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Abstract. This paper presents bayesian inference procedures for the continuous
time mover-stayer model applied to labour market transition data collected in dis-
crete time. These methods allow to derive the probability of embeddability of the
discrete-time modelling with the continuous-time one. A special emphasis is put on
two alternative procedures, namely the importance sampling algorithm and a new
Gibbs sampling algorithm. Transition intensities, proportions of stayers and func-
tions of these parameters are then estimated with the Gibbs sampling algorithm for
individual transition data coming from the French Labour Force Surveys collected
over the period 1986-2000.

Résumé. Cet article présente deux procédures d’inférence bayésienne adaptées au
modèle du mover-stayer (mobile-stable) en temps continu. La première procédure est
un algorithme avec fonction d’importance, la seconde un échantillonneur de Gibbs.
L’application concerne des données de transitions individuelles sur le marché du
travail, observées en temps discret. Les méthodes développées permettent d’inférer
la probabilité d’enchâssement (embeddability) du modèle en temps continu dans le
modèle en temps discret. Les intensités de transition entre états de participation au
marché du travail, les proportions d’individus stables, et plusieurs fonctions de ces
paramètres sont ensuite estimées à l’aide de la procédure de Gibbs pour des données
individuelles de transition provenant des panels des Enquêtes Emploi collectées par
l’INSEE entre 1986 et 2000.



1. Introduction

The econometric literature on labour mobility makes often use of Markov chains to analyze
individual transitions observed with discrete-time panel data. Data used in this field come
generally from Labour Force Surveys recording individual labour market positions (such as
employment, unemployment, or out-of-the labour force) at some given date. If such observations
are repeated through time (e.g. at equally spaced dates) for the same individuals, the analyst
has typically access to individual panel data. For example, in Labour Force Surveys which are
yearly conducted by the French National Statistical Institute (INSEE), the third part of the
sample is renewed each year, which implies that one third of the sample is surveyed three times,
namely in March of three successive years. In such a case, we may observe that an individual
is employed in March of the first sampled year, that he or she is unemployed one year later,
and that he or she is employed at the last interview. This does not imply that this individual
has experienced exactly one unemployment spell between two successive months of March. For
instance, he or she could have been unemployed during a very brief period, say between June and
October of the first year, before being hired in a job with a short-term labour contract finishing
in January next year, so he or she is observed to be unemployed in March of the second year.
Thus, in general, Labour Force Surveys do not provide observations of continuous labour market
histories, and they do not allow to identify directly quantities such as the mean durations of
individual employment and unemployment spells, or the probability to become unemployed at
the end of an employment spell, which are crucial parameters for the analysis of labour market
dynamics.1

One way to draw statistical inference on such parameters is to assume that the discrete-time
mobility process is generated by a continuous-time homogenous Markov chain, whose parameters
can be estimated through the quasi-Newton (or scoring) algorithm proposed by Kalbfleisch and
Lawless (1985) and carried out by Fougère and Kamionka (1992a) on French data. However
this model has a main drawback: generally it underestimates the probability of staying in the
same state over a period longer than the sampling interval.2 Another difficulty may appear: in
some cases the discrete-time Markov chain cannot be represented by an underlying continuous-
time Markov process. This problem is known as the embeddability problem which has been
surveyed by Singer and Spilerman (1976a, 1976b). Geweke et al. (1986a) established a bayesian
method to estimate the posterior mean of parameters associated to the Markov process and some
functions of these parameters, using a diffuse prior defined on the set of stochastic matrices.
Their procedure allows to determine the embeddability probability of the discrete-time Markov
chain and to derive confidence intervals for its parameters under the posterior. To overcome
the main disadvantage of the time-homogenous Markov chain model, one possible solution is to
incorporate a very simple form of heterogeneity accross the individuals: this is done in the mover-
stayer model, which is a stochastic process mixing two Markov chains. This modelling implies
that the reference population consists of two types of individuals: the “stayers” permanently
sojourning in a given state, and the “movers” evoluing between states according to a non-
degenerate Markov process. Frydman (1984) has shown that the proportion of stayers in each
state and the transition probabilities of movers can be identified with panel data containing at

1See, e.g., the recent literature on changes in job stability and job security in the United States, in particular
papers by Gottschalk and Moffitt (1999), and Neumark et al. (1999).

