg’“&)} was more imprecise than [73](%&’“&) ; cgg’“&)} . Thus

axiom 9 implies that
(Fstm9®: [Pie? 22 ) = (Fsma®s [Pi el )

Since by axiom 11, we have that (af + (1 — a)g, [P, ]) ~ (fg(p)g‘f, [P}z&’w),cg’@]), it follows
that
(Oéf —+ (]— - Oé)g, [PC]) = (f [PC]) ~ (g: [PC])

Hence, axiom 6 is satisfied. m

Proof. [Lemma 6] Let consider f,g € A, [P,¢] € S. Then for all p € A(S) such that

p € P, we have (f,[{p},p]) ~ (fs(p)g: [{p}. p]). Thus, by axiom 12, (f,[P.c]) ~ (fsip)g, [P, c])-
||

Proof. [Theorem 2] (=) By lemma 5, we know that axioms 7 to 11 imply axioms 2
and 6. Furthermore axiom 12 imply axiom 8 (lemma 7). Hence, we can invoke theorem 1,
to prove that there exists an unique (up to a positive linear transformation) affine function
u:Y — R, and for all [P;, ¢, [Py, ¢;] € S, there exist unique, non-empty, closed and convex
set Fip, ¢, and Fip, o, of finitely additive probability measures on 29, such that for all f,g € A,
(f:[Ps;ci]) = (g, [Pj,cy]) if, and only if:

min /uofdpz min /uogdp
]

pE]:[rpi’cl_: pef[prcj
Furthermore, for all ¢ onto mapping from S to S, ,7:[7,_5@ cf] = {p‘f Ip € f['pi’ci:}.
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Suppose condition 1 does not hold, that is there exists [P, c] € S such that Fip o & 0 (P)).
Hence, there exists p* € Fp . such that p* ¢ ¢ (P). Since ¢o (P) is a convex set, using a separa-
tion argument, we know there exists a function ¢ : § — R such that [ ¢dp* < minpezp) [ ddp.
Note that since axiom 12 implies axiom 8, we have that condition 1 in theorem 1 holds and
thus, for all p € Fip ., p(S(P)) = 1. Thus Supp(p*) € S(P) and since S(P) is a finite set, there
exist numbers a, b with a > 0, such that Vs € S(P) ., (a¢(s) +b) € u(Y). Then, for all s € S(P)
there exists y(s) € Y such that u(y(s)) = a¢(s) + b. Define f by f(s) = y(s) for all s € S(P)
. f(s) = 0 for all s € S\S(P) where x € X. Note that min,czp) [(a¢ +b)dp € Y and thus
there exists y* such that u(y*) = minyczp) [(ad + b)dp. Define g by g(s) = y* for all s € S.
Observe that for all p € A(S) such that p € P, p € @ (P) and thus

/uofdpz min /uofdp: min)/(a¢+b)dp:u(y*) :/uogdp

peco(P) peco(P

So for all p € A(S) such that p e P, (f,[{r}.p]) = (g9, [{pr}.p]). Yet

min /uofdp§/uofdp*:/(a¢+b)dp< min /(a¢+b)dp:u(y*): min /uogdp

PEF P, peco(P) PEFP .

and thus (f, [P, ]) < (g, [P, ¢]) which is a violation of axiom 12.

Condition 2 was proved in theorem 1.

Turn now to condition 3. Consider [P;, ¢;], [P}, ¢;] € S such that S(P;)NS(P;) =0 and o €
[0,1]. We show first that f[,])l(\?J,j)’cg\(;,i,j)— 2 aFip, e + (1 —a)Fp, ., - Suppose on the contrary
that there exists p; € Fip, ., and pj € ﬁ['pj’cj: such that p* = ap] + (1 — a)p] ¢ f[,])l(\?,i,j)ycg\?,i,j)-.

