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Abstract

We consider a diffusion process X; regularized with (small) sam-
pling parameter . As in Berzin, Leén & Ortega (2001),we consider a
kernel estimate &, with window h(e) of a function « of its variance.
In order to exhibit global tests of hypothesis, we derive here central
limit theorems for the LP deviations such as

1 h% -~ p ~ p
7 \2) (8 - allf ~Eja: - all).

Key words. Variance estimator, diffusion process, kernel, LP-deviation,
Central Limit Theorem.

Résumé

Observant un processus de diffusion X; regularisé en utilisant un
(petit) parametre d’échantillonnage e, nous considérons, comme Berzin,
Leén & Ortega (2001), un estimateur & noyau &, d’une fonction o de
sa variance. En vue d’exhiber des tests d’hypotheses globales sur cette
fonction ¢, nous prouvons ici un théoréme de limite centrale pour des
déviations L? de la forme

1 h % -~ p - p
7 \2) (8 - allf ~Eja: - all).

ou h(e) désigne la de fenétre de 'estimateur & noyau considéré.

Mots Clef. Variance d’une diffusion, noyau de convolution, déviation
LP, théoréeme de limite centrale.
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Asymptotics for the LP-deviation of the
variance estimator of a diffusion

Paul DOUKHAN and José R. LEON

1 Introduction and main results

Let (W})i>0 be a standard Brownian motion. We are given a diffusion process
defined by the equation

dXt = O'(t)th + b(Xt)dt, where o > 0. (1)
In this work we consider the estimation of the function o(¢) when the observed
process is
1 oo t—
X; = —/ @ ( u) X, du. (2)
€ J—o0 €

More precisely as in [2], we consider a function G € L?*(¢) with ¢(z) =
—L_¢=%"/2 and continuous and symmetric densities ¢ and K with support in

(=53]
For any q > 1, define [|f]l, = (/2% | £(£)|7dt)
@(t):%/_i}((i“)@(ﬁX(u)>du, (3)

el

1
. We now set

in the previous relation h = h(g) — 0 as € — 0 is the smoothing parameter:
the dependence of h on ¢ is implicit throughout the paper. Then @.(t) is the
non-parametric kernel estimate of the parameter

a(t) = E[G(o(H)2)],  telo,1]. (4)

where Z ~ N(0,1) will denote a standard Normal random variable through-
out the paper. Berzin et alii [2] quote several interesting special cases:

o if G(z) = 2% then «a(t) = 0*(t) (recall that [E|Z|> = 1),
o if G(z) = \/3|z| then a(t) = o(t) (recall that |Z| = ,/2),

e if G(x) = log|z| — 27 then a(t) = logo(t). For this, quote that the
constant vy also writes v = [ logx ¢(x) dr = 0.57721566 - - -.

1



Using the notion of stable convergence, as in [2], we shall prove that this is
enough to consider b = 0. In this case our process is a time change Brownian
motion.

Define

B.(t) = \/h/=(a.(t) — Ea. (1)) (5)

a pointwise Central Limit Theorem
ﬁa (t) i>E—)O N(Oa 22 (t))

is proved for a suitable ¥?(¢) explicited in [2]. Alternative estimation tech-
niques and CLTs are proposed in Soulier [11], Genon-Catalot et alii [5] and
in Brugiere [3] under close frames.

Another expression will also be usefull

B-(t) = \/h/e(@x(t) - alt)). (6)

If the parameter function is C*? then the bias of the estimator a.(t) is
classically O(h?) and if one sets h = £'/°, the centering in the previous
convergence may be replaced by «(t) to the price that the Gaussian limit has
a non zero mean. The reader is deferred to proposition 1 below for precisions.