2See Singer and Spilerman (1976b) for some empirical evidence on this point.
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least three observation dates. Our paper focuses on three points:

(i) first, we propose a Bayesian procedure to estimate the continuous-time mover-stayer model
from individual transition data observed on a discrete-time axis. This procedure extends
the work by Geweke et al. (1986a), devoted to the estimation of the continuous-time
Markov chain parameters from discrete-time panel data.

(ii) we develop both an independence sampling method (importance sampling)3 and a Markov
chain sampling method (Gibbs sampling) to estimate the model. A practical reason for
using these methods is that, when the maximum likelihood estimates are on the boundary
of the parameter region, it is not easy to obtain finite sample results. Both procedures
are applied to individual transition data coming from the 1986-1988 French Labour Force
panel survey, conducted by INSEE, the French National Statistical Institute. Both methods
work quite well and their estimates are very similar.

(iii) Then the Gibbs algorithm is applied to French Labour Force surveys collected from 1986
to 2000.

As it is usual in that type of study, states that individuals can alternatively occupy at any
point in time are unemployment, employment and out-of-the-labour-force states. Parameters
of the mover-stayer model are then obtained by gender and age. Light and Ureta (1992) have
emphasized the interest of such a distinction: according to these authors, women belonging to
early U.S. birth cohorts appear to be “movers” more likely than men for unobserved reasons (i.e.
more likely to quit jobs). This conclusion is reversed when more recent cohorts are considered:
women’s turnover behavior is changing, given that they are more and more attached to the
labour force. Finally, “the evidence suggests that women do not constitute a homogeneous
group characterized by sporadic labour force participation” (Light and Ureta, 1992, p.158-159).
Although French data used in our paper are sampled differently (i.e. on a discrete-time axis
rather than on a continuous-time one) and are analyzed inside a rather different model, our
general conclusions confirm the ones obtained by Light and Ureta. Our main results are the
following:

• in France, during a recent period (1986-2000), proportions of stayers in the usual labour
states (employment, unemployment and non-participation) do not differ much for men and
women;

• the probability for women to be stayers out of the labour force between 26 and 35 years
old has significantly decreased over the whole period: it is estimated to be approximately
equal to 0.2 in year 2000, while at the same date the estimate for men is about 0.4;

• the individuals exhibiting the highest probabilities to be stayers in unemployment are the
adult men above 36 years old;

• younger workers, and particularly young women, are not “stayers” in unemployment, as
stated by some dualist theories of the labour market.

3Importance sampling methods were introduced in econometrics by Kloek and Van Dijk (1978) and then
developed by Van Dijk and Kloek (1980), Van Dijk et al. (1985) and Geweke (1989).
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The next section introduces the continuous-time mover-stayer model and derives ML es-

timators of the model parameters. Importance sampling and Gibbs sampling procedures are

presented in the third and fourth sections, respectively. The fifth section includes the presenta-

tion of the data source, and a discussion on the results. The last section concludes.

2. The Continuous-Time Mover-Stayer (CTMS) Model

2.1. Definitions and Notations

The mover-stayer model has been introduced by Blumen et al. (1955) for studying the mobility
of workers in the labour market. Subsequently, Goodman (1961), Spilerman (1972) and Singer
and Spilerman (1976a) have developed the statistical analysis of this model on the discrete-
time axis. The mover-stayer model in continuous time is a stochastic process {Xt, t ∈ R+},
defined on a discrete state-space E = {1, . . . ,K}, K ∈ N, and resulting from the mixture

of two independent Markov chains. The first of these two chains, denoted
{
X1

t
, t ∈ R+

}
is

degenerate, i.e. its transition probability matrix is the identity matrix, denoted I. The other

chain, denoted
{
X2

t
, t ∈ R+

}
is characterized by a non-degenerate transition matrix M(s, t) =

‖mi,j(s, t)‖, i, j = 1, . . . ,K, 0 ≤ s ≤ t, where

mi,j(s, t) = Pr
{
X2

t
= j | X2

s
= i

}
, i, j ∈ E, s, t ∈ R+, s ≤ t (2.1)

and
∑K

j=1mi,j(s, t) = 1. Moreover, the Markov chain
{
X2

t , t ∈ R
+
}

is assumed to be time-

homogeneous, i.e.

mi,j(s, t) = mi,j(0, t− s) ≡ mi,j(t− s), 0 ≤ s ≤ t, (2.2)

which is equivalent to

M(s, t) = M(0, t− s) ≡M(t− s), 0 ≤ s ≤ t. (2.2A)

This implies that transition intensities defined by

qi,j(t) = lim
∆t↓0

mi,j (t, t+∆t) /∆t, ∆t ≥ 0, i, j = 1, . . . ,K, i �= j, (2.3)

are constant through time, i.e.

qi,j(t) = qi,j , t ≥ 0, i, j = 1, . . . ,K, i �= j. (2.4)

The K×K transition intensity matrix, which is associated to the time-homogeneous markov-
ian process

{
X2

t
, t ∈ R+

}
, is denoted Q and has entries
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qi,j =




qi,j ∈ R
+, j �= i, i, j = 1, . . . ,K,

qi,i = −

K∑

k=1,k �=i

qi,k≤ 0, j = i, i = 1, . . . ,K.