Since ‘7:[79("""’” (i) 1S a convex set, using a separation argument, we know there exists a
M M

function ¢ : S — R such that [ ¢dp* < minyer | ¢dp. Since S(P;) and S(P;) are

pleotd) o)
finite sets, there exist numbers a, b with a > 0, Su[ch that Vs € S(P)US(P;), (ad(s) +b) € u(Y)™.
Then, for all s € S(P;) U S(P;) there exists y(s) € Y such that u(y(s)) = a¢(s) + b. Define f
by f(s) =y(s) for all s € S(P;) US(P;), f(s) = 0z for all s € S\ (S(P;) US(P;)), where z € X.
Since for all p € ]:[PI(\?,,-J)7CS$J-J)— , p(S(P](\?yiJ))) =p(S(P;) US(P;)) =1, then

min /u ofdp = min /(a¢ + b)dp
PEF (e, (o) PEF (a,ig) (ot
[p{otd) et [p{otd) oLt

> /(a¢—|—b)dp* :a/uofdp;—i—(l—a)/uofdp;-

Since [wuo fdp; € w(Y) and [uo fdp} € u(Y') there exists y;,; € Y such that u(y;) =
Juo fdpf and u(y;) = [uo fdp3. Define g by g(s) = y; for all s € S(P;), g(s) = y; for all
s € S\S(P;). Since for all p € Fip, ;s p(S(P;)) = 1 we have that

min /uogdp:u(yi) = /uofdpf > min /uofdp

PEFP; i) PEF[P, 4]

!Completeness and continuity imply that «(Y) is convex.
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and

min /uogdp:u(yj) = /uofdp;- > min /uofdp

pe]:[prcj] pe}-[Pijj]

thus (g, [P, ci]) = (f, [Ps; ci]) and (g, [Py, ¢5]) = (f, [Py ¢5)-
On the other hand, since

min /uofdp > a/uofdpf+(1—a)/uofdp;
peF

(o) (ot
— aulys) + (1 - a)ulyy) = [ wogdiac: +(1- a)ey)

we get that (f, { ](\?’i’j),cg\?’i’j)D = (¢, [{aci + (1 — o)cj}, a0 + (1 — a)ey]). Remark that
the situation [{ac; + (1 — a)cs}, ac; + (1 — a)cy] is less imprecise than [Pﬁ’i’j),cg\z’i’j)}, since
cg\i’i’j) = ac; + (1 — a)¢; and therefore, by axiom 9 we have that (g, [{ac + (1 —a)es}, aci + (1 —
acy)]) = (g, [Pﬁ’i’j),cg\?’i’j)]) and hence (f, [Pﬁ’i’j),cg\?’i’j)b - (g, [P&?’i’j),cg\?’i’j)}).
Using axiom 7 together with what we established above, we have that:
(9. [Pisci]) = (fspog: [Pesci]) ~ (f; [Piscil)
(fS(ij: [Pj=cj]) ~ (9, [Pj.¢5]) = (f: [Pjs ¢5])

Axiom 10 (taking Py = P2 = P; and P3 = P; ) then implies that:

(Fsimaos [P0, 6297) = (1, [Pl o))

and

(o [P, 459]) = (Fscpos [P0l ))

implying that (g, {Pﬁ’i’j),cg\?i’j)b > (f, [Pﬁ?’i’j),cg\?’i’j)}), a contradiction.

Let us show now that ,7:[731(\?@]-)765\?,,-,]-)- C aFip, e +(1— 04),7:[7;].76].:. Suppose on the contrary
that there exists p* € f[Pg?,i,j)ycgg,,—,j)- such that p* ¢ aFp, ., + (1 — @)Fp, ., - Suppose first
that p* (S(P;)) # a, for instance, p* (S(P;)) > a. There exists y1,2,y3 € Y such that au(y;) +
(1 — a)u(y2) = u(yz)?. Define f by f(s) =y for all s € S(P;), f(s) = y2 for all s € S\S(P;)
and ¢g by g(s) = ys for all s € S. Then

min /uofdp < /uofdp* < au(y)+H(1l—-a)u(y2) = u(ys) = min /uogdp
PEF pleig) fonid), PEF plaig) fonig),
M M M M

and thus (f, [P](\?’i’j),cg\?’i’j)b = (g, [Pﬁ’i’j),cg\?’i’j)]). Without loss of generality, let S(P;) =
{1,..,n1} and S(P;) = {n1 +1,...,n1 +na}. Consider the onto mapping ¢ : § — S such that
P(s) = 1 for all s € {1,...,n1}, ¥(s) = 2 for all s € {n1+1,..,n1+na}, ¥(s) = s+2—