In the present paper, our aim is to provide global estimation of the pa-
rameter o in LP for p > 1. We consider the LP deviations

1

D,. = ﬁ(llﬂelli—lEllﬂgHZ), and (7)
1 ~ ~

D,. = ﬁ(llﬁallﬁ—ﬂﬂ“ﬁallﬁ)- (8)

Such expressions may be used to make global proofs of hypotheses on the
diffusion’s variance. Such questions have a very special interest in finance.
Expression (7) may be used with resampling. Soulier [11] proves a CLT for
the case p = 2 under wavelet estimation frame. Using a Poissonnization
argument Beirlant & Mason [1] obtain analogue results for the difficult case
of kernel density and regression estimates based on independent samples.

Let us expand the (even) function g;(x) = G(o(t)z) in terms of Hermite
polynomials

gi(z) = i:oagn(t)HQn(x), with ag,(t) = QLTL!IEG(O-(t)Z) - Hon(Z).  (9)
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We set f x ¢ for the convolution of f and g. For ¢ € [0,1] and w € [-1,1],
we define

2 = IKEY o ot [ (F250) as o
K« K(w) B
M) = o €11 (11)

Let (Z1, Z3) be a standard (0, I5) Normal vector, set using notation (10)

%2 = /_11 Cov (‘\/1 —TI?(w)Z; + T'(w)Z,

Theorem 1 Assume that the diffusion (1) is such that the function o is con-
tinuous and o > 0 over the compact set [0,1]. If moreover there exists some
q > 4 such that IE|G(0(t)Z)|P < oo and lim,_oh = lim,_,geh~20-1/9) = 0,
Then

p,IZzl”> clw-/o1 S2(t)dt. (12)

Dp,g i)gﬁo N(Oa 212))

Remarks. Using lemma 5 below proves that the same CLT holds for
1

Doe= == (I8l -T2y [ (=()yat)

and where ¥%(t) is defined in eqn. (10) is also the limiting variance in [2]’s
CLT.

Let boy = 55IE|Z|PHyp(Z), then we also may write

52 = 31, (2H)! / T2 (w) duw / $20(4) dt.

As in Jacod [7], we shall work as previously in [2], the proof of the theorem
will use two steps, the first one assumes that b = 0, which mean that X ()
is a Brownian with a time change. Hence a first section of the paper will be
devoted to recall facts related with this special case.

Proposition 1 Assume that the even function G is C? a.s. and assume
that o > 0 is a C*—function. Let b.(t) = IEa.(t) — a(t). If moreover lir% h =
e—

. €
ll_%ﬁ_o then

lim b2 sup
e—0 tef0,1]

be(t) — %o (1) / K (s)ds




2
If moreover, lin%ﬁ = 0 and the functions G,o are C*® the norming factor
e—

h=2 may be replaced by h=3.
As usual, use of kernels K with higher order yields b.(t) = ca(™ (t)h" +o(h").

We now turn to the asymptotic behaviour of D, .. Still assuming that
the functions o, G are a.s. twice differentiable, then the suboptimal window
case, lim,_,o h°/¢ = 0 leads to the same result as theorem 1.

h5

D 2 . . .
Dpe —0 N(0,%5) if ll_r)% ~= 0. (13)

. . . 1
We now examine the optimal window case, h = Ae?

Theorem 2 Assume that the function o > 0 is C?, and that G isl a.s. twice
derivable and has a second order bounded derivative we set h = \es for some

constant X > 0. If IE|G(0(t)Z)|* < oo then

Dy~ N(0,7).
where, as in theorem 1, 7'5 = //G)(w,t) S% (t)dw dt where, using notations
in proposition 1, c(t) = )\%a(t)/SZK(S) ds, and

O(w, 1) = Cou (‘\/1 “T2(w) 2y + D(w)Zs + e(t)

Examples. In some special cases of interest, the function GG is homogeneous
G(oz) = 0"G(z) for o > 0 hence ¥2(t) = Ao (t) for a suitable constant
A > 0 only depending on ¢ and on G and, this makes much simpler the
expressions of X2 and 77. Examples of this situation G(z) = \/g || and

" 12+ c(t)|”> .

G(x) = x? have already been sketched.