(2.5)

Let us denote Q the set of transition intensity matrices, i.e. the set of (K × K) matrices
with entries verifying the conditions (2.5). It is well known (cf. Doob, 1953, p. 240 and 241)
that the transition probability matrix over an interval of length T can be written

M(0, T ) = exp(QT ), T ∈ R+, (2.6)

where exp(A) =
∑
∞

k=0
Ak/k! for any K × K matrix A. The main properties of the time-

homogeneous markovian process
{
X2

t
, t ∈ R+

}
with state-space E, are the following:

• sojourn times in state i (i ∈ E) are positive random variables, which are exponentially
distributed with parameter (−qi,i),

• if the time-homogeneous Markov process
{
X2

t
, t ∈ R+

}
is ergodic, its equilibrium (or limit-

ing) probability distribution is denoted Π(m) = (π
(m)
1 , . . . , π

(m)
K

)′ and defined as the unique
solution to the linear system of equations

Q′Π(m) = 0, with
K∑

i=1

π
(m)
i

= 1 and π
(m)
i

≥ 0, i = 1, . . . ,K. (2.7)

Now let us assume that the mixed process {Xt, t ∈ R
+} is observed at fixed and equally

distant times 0, T, 2T, . . . , LT, with T > 0 and L ∈ N (L ≥ 1). Transition probabilities for this
process are given by the formulas

pi,j(0, kT ) = Pr (XkT = j | X0 = i) , i, j ∈ E, k = 1, . . . , L (2.8)

=




(1− si) {mi,j(T )}
(k)

, if j �= i,

si + (1− si) {mi,i(T )}
(k)

, if j = i,

where {mi,j(T )}
(k)

is the element (i, j) of the matrix M(T )k, and (si, 1− si), with si ∈ [0, 1],
is a mixing measure for state i ∈ E. So, in the mover-stayer model, the reference population is
composed of two kinds of individuals: the “stayers”, permanently sojourning in the same state,
and the “movers”, who move from one state to another according to the time-homogeneous
Markov chain with transition probability matrix M(s, t), s ≤ t, and with intensity matrix Q.
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The proportion of “stayers” in state i (i ∈ E) is equal to si. We can also derive the equilibrium
(or limiting) probability distribution for the mixed “mover-stayer” process {Xt, t ∈ R

+}. For

state i, the limiting probability, denoted πi, is given by

πi = siηi + π
(m)
i

K∑

j=1

(1− sj)ηj , i ∈ E, (2.9)

where η = {ηi, i ∈ E} is the initial probability distribution (i.e. at date 0) for the process

{Xt, t ∈ R
+},and π

(m)
i

is the limiting probability of “movers” in state i, given by equation (2.7).

2.2. The maximum-likelihood (ML) estimation of the CTMS model using discrete-
time panel data

The ML estimation of the transition matrixM(0, T ) and of the mixing measure s, from a sample
of N independent realizations of the process {Xt, t ∈ R

+}, has been extensively treated by

Frydman (1984) and then carried out by Sampson (1990), and Fougère and Kamionka (1992b).
The method developed by Frydman relies on a simple recursive procedure, which will be rapidly
surveyed. However, our presentation is more general than the one by Frydman, in the sense
that it includes the case where some parameters si are zero, and it contains also the expression
of the estimated asymptotic covariance matrix for the estimators of M and s. Because these
results are mostly used as background for the importance sampling procedure, their proofs are
moved to Appendix A.