2Existence can be proved by using axioms 1,3,5 .
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(n1+ ng) for all s > ny + ny. Since f is Y-measurable, (f, {Pﬁ?’i’j),cg\?’i’j)}) is equivalent to
(fd): <[(P§\?’i’j))¢= (05\3”))1”])) Remark that (P](\?’i’j))w = {p} where p € A(S) is such that

p(1) = @ and p(2) = 1—a. By axiom 7, we have that <f, [Pﬁ’i’j),cg\;’i’j)}) ~ (]“p, [{ﬁ}ﬁ]) Note
also, that [{p},P] is the (a, p)-replication of [{d;},d:1] with ¢ the bijection such that ¢ (1) = 2,
w(2) =1, ¢ (s) = s for all s > 2. Define h by h(s) = ay; + (1 — a)yz for all s € S. By axiom
8. (F%.Uph ) ~ ((F9) gy 2o UPHP)). By axiom 11, (%), b KBHE) ~ (s [{61},61]).
Since minper; (4, 5, Juohdp = au(yr) + (1 — a)u(y2) = u(ys). we have that (h,[{01},01]) ~
(g, [Pﬁ’i’j),cs\?i’j)]). Thus we have that <f, [Pﬁ’i’j),cg\?i’j)}) ~ (g, [Pﬁ’i’j),cg\?’i’j)]) which
is a contradiction. Therefore, p* (S(P;)) = (1 — p* (S(P5)) = a. Define p;, € A(S) by pi(s) =
I% if s € S(Pr), pi(s) = O otherwise. At least, there exists k € {i,j} such that pj, & Fip, .-
(otherwise, we would have p* € aFp, o, +(1—a)Fp, ., ). Suppose for instance that p; & Fip, ., -
Since Fip, . is a convex set, using a separation argument, we know there exists a function
¢ : S — R such that [¢dpf < minge 7y, [ ¢dp. Since S(P;) is a finite set, there exist
numbers a, b with a > 0, such that Vs € S(P;), (a¢(s) +b) € u(Y). Then, for all s € S(P;)
there exists y(s) € Y such that u(y(s)) = ad(s) +b. There also exists y* € Y such that
u(y") = minpes, [ (a¢ + b)dp. Define f by f(s) = y(s) for all s € S(P;), f(s) = y* for all
s € S\S(P;) and define g by g(s) = y* for all s € §. Since condition 1 applies, we have that

min /uofdp = min /uofdp

PEF[Pcq] pej:[”j@j]
min /u ogdp = min /u o gdp = u(y*)
PEF[Py 4] PEFP; c5]

Thus (f, [Pl,cl]) ~ (g, [Pl,cl]) ~ (f, [PJ,CJ]) ~ (g, [PJ,CJ]) By axiom 7 (f, [Pl,cl]) ~ (fS('Pl)g, [Pl,cl])

By axiom 10,
(oo [Pl ~ (1, [Pl i)

(fS(Pi)g: [Pﬁ?’i’j),cg\?’i’j)}) < [73(& g) 5\313)])

establishing that (f: [PE\?’i’j):CE\%i’j)]) ~ (g, [Pﬁ?’i’j),cg\?’i’j)}). Since ¢ is a constant act, we
have minpef[pl(\? ) i) [wo gdp = u(y*). Yet,

and

min /uofdp < /uofdp*:a/uofdpf+(1—a)/uofdp}‘
PEF planisd) (o)

_ a/(a¢+b) dpi + (1 — a)u(y")