Analogue considerations are valid for the function G(z) = log|z| — 7 for
which only ag(t) = logo(t) — v really depends on ¢ while as,(t) = as, =
silElog | Z|Hy,(Z) for n > 0, and X*(¢) = 2 only depends on ¢. Quote
that 212, does not depend on the function o(-); this however does not hold for

the companion variance 7.

The paper is organized as follows, this first section introduces the problem
and gives the main results. Section 2 is devoted to a series of technical lemmas
usefull in the proof of the main results. The main results are proved in section
3 while the proof of those preliminary lemmas is given in section 4.

4



2 Collecting some facts in the case b =0
The following simple facts are essentially collected from [2]. Set
62(t) = Var X.(t). (14)
Lemma 1 We have
Cov (X-(), %.0) = 5 [ (=2) 0 (2 Py
= é/gp(x)(p <x + f ; S) o?(t —ex) dx

Note that this expression vanishes if [t — s| > 2¢:
Then it follows that \/e6.(t) — ||¢|l20(t) as e — 0 where the previous
convergence holds uniformly on [0, 1].

We often work with the following “almost” white noise process which we
shall denote for simplicity’s sake

X.(1)
o= (1)

Z(t) = ~ N(0,1) (15)

Setting pe(s,t) = Cov(Z.(s), Z(t)), note that the previous lemma implies

Jo(@)e (x+ﬂ)02(t—6x)dx
\/fSO Jo?(s —ex)dx [ ¢*(x )02(t—gx)dx’

pa(sat)

this yields
~ / / K (u)K (v) Cov(G(o (t) Z.(t—uh)), G(o(t) Z.(t—vh)))dudv

The above covariance is a function of ¢ and of p.(t — uh,t —vh). Now Mehler
formula proves that

E(. / / K(u Z o (t — uh)an(t — vh)(2n)!

[ @)z + %)a?(t —uh — ex)dr "
X ( [ ©3(x)o?(t — uh — ex)dx ) dudv
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Finally, the change of variable z = % implies TE(8.())> — 2%(t) as
e — 0 where eqn. (10) defines X(¢). Even if it is asymptotically Gaussian,
the process f.(t) is not Gaussian and LP-norms cannot be deduced from
Mehler formula. Another way to proceed is used in Giné et alii [6]. We also
quote that .(¢) may be rewritten as the partial sum of 1-dependent random
variables.

N
Lemma 2 Set N =2 [2—’2], then we have (3.(t) = (- (t) with
k=1

) = [ e (o (L 2 un)

= [l

()

and the N random variables i -(t) are 1-dependent for k=1,...,N.

-

Since the process Z.(t) is 2¢—dependent we obtain this lemma from relation
h/N > . This also yields

M
Lemma 3 Set M = [2%]7 then ||B:||b = Yio with
=1

e (B ()

]2
7. (t — uh
_ EG (M 7t — uh))) du
]2
and the M random wvariables Yy, are 2—dependent for ¢ = 1,..., M if we

assume morever that h < /2.

p

dt

Hence the technique of proof of the main theorem will be based on a Lin-
deberg Central Limit theorem for m—dependent random variables. The two
first moments of the above random variable are difficult to calculate directly
and thus, in order to avoid this problem we shall proceed as in Giné et alii
[6]: we use a Gaussian approximation of the previous sums j.(t).

The proof of the main theorem will be based on the following serie of
lemmatas. They will provide (in particular) the asymptotic L? behaviour of
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Lemma 4 (approximating expectations) Letd € IN. Letxy,,...,Tnn €
IR? be centered at expectation, m—dependent for some integer m > 0, and
such that for some definite d x d covariance matriz V.

Var(Zxk,n> —nooo  V, and
k=1

n
ZZE||xk,n||3V(dpq) —n—00 0
k=1

Write xj, = (JU%)thégd- Then if Z = (ZW,...,Z@D) ~ Ny(0,V), there

exists a constant ¢ (only depending on d and on the norm || - || on IR®) such
that
d n © p d ® » n 3 4
EIL Y = —ZEH 1z < c(Z IE|| x| ) ,
=1 lk=1 = k=1

whereézl—éifdzl and § =1 (1—”‘[;: 1) if d > 2.