First, let us recall that the form of the sample is
{
X0(n),XT (n), X2T (n), . . . , XLT (n); 1 ≤ n ≤ N

}

where XkT (n) (k = 0, . . . , L) is the state of the process for the n
−

th realization at time kT ,
and (L+ 1) is the number of equally spaced dates of observation. Let us denote ni0,... ,iLT the
number of individuals for which the observed discrete path is (i0, . . . , iLT ), ni(kT ) the number
of individuals in state i at time kT , nij(kT ) the number of individuals who are in state i at time
(k − 1)T and in state j at time (kT ), ni the number of individuals who have a constant path

i0 = iT = . . . = iLT = i (i ∈ E),4 nij =
∑L

k=1 nij(kT ) the total number of observed transitions

from state i to state j, n∗
i
=

∑L−1

k=0 nij(kT ) the total number of visits to state i before time (LT ),

ηi ≥ 0 the proportion of individuals initially (i.e. at date 0) in state i, i ∈ E, with
∑

K

i=1
ηi = 1.

The likelihood function for the sample is (Frydman, 1984, p. 633):

L =
∏
K

i=1
η
ni(0)
i

∏
K

i=1

{
si + (1− si) [mii(0, T )]

L

}ni

×

∏
K

i=1
(1− si)

ni(0)−ni

∏
K

i=1

{
[mii(0, T )]

(nii−Lni) ∏K

k=1,k �=i [mik(0, T )]
nik

}

=

∏
K

i=1 η
ni(0)
i

∏
K

i=1 Li

(2.10)

4Among the individuals permanently sojourning in state i, we must distinguish the “stayers” from the

“movers”; indeed, the probability that a “mover” is observed to be in state i at each observation point is

strictly positive and equal to {mii(0, T )}L.
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with

Li =

{
si + (1− si) [mii(0, T )]L

}ni

(1− si)
ni(0)−ni [mii(0, T )]nii−Lni

×

∏K

k=1,k �=i [mik(0, T )]
nik

where (ni(0)− ni) is the number of individuals initially in state i, and who experience at least
one transition in the L following periods, and nik is the total number of transitions from state
i to state k. Maximizing the function (2.10) with respect to M and s is equivalent to maximize
the K expressions Li subject to the constraints:

si ∈ [0, 1], i ∈ E,mik(0, T ) ∈ [0, 1], i, k ∈ E, and
K∑

k=1

mik(0, T ) = 1.

As long as true values of parameters belong to the interior of the set defined by these
constraints, ML estimators given by Frydman (1984, p.634—635) are unrestricted MLE that are
consistent and asymptotically normal.5 In this case, the analytical expression of the estimated
asymptotic covariance matrix for ML estimators ̂M and ŝ is given in Appendix A. When at
least one of the true values lies on the boundary of the parameter space, the ML estimator is
the restricted MLE and its sampling distribution is truncated at 0. For instance, let us consider
the case where ŝi = 0, that arises whenever (ni/ni(0)) ≤ [m̂ii(0, T )]

L
(see Frydman, 1984, p.

634). In that case, we show that m̂ij(0, T ) = nij/n
∗

i ,∀i, j = 1 . . .K (see Appendix A), which
is the usual ML estimator for the probability of transition from i to j for a first-order Markov
chain in discrete time,6 and the sampling distribution of the restricted MLE of si, denoted ŝc

i
,

is no more normal (see Appendix A). Obviously, in such a case, the joint distribution of the

restricted MLE
(
ŝ
c, M̂c

)
is difficult to obtain. As it is explained below in sections 3 and 4, the

bayesian approach allows to reduce this difficulty.
From the ML estimator of the transition probability matrix M(0, T ), it is possible to obtain

a ML estimator of the intensity matrix Q by resolving the matrix equation (2.6). Indeed, if the

solution Q̂ to the equation

M̂(0, T ) = exp(Q̂T ), T > 0, (2.11)

belongs to the set Q of intensity matrices, then ̂Q is a ML estimator for Q. Nevertheless, two
difficulties may appear:7

• the equation (2.11) can have multiple solutions ̂Q ∈ Q : this problem is known as the
aliasing problem;

• none of the solutions ̂Q to the equation (2.11) belongs to the set Q of intensity matrices; in

that case, the probability matrix ̂M(0, T ) is said to be non-embeddable with a continuous-

time Markov process.

5A referee pointed out that the problem of consistency and asymptotic normality of ML in this model is very
similar to the case of models with regime switches (see, e.g., Kiefer, 1978).

6For example, see Anderson and Goodman (1957) or Billingsley (1961).
7A detailed analysis of these problems is developed in papers by Singer and Spilerman (1976a, 1976b).
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Necessary conditions for the embeddability of the matrix ̂M(0, T ) are recalled in Appendix

A. If equation (2.11) has only one solution ̂Q ∈ Q, this solution is the ML estimator for the
intensity matrix of the homogeneous continuous-time Markov process

{
X2

t
, t ∈ R+

}
. But it

may happen that the solution ̂Q to the equation (2.11) does not belong to Q, in particular
because some of its extra-diagonal entries are negative. In that situation, bayesian inference is
especially worthwhile, as shown by Geweke et al. (1986a) for the elementary Markov model.
In the remaining part of our paper, we extend their approach to the continuous-time mover-
stayer model, and we develop an alternative bayesian procedure based on the Gibbs sampling
algorithm.