< o min /@¢+m@+a—awwﬂ=ww>

PEFIP; ¢l

which is a contradiction to the fact that (f, [Pﬁ’i’j),cg\i’i’j)]) and (g, [Pﬁ’i’j),cg\?i’j)b are

indifferent.
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To prove condition 4, consider [Py, ¢;] , [Pj, ¢;] € S where [Py, ;] is a center preserving increase
in imprecision of [P, ¢;] (and hence ¢; = ¢;). Suppose on the contrary that Fp, .- 2 Fips e
and thus, that there exists p* € Fip, .- such that p* ¢ Fpe; - Since Fip, . is a convex set,
using a separation argument, we know there exists a function ¢ : § — R such that [ ¢dp* <
minpef[PM_. [ ¢dp. Since S(P;) is a finite set, there exist numbers a,b with a > 0, such that
Vs € S(Py), (ap(s)+b) € w(Y). Then, for all s € S(P;) there exists y(s) € Y such that
u(y(s)) = ag(s) +b. Define f by f(s) = y(s) for all s € S(P)), f(s) = o, for all s € S\S(Py),
where x € X. Note that since [P;, ¢;] is a center preserving increase in imprecision of [Pj, ¢;],

S(P;) C S(P;) and thus we have

min /uofdp < /uofdp*z/(a¢+b)dp*

pe}—[’Pj,Cj]

< min ap+b)dp= min /uod
PEF [P /( ¢ ) g PEFP; 4] 1o
which implies that (f, [Ps, ¢i]) = (f, [Py, ¢;]) which is a violation of axiom 9.

To prove condition 5, consider [P,c] € § , and [P](%a’w),cg’@} a replication (o € ]0,1[)3.

We know by lemma 3 that [P](%a’(;),cgg’@} is less imprecise than {Pﬁ’w),cg\?’@} and thus, since

condition 4 holds, F[_ae) (aw) S Fl e (e and by condition 1 F_ae) (aw = aFp s +
[PR CrRT [PM 0V [PR R T
(1 = &) F[pe cer- Thus F [Pl e CaFpe + (1 —a)Fpece-

Suppose first that ]:[ ¢ {Ozp +(1—a)p¥lp e f['pyc:} = (f['pﬂ:)(p and that there

ngw)ycggw)"
exists p* € ,7:[7)}(2&,@7653@- such that p* & (f[pyc:)(a’@. Then, since p* € aFp ; + (1 — @) Fpe co

and since condition 2 holds, there exist p1,p3 € Fip, such that, p* = ap] + (1 — a)py?. Note
that p} # p3 since otherwise we would have p* € (f['p#:)(a’(;).

Thus, there exists £, E2 C S(P) such that By NEy =0, By UEy; = S(P). pi(E1) > pi(E1)
(and thus pj(£2) = (1—pi(£1)) < p5(£2) = (1—pj(£2))). There also exist T and z u(dz) > u(dy).

In the case a > %, define f by f(s) = (%) oz + (%) 0g for all s € By, f(s) =6, for all
s € By, f(s) = adg + (1 — )i, for all s € S\S(P) and define g by g(s) = 6z for all s € F1,
g(s) =9y for all s € Ly, g(s) = adg + (1 — a)d, for all s € S\ {s1,s2}.

In the case a < %, define f by f(s) = d, for all s € By, f(s) = 07 for all s € Ey,
f(s) = adz + (1 — a)d, for all s € S\S(P) and define g by ¢(s) = (ﬁ) oz + (11120?‘) Oy
for all s € B, g(s) = 0, for all s € £y, g(s) = adz+ (1 — a)d, for all s € S\S(P). In both cases,
we can check that (af + (1 — a)g) (s) = adz + (1 — @)d, for all s € S(P). And thus

penj}_%gc] /u o(af+(1—a)g)dp=u(adz+ (1—a)ly) = ou(dz) + (1 — a)u(dy)

pgw (0,¢)

3For a: = 0 we have trivially { Cr ] = [P, ] and for a = 1, condition 5 can be deduced from condition

2.
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Consider now fg(p)g¥. In the case a > %, we have that

min /u o fepyg¥dp < /u o fapyg¥dp” = oc/u o fdpi +(1— a)/u o gdp3

€EF (a «
p [7752 Ap)éeytp)]

= afp@u( ) o (1) 60 +pituten)
+ (1—a) [p3(E1)u(dz) + py(E2)u(dg)]

= au(dz)+ (1 — a)u(dy)

+ (1 —a)(px(£1) — pi(£1)) (u(dz) — w(de))

< ou(dz) + (1 — a)u(dg)

and thus (af + (1 — a)g, [P, ) = <f5(p)g¢, [P](%a’w),cgg’@}) which is violation of axiom 11.
Similarly, in the case a0 < %, we have that

min /uo fsqa?dp < /uofs(p)g‘fdp* = a/uofdpf +(1 —a)/uogdpz

PEF plae) (o)