Lemma 5 Assume that hr%h = lim % = 0. Use notation (10), then
e—0

B 8.7 = ZE|Z|”/01(Z(t))”dt +o (%) . ase 0,

In order to provide the asymptotic variance of D, . we make more precise
the second order properties of the random process (. (t))icjo]- Set

Gy = 2 (16)

\/ Var (.(t)

To obtain the asymptotic behaviour of Var D, ., we shall need the asymptotic
behaviour of Cov (f.(s), 8:(t)) easily deduce from the following lemma.

Lemma 6 Assume that hm h = hm% =0, then

Cov (B.(s), B.(t)) ~ / KK <u + t_TS) dux
/ Z 2n (8)a, (t)(2n)! (% /11 o(x)p(r + z)dx) " dz.



Mehler formula allows to calculate moments of non linear functionals of a
Gaussian process. Hence if the process 3. was Gaussian we should be able
to derive the asymptotic behaviour of D, .. But this is not the case. Using
Gaussian approximation of 3., the following lemma indicates what would
be the asymptotic behaviour of VarD, .. We thus consider the centered
Gaussian process (B:(t)):cp,1) such that

Cov (B.(s), B:(t)) = Cov (B:(s), 5:(t)), Vs, t € [0,1].

Lemma 7 Using notations (10)-(11), we assume that lim h = lim —
E—>

e—0 h
Let by, = 55IE|Z|PHo(Z), then

Var || Bo|| ~ b boy (2K)! /F%(w) duw - /22”(15) dt.
k=1

Remark. Let (71, Z,) be a standard (0, I;) Normal vector, then the previ-
ous expression also writes

Var|| Be ||} ~ h/Cov (‘\/1 —T%(w)Z, + T'(w)Z,

3 Proofs of the theorems

p
,|ZZ|”> dw- [ S (@)t

3.1 Proof of theorem 1: case b =0

As quoted in lemma 3, D, . is a sum of the 2—dependent random variables
(Yie = EYio)1<k<nr with M = M. = [£].

Let now s,t € [0, 1] be such that |s — | < 2¢, then it is simple to deduce
from lemma 2 that the bivariate random variable (0.(s), 3:(t)) = z1+- -+ N

writes as the sum of 4—dependent vectors. Thus lemma 4 implies with d = 2

TE|.(5)P|B- () — TE|B.(s) [P |B- ()| < (%)5.

Apply again this lemma 4 but now with d = 1 allows us to substract expec-
tations and this yields finally

€

Cov(|(5)P7, 18:()7) = Cov(| B.(s)P", |B.(0)) < () + ol
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where ¢ is provided in lemma 4, this is the one for d = 2. In order to compute
an approximation of Var D, . we first expand it as

1
Var Dy = 3 [ [ Covl|B.(3)P,8.(8) ") ds dt

where s,t € [0,1] and with lemma 3, we check that this is enough to assume
|s — t| < 2e. Hence the gain provided by the corresponding factor € proves
that the bad value of the rate in lemma 4 is unimportant in the case d = 2.
Indeed we derive here the bound

‘Var D,. — 22‘ < \/% -o(1)

which is enough for our purpose.
Ifg>1+ ﬁ, then lemma 7 now yields

Var (D, ) — -0 ZZ.