3. Bayesian inference with importance sampling

3.1. Definitions

To write the likelihood function and the expected value under the posterior of some functions

of the parameters, additional notation is needed. Let MK be the space of K × K stochastic
matrices, including transition probability matrices M(0, T ):

MK =


M =‖mij ‖ : mij ≥ 0, ∀i, j ∈ E and

K∑

j=1

mij = 1, ∀ i ∈ E


 .

Let us denote Q the space of intensity matrices :

Q =


Q =‖ qij ‖ : qij ≥ 0, i, j ∈ E, i �= j , qii ≤ 0,∀i ∈ E and

K∑

j=1

qij = 0


 .

If M(0, T ) is embeddable, there exists at least one matrix Q ∈ Q defined by the equation
M(0, T ) = exp(QT ). Let M∗

K
the space of embeddable stochastic matrices:

M∗

K
= { M(0, T ) ∈MK : ∃ Q ∈ Q, exp(QT ) = M(0, T )} .

If DK = MK × [0, 1]
K

represents the parameter space of the model, then the space D∗

K
=

M∗

K
× [0, 1]

K
denotes the set of embeddable parameters and D∗

K
⊂ DK . Let us consider

now the set of matrices Q(k)
∈ Q, solutions of the equation Q(k) = log(M(0, T ))/T , for

k = 1 , . . . , B(M), where B(M) is the number of continuous-time underlying processes corre-
sponding to the discrete-time Markov chain represented by M(0, T ) ∈MK . We have B(M) ∈ N
and B(M) = 0 if M /∈ M∗

K
. Finally, if Q(k)(M) denotes the intensity matrix that corresponds

to the k-th solution of log(M), with k = 1, . . . , B(M), then it is clear that Q(k) is a function
defined on M∗

K
and valued in Q. Now let µ(M, s) be a prior mapping DK into R (the uniform

prior is used in the application): µ(M,s) is defined for M ∈ MK and for a vector of mixing
measures s = {si, i ∈ E} ∈ [0, 1]K . Then let h(k)(M) be a prior probability on the k-th solution

of the equation M(0, T ) = exp(QT ), which verifies
∑B(M)
k=1 h(k)(M) = 1. Without additional

information on the parameter values, a prior probability 1/B(M) may be put over any candi-
date branch Q(k). However, when a complementary information is available from another data
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set (for instance, relative to the mean sojourn duration in a given state), the prior probability
h(k)(M) can be chosen as

h(k)(M) =
exp

{
−d

(
f(Q(k)), f(Q0)

)}

∑B(M)
k′=1 exp

{
−d

(
f(Q(k′)), f(Q0)

)} ,

where Q(k) is the candidate intensity matrix, Q0 represents the external information on the true
intensity matrix, and d(·, ·) is a distance between the images of Q(k) and Q0 under some given
function f .8

Let g(Q, s) be a function defined for (Q, s) ∈ Q× [0, 1]K . This function is such that the eval-
uation of its moments (in particular, the posterior mean and the posterior standard deviation)
is a question of interest for the analyst. If g(Q, s) is the indicator function of {M ∈M∗

K
}, then

it is convenient to set in this case :

g(Q, s) = J(M) =

{
1 if M ∈M

∗

K

0 elsewhere.

Thus, the posterior probability that the transition probability matrix M is embeddable has
the form :

Pr [M ∈M∗

K
| (N,n)] = E[J(M) | (N,n)]

=

∫
DK

J(M)L(M, s;N,n)µ(M, s)d(M,s)
∫
DK

L(M, s;N,n)µ(M, s)d(M, s)

=

∫
D
∗

K

L(M, s;N,n)µ(M, s)d(M, s)
∫
DK

L(M, s;N,n)µ(M, s)d(M, s)

(3.1)

The posterior probability of aliasing can be obtained similarly, by setting J(M) = 1 ifB(M) > 1,
0 elsewhere.