= o [p{(Ey)u(6y) + pi(E2)u(5s)]

b - [peu( ) (T20) 60 + Bt
= au(dz)+ (1 — a)u(dy)

ol - pi(E) () - u(5,)

<

au(dz) + (1 — a)u(dy)

and thus (af + (1 — a)g,[P;c]) = (fsr)9%; {73](%&’@, C%’@}) which is violation of axiom 11.
Suppose now that ,7:[7)(&7@ o) ) {ap +(1—a)p¥lpe f['pyc'} and that there exists p* €
R R )

Fipc such that ap* + (1 — a)p* gé]:[ . Since we just proved that

P}(%aﬂ@)’cggﬂ&):
Flotae) (e S 1lap+ (1 —a)p¥|p € Fu}
(PR el

for all p € ,7:[7)}(2&,@765?7@-, there exists p,-1 € Fjp o such that p = ap -1 + (1 — a) (pw—l)(;'

Consider F = {p¢—1|p € ,7:[ } Since ,7:[7)(&,@ (o) is a convex set, F is also convex
R R

P(a#p)’c(a#p)—
and p* ¢ F. Hence, using a :epar};tidn argument, we know there exists a function ¢ : § — R
such that [ ¢dp* < minyer [ ¢dp. Since S(P) is a finite set, there exist numbers a, b with a > 0,
such that Vs € S(P), (a¢(s) +b) € w(Y). Then, for all s € S(P) there exists y(s) € Y such that
u(y(s)) = ad(s) + b. Define f by f(s) = y(s) for all s € S(P), f(s) = §, for all s € S\S(P¥),
where x € X. Observe that for all p € ,7:[7)(&,90) o) s

R R _
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Juetsotiay = [ o fspied(epy s +(1-0) (5 )7)
= a/uo fdpy— + (1 - a)/uof‘fd (pwq)“&
= /uofdp¢_1 = /(a¢—|— b)dp,—

Thus

IA

min /uofdp

PEF[P .l

/u o fdp* = /(a¢ + b)dp* < géi}l/(&(b + b)dp

= min/uofdp— min /UOfS(P)deP
peF

peEF ple) (e,
which shows that <f5(!, e, [P(OW) (0,2) ]) = (f,[P,c]), a violation of axiom 11.

(«<=)The axioms to check are axioms 9, 10, 11, and 12 since the others hold by theorem 1.
By condition 4, if [P;, ¢;] is acenter preserving increase in imprecision of [Py, ¢;] then Fip, ., 2
Fip;c; implies that for all f € A,

min wo fdp < min /uo d
pe}'[vi,ci]/ fop < PEFP; ¢5] fap

and thus (f, [Pj,¢;]) = (f, [Ps, ¢;]) which proves that axiom 9 is satisfied.

To prove that axiom 10 is satisfied, consider [Py, ¢;] € S, 4 = 1, 2,3 such that (S(P1) U S(P2))N
S(P3) =0, a € [0,1], and f,g € A such that f(s) = ¢(s) for all s € S(P3). Assume
(fs [P1;e1]) = (g, [P2; c2]). By condition 3, 7[7,5\?,1,3) oot = 0Fp e+ (1 — a)Fips,c; we have

that
min wo fdp = min /u o fdp
PEF (@,1,3) (a,1,3) / pEaF|py o] H(1—0)F[pg 5]
[’P Car |
= « min /uofdp—i—(l—a) min /uofdp
PEF[Py 1] PEF[Pg, 3]

> o min /uogdp—i—(l—a) min /uofdp

PEF[Py ] PEFP3 5]

Since we have also

min /uogdp—a min /uogdp—i—(l—a) min /uofdp
pej:['/’l(\?7273),cg\(;7273)] pe]‘-['PZ C2] pe]‘-['/’3,c3]

thus (f [73(0@3)’ 5\3’1’3)}) ( [73(0"2’3), 5\3’2’3)}) which proves that axiom 10 is satisfied.
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To prove that axiom 11 is satisfied, consider [P,¢] € 8, the replication P](%a’“&),cgg’@ ,

fsg € Asuch that f(s) = g(s) for all s € S\S(P). Since condition 5 holds,

min /u o fepyg¥dp= min /u o fapg¥d(ap + (1 — a)p¥)

PEF (ap) (o) PEFIP.q
[Pl ®) L))

Foral p € Frpe.