The CLT will follow from the Lindeberg condition

4

M. 1
. = E|—(Y.,.—IEY..)| —.-00.
n kz_:l \/ﬁ( k, k) =0

Using again lemmas 4, 5 and 6 proves that if ¢ > 4
IE |V, — EY;.|* = 0@

because it writes also as a the expectation of a quadruple integral on a set
with measure M~* and such that the integrand has an expectation uniformly
bounded by 2*sup,¢o ) [EG*(o(t)Z). This yields

N
Remark. Set

1 ! p p s
Dpee = || (B(5)P ~ Bl ()I7) ds. a7

The previous proof provides in fact a Donsker type invariance principle (for
m—dependent sequences, again). Sketching the expression in theorem 1, we
set

20 = [ 11 Ow)du- | "5 () ds.
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_ t N _
Set D, = / ¥,(s)dW, for a standard Brownian motion (W});c(,1], then
0
Dy ixsﬁo Ep,t, in the space C([0,1]). (18)

3.2 Proof of theorem 1: the general case

Notations. For clarity’s sake we add the drift parameter as an index, in
the underlying probability law which we now denote P®) and expectations
E®. By another hand, the expression relative to the Brownian motion with
a time change (i.e. b = 0) now write respectively as E(®(t), and IE®.

An essential lemma links the expectations relative to IE? and IE(©.

Lemma 8 (Girsanov formula, e.g. in [7]) Let H : IR — IR be continu-
ous and bounded then:

EYH(D,,) = E® {H(D,,,E) exp < /0

1

b(X,)dX, — %/01 b2(X5)02(s)ds>}

An independence argument called stable convergence is also developped in
[7]. It will conclude to the convergence in distribution of D, . under the
general law P®) with the help of the Cameron-Martin formula which states
that

E® exp (/01 b(X,)dX, — %/01 b2(Xs)a2(s)ds> ~1.

We are thus aimed to prove that the couple ((Xt)te[g,u,Dpﬁ) converges in

C([0,1]) x IR (under the distribution P) to ((X)ieo1,£pZ) where the
Brownian motion with a time change (X);c[,1] is independent of the standard
normal Z.

From now, we only work under the probability distribution P©®. Thus the
previous asymptotic independence hold if the bivariate process (E; ;)cjo,1] =
(X4, Dpet)icpo,) converges to a process (Ey)icpoa] = (Xt Dpy)icpo,) as € — 0
such that (X;)¢co,17 is independent of D, ; (we shall prove it for (Dp)sefo,1])-

As the family of distributions (Dj . ;):c[0,1] converges under the probability
distribution P() as ¢ — 0, this implies its tightness in C'([0,1]) hence the
bivariate process (E. )i, is also tight in C([0, 1],IR?). Consider now any
limit point (E)icjo1] = (X¢, Dpy)icpo,) (in distribution) of this family, as
e — 0. Since (D,.; — D,.,, X, — X,) is independent (always under P®)
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from D,.p — D,. ¢« if s <t < & < ' satisfy s’ —¢ > 2¢ and it is also
independent of Xy — Xy because the intervall [s, ] and [, #'] do not overlap.
This implies that the process (E});cp,1) has independent increments. This
process is also a second order process because each of its coordinate have
this property. Hence (£;)cjo,1) is a Gaussian process.

Independence of (Et)te[o,l] coordinates now relies on their orthogonality.
The only point we need to prove is thus that under the probability distribu-
tion P

Cov(Xs, Dpet) —es0 0, Vs, t € [0,1].

Consider a Gaussian process (Xi, B;)iep,1) With the same covariance as
(X4, Bet)tefo,]- Note that

t t
Cov <Xs, / |5E,u|pdu> = [ Cov (X, |6-.l?) du. (19)
0 0

Using lemma 4 with d = 1, we prove that the previous integral has the same

¢
asymptotic behaviour as / Cov (X, |B:u|?) du. Indeed we obtain
0

g>{1_1/(1}/2

X5l — BX Bl <

Y
since, first conditioning w.r.t. X, makes that lemma 4 applies. In or-
der to proceed we first write A.(s,u) = Cov (X, |feul’) = 0if u > s+

s+e
e. Now we deduce that / A (s,u)du = O <i> from the relation
5—2¢

Vh
5—2¢
sup,cpo,17 IE|0:(1)[*” < 0o. We thus only need to consider /0 A (s,u) du.