3.2. Bayesian inference with importance sampling

The likelihood function L = L(M, s;N,n) up to the initial distribution of the process {X(t), t ≥
0} is

L ∝
K∏

i=1

Li (3.2)

8This function f characterizes the nature of the additional available information about the intensity matrix: it
can be either the identity function, either some mobility index (see Geweke, Marshall and Zarkin, 1986b, for
definitions), or any other function of elements of Q, such as mean sojourn durations.

8



with Li defined in (2.10). If Pr[M ∈ M
∗

K
| N,n] > 0, then the expectation of the function of

interest g(Q, s) under the posterior, given that M is embeddable, is:

E [g(Q, s) | (N,n); (M, s) ∈ D∗

K
]

=

∫
D
∗

K

∑B(M)
k=1 h

(k)(M)g(Q(k)(M), s)L(M, s;N,n)µ(M, s)d(M, s)
∫
D∗

K

L(M, s;N,n)µ(M, s)d(M, s)

(3.3)

To evaluate the integrals inside the expressions (3.1) and (3.3), an adaptation of the Monte-
Carlo method will be used, because a closed form of Q(k)(M) or B(M) whenK ≥ 3 has not been
found yet. Let I(M, s) be the importance function from which a sequence {Mi, si} of parameters
will be drawn. We suppose that I(M, s) > 0 and that µ(M, s) and g(Q, s) are bounded above.
Then, by applying directly theorem 1 in Geweke (1989), we have:

limI→+∞

∑
I

i=1
J(Mi)L(Mi, si;N,n)µ(Mi, si)/I(Mi, si)

∑
I

i=1
L(Mi, si;N,n)µ(Mi, si)/I(Mi, si)

a.s.
= Pr [(M, s) ∈ D∗

K
| N,n]

(3.4)

and

limI→+∞

∑I

i=1

∑B(M)

k=1
h
(k)(Mi)g{Q

(k)(Mi), si}J(Mi)L(Mi, si;N,n)µ(Mi, si)/I(Mi, si)
∑I

i=1

J(Mi)L(Mi, si;N,n)µ(Mi, si)/I(Mi, si)

a.s.
= E [g(Q, s) | N,n, (M, s) ∈ D∗

K
]

(3.5)

where Pr [(M,s) ∈ D∗

K
| N,n] is the probability under the posterior that the discrete-time mover-

stayer model is embeddable with the continuous-time one, and
E [g(Q, s) | N,n, (M, s) ∈ D∗

K
] defines the posterior moments of the function of interest. For

simplifying notations, let us denote ĝI the ratio in the l.h.s. of equations (3.4) or (3.5). If we
consider, for example, the estimator ĝI of the posterior conditional expectation of g(Q, s) given
that M is embeddable, then a direct application of Theorem 2 in Geweke (1989) gives

√
I(ĝI − ḡ)

d→ N(0, σ2) (3.6)

with

σ
2 =

∫
D
∗

K

∑B(M)

k=1

(
h
(k)(M)

[
g(Q(k)(M), s)− ḡ

])2 [L(M, s;N,n)µ(M, s)]
2

I(M, s)
d(M, s)

[∫
D
∗

K

L(M, s;N,n)µ(M, s)d(M, s)
]2
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where
d
→ is the symbol for convergence in distribution, and ḡ = E [g(Q, s) | N,n, (M, s) ∈ D∗

K
] .

By applying the same theorem, we get

Iσ̂2
I

a.s.
−→ σ

2 (3.7)

with

σ̂
2

I
=

∑I

i=1

∑B(M)

k=1

(
h
(k)(M)

[
g(Q(k)(Mi), si)− ĝI

])2(J(Mi)L(Mi, si;N,n)µ(Mi, si)

I(Mi, si)

)2

(∑I
i=1J(Mi)L(Mi, si;N,n)µ(Mi, si)/I(Mi, si)

)2

σ̂I =
(
σ̂2I
)1/2

being the numerical standard error of ĝI . The choice of the importance sampling
density is discussed in Appendix B. Appendix B presents also the algorithm and explains how
to obtain posterior means of some functions of interest, such as transition intensities, mean
durations and equilibrium distributions.

4. Bayesian inference using Gibbs sampling

Gibbs sampling represents an alternative bayesian procedure to make inference on the parame-
ters of the mover-stayer model under the posterior densities. Previous works, including papers
by Chib (1992) on the Tobit regression model, Mac Culloch and Rossi (1994) on the Multinomial
Probit model, Albert and Chib (1993) and Mac Culloch and Tsay (1994) on Markov switching
regressions, have found that the Gibbs sampler works very well in various econometric contexts.