/UOfS(P)Q“d(OéPﬂL (1-a)p¥) = Oé/uofS(P)g“deﬂL(l —Oé)/uOfg(p)g“dp“ﬁ
= a/uofdp+(l—a)/uogdp
— [uotaf+@-aap
and thus

min %0 “d(ap+ (1 — a)p¥) = min /uoa—l—l—a d
i [ uo fpgrdiop+ (1= a)p) = min [ e (af + (1 - )iy

which shows that (af + (1 —a)g,[P,c]) ~ (fs(#)g(*;, [73](%&79&)=Cg§,¢)])_

To prove axiom 12, consider f,g € A and [P,c] € S such that (f,[{p},p]) = (9;[{p}:p])
for all p € P. Remark that for all p € ¢ (P) there exists p1,pa € A(S) and sequences
(1!)7f)n:17__7C>c ; (QDQ)n:L"’C>c € A(S) such that p! € P for i = 1,2 and n € N and lim,_.o p}" = pi,
and a € [0, 1] such that p = ap; + (1 — a)ps. Thus Vn € N,

/uOfd(Oép?Jr(l—oa)pS) — a/uofdp?+<1—a)/uofdp3
> a/uogdp?+(1—a)/uogdp§

= /uogdd(ap?ﬂl—oc)p?)

/uofde/uogdp

Since by condition 1, Fip s C @ (P), for all p € Fips, [uo fdp > [u o gdp and thus
minper, , [ %o fdp > minger,, , [ u o gdp which implies that (f,[P,d]) = (¢,[P,c]). m

and then when n — oc,

Proof. [Lemma%] That axiom 12 is satisfied is straightforward.

Counsider f € A and [Py, c1],[P2;¢c2] € S such that [Py,¢1] is a center preserving increase
in imprecision of [P2, c2]. Since ¢; = ¢a, we have (f,[{c1},c1]) ~ (f, [{c2}, e2]). Since c6(P1) 2
co(P2), for all p € co(P2), p € co(P1) and trivially (f, [{p};p]) = (f.[{p},p]). Thus dominance
implies (f,[P2, c2]) = (f.[P1.c1]). =
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Proof. [Theorem 3] (=)By lemma 7, axioms 9 and 12 are satisfied. By theorem 2, we
know there exist an unique (up to a positive linear transformation) affine function v : ¥ — R,
and for all [Py, e1], [P1,c1] € S, there exist unique, non-empty, closed and convex set Fip, o -

and Fp, .,” of probability measures on 29 satisfying conditions 1 to 5 of theorem 2 and such
that for all f,g € A, (f,[P1,c1]) = (g, [Pz, c2]) iff:

min /u o fdp> min /u o gdp.

PEFPy 1] PEF [Py, 0]

Let us note that for all [P,c] € S, for all f,g € A, such that

; dp > i d
min [uosdp= _min [ uogdy

/uofch/uogdC

it is the case that (f, [P,c]) = (g, [P, c]). Indeed, since @(P) is closed, there exists p € ¢o(P) such

3

that mz’g)) Juogdp = [wogdp. Then for all ¢ € ¢(P), we have that (f,[{q}.q]) = (¢, [{p}.p])
peEco

and thus (f, [P,c]) = (¢, [P, ¢]) is implied by axiom 13.

Consider [P,c] € S, let us show that there exists aip . such that Fjp . = e(P*). By
condition 1 of theorem 2, we have that Fip . C @(P). On the other hand, since [{c},]
a center preserving decrease in imprecision of [P,¢], by condition 4 of theorem 2, we have
thatf[{c}yc: - f[P,c: and hence ¢ € f[P,c: .