Now conditioning distributions keeps Gaussianity for random vectors.
Hence, integration w.r.t. X;’s distribution will conclude the above inequal-
ity. For this, we still need to check that the conditionned r.v.’s are also

m—dependent. Write A.(s,u) = /x]PXS (dx)IE(|B:(u)|P/Xs = x). Recall

that f(.(u) is a non-linear function of such 7, ., defined in (15) with v —
vh < s —e. Conditionning such 7, ,, w.r.t. X, = z allows to write
Zy—vh = /eVupeT+ Hyy, for some uniformly bounded and determinist v, .
and some Gaussian H,, . because Cov(X;, Z,_,n) = O(v/£). Moreover the
resulting variables are still m—dependent. Finally integration of the bound
in lemma 4 w.r.t. Px,_(dz) is legitimated by the bound (x V 1)"(g/h)'/?=1/2
for a suitable r > 0.
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The RHS in eqn. (19) vanishes for any u € [0, 1] because the function
x + |z[P is even while the function z — x is odd. Now Mehler formula proves
that this expression equals 0 which concludes the proof of theorem 1.

3.3 Proof of proposition 1

Write

/K JEG (%Z) ds — a(t).

Using lemma 1, setting # = 02, we obtain the following uniform estimates

\/Ed(t_hs) 2_ _ g / 1822” 0 2
(—MZ ) = 0(t) — sh'(t) + 55" h*0" (1) + ().

Consider the function g(z) = G(y/|z|), thus g is also a.s. twice differentiable

and
= /K(s)IEg ((M>222> ds — Eg(0(t)Z?).

el
Use of Taylor formula yields

b(f) = IE/K ( _sho' (1) + 252h29”(t))Z2g’ (601)27)
+ §S2h29'2(t)z4g" (0(75)22)) ds + o(h?).
Using symmetries yields with the relation g(u) = G(u?),

b.(t) = h;/ ’K(s )ds-IE(a”(t)ZG’(a(t)Z) +a'2(t)Z2G”(a(t)Z)) + o(h?).

The remark concerning the C® case follows from carefull statements of
the above relation with the bound &% = o(h?).

3.4 Proof of theorem 2

As previously, we make use of the stable convergence argument in order to
deal only with the simpler case b = 0. We assume below that b = 0.
Write (. (t) = f:(t) + c.(t), with

ﬁ ﬁ K(s)ds + o1 )) (20)



We thus write
1 ! p p
Dye = _\/E/o (18:(8) + c. ()" = IE|B:(¢) + ce(t)[") dt

Proof of relation (13). Using the bound

18+ = |BP| < plel (18P + [eP7).,

we write the following integral (still with |s — ¢] < 2¢)

Var (D, — D) < 4 [ [TEIB)P — 18- (B — 15-()P)lds it

Assume lim, o h°/e = 0 we thus obtain lim._,o Var (D,. — D,.) = 0, hence
(13), from the facts that supcp 1y [|8:(5)[lop—1 < supsepo1y l|8:(5)ll2p < 00 and
e/h — 0.

Proof of theorem 2. Replacing 5 by 5+ ¢ and ¢ by ¢. — ¢, we prove as
above that R
lim Var (D, — D,.) =0,

e—0

where
Do = —= [} (150 +(0)F ~EI50) + cl0)) .

The proof of theorem 2 now follows the same lines as that of theorem 1 up
to very simple changes in lemma 4. This lemma was indeed dedicated to the
approximation of IE f (1 +- - -+ ;,) for m—dependent vector valued sequences
and for the special function f(x1,...,z4) = [I%, |z¢|?, very small changes en-
tail the same result with f(21,...,24) = [1%, |z¢+c|? for fixed real numbers
c1,...,cq. Indeed, one may easily rewrite a version of this lemma for which
the measurable function f only satisfies |f(x1,...,24)| < TTe, |7? V 1.