Formally, the application of the Gibbs sampler to the mover-stayer model is analogous to its
applications to other finite mixture distributions, which make use of missing data representations
(see Robert, 1994, chapter 9). In the case of the mover-stayer model, the likelihood function for
a sample X = {X(n); 1 ≤ n ≤ N} is the result of the marginalization

L (X | s,M,X0) =
N∏

n=1

2∑

i=1

L
(
X(n) | s,M,X0(n), zn = i

)
Pr

(
z
n
= i | s,M,X0(n)

)

where L is the conditional likelihood contribution of the n-th individual given his/her initial
state X0(n) and his/her unobserved type zn, and zn is an unobservable or missing indicator
taking value 1 if the individual is a stayer or value 2 if he/she is a mover9. This approach offers
several advantages: first, the conditional likelihood given values of the unobservable component
zn is easier to manipulate than the marginal likelihood; the fact that the maximum likelihood
estimator lies on the boundary of the parameter space has no more negative influence on the
estimation procedure; finally, the Gibbs sampling approach allows to choose other priors than
the uniform one. In particular, for Markov chains, it is known (see Martin, 1967) that the
Dirichlet and matrix beta distributions are appropriate priors because they are closed under

9The Gibbs sampling algorithm can be implemented through the use of the posterior distribution of the
parameters given the unobserved term z and of the conditional distribution of z given X and (s,M).
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sampling. Precisely, the prior density on the parameters θ = (s,M) is taken to be the product
of conjugate densities µ1(s) and µ2(M), where

µ1(s) =
K∏

j=1

Γ(aj + bj)

Γ(aj)Γ(bj)
s
aj−1

j (1− sj)
bj−1

is the Dirichlet distribution with parameters aj > 0, bj > 0, j = 1, . . . ,K, and

µ2(M) =




K∏
i=1

Γ
(∑

K

k=1
αik

)
∏

K

k=1
Γ (αik)


×




K∏
i,j=1

m
αij−1

ij


 (4.1)

is the matrix beta distribution with parameters αij > 0, i, j = 1, . . . ,K. Given the unobservable
component zn and the parameters θ = (s,M), X(n) follows a Markov chain with transition
probability matrix

P = (2− zn)IK + (zn − 1)M.

Furthermore,

zn | θ,X0(n) ∼ B
(
1; s0(n)

)

where

s0(n) = Pr
(
zn = 1 | θ,X0(n)

)
=
∏
K

j=1 s

1{X
0(n)=j}

j

= 1− Pr(z
n
= 2 | θ,X0(n))

Thus

z
n

| θ,X(n) ∼ B
(
1; p(X(n); θ)

)
(4.2)

where

p(X(n); θ) =
L(X(n) | s,M,X

o(n), Zn = 1)Pr[z
n
= 1 | s,M,X

o(n)]
∑

2

j=1L(X(n) | s,M,Xo(n), Zn = j)Pr[z
n
= j | s,M,Xo(n)]

Let us now derive the posterior distribution of θ = (s,M) given X = (X(1), . . . , X(N)) and
z = (z1, . . . , zN ). For that purpose, we need to combine the prior information on θ with the
sample information, which gives

µ(θ | X) ∝ µ(θ)p(X | θ)

where
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p(X|θ) =
N∏

n=1




2∑
zn=1

s
2−zn

0(n)

(
1− s0(n)

)
zn−1

K∏

i,k=1

(
δ
2−zn
ik m

zn−1
ik

)N(n)
ik




δik being the Kronecker indicator (δik = 1 if k = i, 0 elsewhere), N
(n)
ik

being the number of
transitions from state i to state k experienced by the individual n during the observation period
(with the convention 00 = 1). After simple computations, we get

µ(θ | X) ∝
∑

z:z∈{1,2}N

(∏K

j=1
s

(aj+
∑
N
n=1 i

(n)
j

(2−zn))−1

j × (1− sj)
(bj+

∑
N
n=1 i

(n)
j

(zn−1))−1

)

×

(∏K

i,k=1
δ

∑
N

n=1(2−zn)N
(n)
ik

i,k ×m

(
αik+

∑
N

n=1(zn−1)N
(n)
ik

)
−1

ik

)
(4.3)

where i
(n)
j = 1{X0(n)=j}. Given X and Z:

∑N

n=1 i
(n)
j (2− zn) is the number of stayers in state j (j = 1, . . . ,K),

∑N

n=1 i
(n)
j (zn − 1) is the number of movers initially in state j (j = 1, . . .K),