Remark also that Supp(c) = S(P?) and that for all 3,7 € [0,1] such that 3 > v, we have
that @(P”) D @(P7)). Thus consider the sets

and

{815 € [0,1] and z(P?) € Fip . |

and
{5|5 €[0,1] and @(P?) D f[P7C:}
Let
B = Sup {mﬁ € [0,1] and eo(PP) C f['P,c:}
and

B=Inf{8I8 € [0,1] and z(P?) 2 Fp.. |

Since for all § € [0,1], the set co(P”) and Fip . are closed set, we have that

@(P2) C Fip s Co(PP)

If g = 3, just take ape =p= 3 and we have F,. = co(P*).
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Suppose 3 # 3 and thus B < 3. Consider 8 € ]QB[ Then there exist pi, p2 in
co(P)\Int (co(P)) such that (8p1+ (1—F)c) € Fip and (Bp2+ (1—B)c) € Fp*. Since
Fip,c is a convex set, using a separation argument, we know there exists a function ¢2 : § — R
such that [ é2d (8p2 + (1 — B)c) < milper, [ ¢2dp. Since p1 € eo(P)\Int (co(P)) and since
co(P) is a convex set, using a separation argument, we know there exists a function ¢; : § — R
such that [ é1dpy < minpezpy [ ¢1dp. Since S(P) is a finite set, there exist numbers a;,b;
with a1 > 0, az,ba with a2 > 0, such that Vs € S(u) , (aii(s) +b;) € u(Y) for i = 1,2,

{ Minyea(p)y [ (a1d1+01)dp = minpegyp) [ (az¢2 + b2)dp
[(a1p1 +b1)de = [ (azpa+ b2)dc
Then, for all s € S(P) there exists y;(s) € Y such that u(y;(s)) = a;¢:(s) + b;. Define f by
f(s) =yi1(s) for all s € S(P), f(s) =6, for all s € S\S(P), where x € X and ¢ by ¢(s) = y2(s)
for all s € S(P), g(s) = 6, for all s € S\S(P). Thus we have
min /uofdp: min /uogdp

peco(P) peco(P)

/uode:/uogdC

and thus (f, [P, c]) ~ (g, [P, ¢]). On the other hand

and

min /uOde > /uogd(ﬁpg—i—(l—ﬁ)c)

PEF[Pq

= 6/uogdp2+(1—ﬁ)/uogdc
> B min /uogdp+(1—ﬁ)/uogdc

peco(P)

= B min /uofdp+(1—5)/uofdc

peco(P)

- ﬁ/uofdp1+(1—6)/uofdc
- /UOfd(ﬁp1+(1—5)C)
> min /uofdp

PEFP,]

which yields a contradiction.

Let us show now that for all [P1,c1], [Pz, 2] € S, ajp, ;" = Q[p, ¢, - Suppose on the contrary
that ap, ¢" 7# Qpy e, for [P1;c1], [Pz, c2] € S. Without loss of generality, consider that S(P1)N
S(P2) = 0°. Consider « € ]0,1[ and [73](\?’1’2) 05\3’1’2)} . Since condition 3 of theorem 2 holds, we

3

4Such a couple (p;,p2) exists since otherwise, we would have either ca(P?)) C Fip.e or @(PP)) 2 Fip.el
®We can always find a bijection ¢ such that S(P1) ™ S(P§) = @ and it can be easily check that since condition
1 of theorem 2 holds, we have that ap, c,] = Qpe o).
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have that
Fipla12) (e12 = aFp o + (1= a)Fip, ey
[PM Car _

On the other hand,
O (@,1,2) (a,1,2)
p— (0,1,2) [PM Car
f[PI(\?’l’Z),cg\?’l’z): = CO (P _

Necessarily, either a[P(a,Lz) Jeres # Qp, o OT 04[ oL # Qpp, ,” and we run into a con-
M "M - -

(e,1,2)
7)M "M
tradiction. For instance, suppose 04[7)(%172) Je12 > appy o and consider p; € @o(P;))\Int (co(P;)))

M ™M B

for i =1,2.