4 Proofs of the lemmas in section 2

4.1 Proof of lemma 4

The proofs are distinct for d = 1 and d > 2.

13



Case m = 1. Shergin ([9], theorem 1) proves that

n
<Y Elz,l?.

k=1

A, = sup ‘P <Z T < x) —P(Z <x)
IEIR k=1

Recall that the following relation holds for each random variable in LP
E| X :p/ o” P(|X| > z)dx
0

the difference of expectations to approximate is thus an integral over IR =
1

(=00, 00). Divide it for |#| < M = A, and |z| > M. Rosenthal inequality
[8] up to order pq (this also holds with m—dependent sequences since sums
may be rewritten as m sum of independent variables) and Markov inequality
provide a bound for the the second term while the first one is bounded by
using the previous result in [9].

Case m > 2. In order to handle the same technique as above, we need to
develop a bound analogue to that in [9].

Lemma 9 Assume that the assumptions in lemma 4, then
1
n 3 2
r( <3 Bl )

k=1
Notation. For simplicity, set

o

The proof of lemma 4 now follows the same lines as for d = 1 up to the
following expressions

A, = sup
zelR*

n
Z Tkmn

IEE ) ~K(1Z) < 7)

< ) _B(|Z] < )

EX, - X, = p / / g
X ]P(X1<x1,...,Xdgxd))dxl---dxd.
Using for example ||(z1,...,2q)|| = max{|x,|,...,|zq|} implies that the

difference of product moments to bound is bounded above by

Cp /0 PN (7)) d.
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for a constant ¢, > 0 only depending on p. Still using the same tricks as
above yields the result, but now the truncation is at level,

%,

n
M= =" TB |
=1

4.2 Proof of lemma 9

The proof will use the following lemma which is an easy extension of [10] to
a vector valued case.

Lemma 10 (Lindeberg-Rio for m-dependent sequences) Let d € IN.

Let xv,...,x, € IR be centered at expectation, m—dependent and such that
IE||xk])> < oo for k = 1,...,n. Then there exists an independent succes-
stom Y1, ..., Yn of centered d—dimensional random vectors with the following

property. Let f : IR* — IR be a C®—function with bounded partial derivatives
of order 3 (write || f" |loo = SUDgy n;|<15iz1,2,33 1 (8) (R, hay ha)l), then if we
consider

An(f) = IE(f(z1 4+ +m0) = flar + -+ 20)),

there exists a constant ¢ > 0 such that

[An(H)] < ell f"lloo D BBl

k=1

Remarks. In view of the theorem relative to the equivalence of the norms
in the d—dimensional space we may choose any norm on IR% and the constant
c only depends on this norm and on m.

A simple use of Taylor formula at the origin and with order 3 proves that
expression A, (f) is well defined.

With lemma 10 we consider a C*—function gs, such that gs.(z) € [0,1]
for each x € R? and gs.,(v) = 1 if ||z < u, gs.u(zx) = 0 if ||2|| > u + 5. This
is possible to construct such functions satisfying moreover [|g§’,[|oc < 7.
Let now §* = 37 IE||x4]|?, then the result follows in a standard way (see

e.g. [4]).

4.3 Proof of lemma 10

Notations. The second derivative of f at point s is a (symmetric) bilinear
form on IR, Tt will also be considered as a (symmetric) d x d matrix and we
shall denote

15



f”(s) oy — Z 0?

f(s) vy if v = (vi5)1<ij<d-

iji=1 8:17 ij
For simplicity we shall handle only the case m = 1. We construct in-
dependent Gaussian random variables y, . .., y, independent of (z1,...,x,)

and such that yp ~ N(0,vy) with vy, = Eztz, + Ex!_ 2, + Extz,_ for
k=1,...,n, where we set o = 0.

Remark. In order to complete the proof in the general m—dependent case
we should have defined

v = IE)xfcxk + f: (IE:E',%F,_,:E;C + Exfcxk_g)
=1
fork=1,...,n, where xy =--- =2, = 0.
Set sy =x1 4+ + T, g = Ypr1 + -+ yp if k =0,...,n, with sg =0,
" :A(s)‘in ([10], definition 3) we decompose
Aulf) = T(f(sn) = F10) = 3 (gl = Aus()), - with

1
Al,k(g) = ]Eg( )—Q(Sk 1) - 59”(5/& 1)°Uk, and

1
Aoi(9) = IEg(sp—1+ykx) — g(sk—1) — 59"(%_1) e v, and where
fr(x) = Ef(x+t), hence ||/ |0 < If" |-

In the above display ¢ : IR? — IR denotes any C*—function with third order
bounded partial derivatives. The bound

[82,(9)] < ellg”lloo (Bllzel® + lox-1]*) (21)

follows from Taylor formula

lg(s +y) —g(s) — g'(s)(y) — %g"(S)(y, )|l < éllg”’llooIEHyll?’

applied with s = s,_; and ¥y = y; and the independence properties of
Yi,...,Yn, for a suitable constant c¢. To convince himself, the reader may
restate the formula

Eg" (sk-1) Yk, y) = Eg"(sk-1) ® v

16



The terms Aj,(g) are more delicate to expand. Using again the previous
Taylor expansion (now y = xy) we see that, up to a term bounded as in eqn
(21), we only need to consider the expectation of

1 1
9'(si—1) () + 59”(3k—1)($ka T)) — 59"(81@—1) o, =01 + 0o
with
! 1 n t t
0 = ¢'(sp1)(xg) — 59 (sk-1)® (]Exk_lxk + Exkxk,l) ,
1
b2 = g"(sh—1)(wp, 71) — 59"(%_1) o Exi 1y,
Rewrite
1
0y = 5(9”(%—1) - g”(Sk—Q))(fEka T)
1 1
+ 59“(%72)(%,%) - ig"(sk,l) o Bzt ;.

Using a first order Taylor expansion yields as before with independence of x,
and sj,_o

E6, = = (Bg(sp2)(@p 7) — 9" (55-1) @ Ealay,)

(Bg"(sk-2) — ¢"(sk-1)) ® Eajxy.

DN =N =

The mean value theorem provides now the expected bound for IEd,, analogous
to that in eqn. (21).
The other term considered writes

1
0 = g"(sk-2)(Tp1,71) — 59"(81@—1) J (E$2_1$k + IE&EZLEkq) +R

where |R| < c||¢”|[|IE||zk]|||zk_1]|*> is bounded as in the above eqn. (21).
Hence, using again the mean value theorem implies lemma 3.

4.4 Proof of lemma 5

Set d = 1. Fix t € [0,1]. We apply the approximation lemma 4 to the random
variables xy = (4 () for 1 < k < N; for simplicity also set 29 = zy41 = 0.

17



Then setting y,...,yn, a sequence of independent and centered random
variables such that, IBy? = [Exy 17y + [Ez? + Expz,,, we deduce that, for
a suitable constant ¢ > 0,

Elo0P - BB <e (3 5) (22)

And we also deduce from (10) that

1

7= (8 - mizP [ (S(oyd) <00

4.5 Proof of lemma 6

Using lemma 1 with Mehler formula yields

Cov (5(s), () ~ = [ [ K(w) zazn ) (£)(2n)! A2 (s, £, u, v) du o

with
A (s, t,u,v) = ! / (z) <x+t_8+hu_v>02(t—vh)dx
ST (s — wh)S(t — vh) LA £ £ '
. - S u—v .
The change of variable v +— z = +h yields the result if one

€ €
make use of Lebesgue dominated theorem (the corresponding integrals are
uniformly convergent).

4.6 Proof of lemma 7

Using again Mehler formula, we get

Var || B. ||p—//2b% (2k)! CovZ* (B.(s), B.(s))SP ()22 (s) ds dt.

Now the change of variable s — w = and a systematic use of Lebesgue

convergence theorem yield the result.
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