ala [Pl(\?vlﬂ),cg&vlﬂ)—pl + (1- Oé[PI(\?,Lz) 765\?,1,2)‘ )]+

+ (1 - Oé) |:06[P1(\?,1,2) cg&,l,z)'ZJZ + (1 - 06[7)1(\?,1,2) cg&,l,z)' )CZ:| <€ f[PI(\?’l’Z) cg&,l,z)‘

and thus

@[P§\?7172>7cg\<}7172):l’1 +01- 05[731(\?7172)74\?7172): )Cl)} € Fpren

which yields a contradiction with the fact a[P(a,Lz) Je” > Qe The proof can be adapted
M "M B

to the other cases.
Finally, it can be easily checked that for all [P, ¢1], [P2, 2] € S, for all f,g € A,

3

min /uofdp:a min)/uofdp—i—(l—a)/uofdcl

peo(PT) peco(P1

(«=)Conversely it is easy to check that conditions 1 to 5 of theorem 2 hold and thus following
the preceding proofs, axioms 1, 3 to 5, 7, 10, 11.

We just have to check that axiom 13 is satisfied. Consider f,g € A, [P1,c1],;[P2,c2] € S,
such that (f,[{c1}c1]) = (g,[{c2};c2]) and for all p € €6(Py), there exists ¢ € ¢o(P2) such that
(f. [{p}.p]) = (9.[{a}. 4]

Given the representation obtained, this implies first that

/’U,Ode1Z/’U,OgdC2

Furthermore, Vp € co(/P1). there exists g € co(P2) such that [wo fdp > [wuo gdg. Hence,

min /uofdpz min /uogdq

pE€co(Pr) q€co(Pa)

Thus,

o min)/uofdp—i—(l—a)/uofdcha min)/uofdp—l—(l—a)/uogd@

peco(Pr peTo(Pa

and thus (f, [Pl:cl]) = (g, [PQ:CQ])' u
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Proof. [Theorem 4]
Let Vi(f,[P.c]) = min [wu;o fdp, with i € {a,b}, defined as in Theorem 2.
PEFp
[(7’) = (7’7’)] Let (f [P C]) € ABXS- By deﬁnition: (kPea(f,['P,c:): [P C]) ~a (f [P C]) Since bl
is more uncertainty averse than =, one has: (kpe,(f,1p,c); [P; ) =s (f; [P ¢]), and, by definition,

(f.[P.c]) ~b (kpey(r,ip.c): [P.cl). Therefore, (kpe,(s,p.c): [P:cl) Zb (Kpey(r,p.c): [P c]). Hence,
Ua(Kpey(f,ip,c)) = Ua(Kkpey(s,p,c)): 1€, using the normalization u;(dp) = 0 and u;(0pr) = 1
Ha(f: [PC]) 2 Hb(f: [PC])

[(i1) = (4i7)] Let (f,[P,]) € Ag x S. Using the normalization u;(dg) = 0 and u;(dp) = 1,
we get: Vi(f, [P,c]) = I(£,[P,d)), with i € {a,b}. Assume that I(f, [P, ]) = I,(, [P,c]).
This implies Vo (f,[P.c]) > Vu(f,[P,d]). for all (f,[P,c]) € A x S. Therefore, using the

representation given in Theorem 2, n}__m Juo fdp > min [ wo fdp. Assume Fpe & ,7:[’;, o
pe a EF EA EA
[P,cl PSS g

Then, there exists p* € ,7:[‘;, . such that p* ¢ ,7:[1;, - Hence, using a separation argument, we
know there exists a function ¢ : § — R such that [ ¢dp* < min [ ¢dp. Since S(P) is a finite

pe]—'[pﬁ]
set, there exist numbers a > 0 and b, such that for all s € S(P), (ad(s) + b € u(Y)). Then, for

all s € S(P), there exits y(s) € Yi such that u(y(s)) = ad(s) + b. Define f by f(s) = y(s) for
all s € S(P), and f(s) = dp for all s € S\ S(P). We then obtain: [wuo fdp* < min [ uo fdp.

pe]-'p,’c]
Therefore, min [wuo fdp < min Juo fdp. ie., Vo(f,[P.c]) = a(f, [P, c]) < Vi(f,[P.c]) =
pe vacl pe [P,c]

Vu(f, [P, c]), which yields a contradiction.

[(i7d) = (i)] Straightforward. m

SSince f € Ap, we can, using the normalization above, restrict our attention to u, = u, = wu.
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