∑
N

n=1(zn − 1)N
(n)
jk is the total number of transitions from state j to state k experienced by

movers.
The formula (4.3) makes clear that

sj | X,Z ∼ Dirichlet

(
aj +

N∑
n=1

i
(n)
j (2− zn), bj +

N∑

n=1

i
(n)
j (zn − 1)

)
(4.4)

M | X,Z ∼ Matrix beta

(
αik +

N∑
n=1

(zn − 1)N
(n)
ik

; i, k = 1, . . .K

)
(4.5)

Under the assumption that Z1, . . . , ZN are independent, the knowledge of the conditional
distributions (4.2), (4.4), (4.5) is sufficient to implement the Gibbs sampling algorithm. This
algorithm works like this:

(i) start with an initial value θ(0) = (s(0),M (0)), for instance the ML estimates of s and M ;

(ii) update from θ(m) to θ(m+1) by:

1. generate Z(m) according to the conditional distribution (4.2), given θ = θ(m) and X,

2. generate θ(m+1) = (s(m+1),M (m+1)) according to the conditional distributions (4.4)
and (4.5), given Z = Z(m) and X.
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Under general regularity conditions, irreducibility and aperiodicity of components (4.4) and
(4.5)10 implies that, for m large enough, the resulting random variable θ(m) is distributed ac-
cording to the stationary posterior distribution µ(θ | X). Diagnostic tests for convergence of the
Gibbs sampling algorithm could be proposed (see for instance, Geweke, 1992), but their imple-
mentation is beyond the scope of this research. Finally, drawings from the stationary posterior
distribution µ(θ | X) may be used to obtain posterior moments for functions of θ. The definition
(3.5) then becomes:

lim
I→∞

∑
I

m=m0

∑B(M(m))
k=1 h

(k)(M (m)) g[Q(k)(M (m)), s(m)] J(M (m)) µ(s(m),M (m) | X)
∑

I

m=m0
J(M (m)) µ(s(m),M (m) | X)

a.s.
→ E

[
g(Q(k)(M (m)), s(m)) | X, (s(m),M (m)) ∈ D∗

k

] (4.6)

where m0 is a value of m for which the convergence has been obtained.

5. An application to individual labour market transitions in France

5.1. The data source

The French Labour Force Survey (“Enquête Emploi”) is yearly conducted by INSEE, the French
National Statistical Institute in geographic areas including about forty housings.11 The sample
must correspond to a 1/300 sampling rate and the third part of it is renewed each year. This
renewal principle implies that the third part of the sample is surveyed three times, in March of
three successive years.12 Subsequently, the panelised samples coming from the INSEE Labour
Force Surveys include all the housings and individuals surveyed in years N , (N − 1), (N − 2).
The panel has two waves (L = 2), with length T = 365 days (the day is the time unit in our
application).

5.2. Comparison of the two bayesian procedures

First, we use only the 1986-1988 panel to compare results obtained with bayesian procedures
presented in sections 3 and 4. This data set is composed of 57, 560 individuals whose age is
greater than 15. Our study uses the subsample including individuals who answer the question
on their labour market situation at each interview and who are less than 65 years old. This
subsample includes 27, 647 individuals. At each date, the persons can be in one of the three
following states: employment (E), unemployment (U) and out-of-the labour force (OLF ). Table
1 describes the stratification of this subsample.

10See Tierney (1994) or Robert and Casella, 1999, chapter 6).
11The samples are extracted from the results of the 1982 National Census for the surveys conducted between

1983 and 1990, and of the 1990 National Census for surveys conducted between 1991 and 2000.
12Let us recall that the identification of the mover-stayer model requires a panel data set with at least three

observation dates, which is the case here.

13



Table I: Sizes of the subsamples
(Source: “Enquêtes Emploi”, INSEE, 1986-1988)

Age groups

15-25 26-35 36-50 51-65 Total
Males 3063 2555 4069 3856 13543
Females 2736 2846 4164 4358 14104
Total 5799 5401 8233 8214 27647

The individual age is computed at the time of the first survey. For each stratum, the
importance sampling algorithm has been applied both with normal and split-normal importance
functions: in each case, the total number of drawings is I = 10, 000. The Gibbs sampler was run
by choosing the first 10, 000 iterations to be “burn-in”, in order to reach the stationary posterior
distribution. Probably fewer than 10, 000 would be sufficient, but the execution time of 10, 000
iterations is very low. The Gibbs sampler was then run for 5, 000 additional iterations past
burn-in. To investigate stationarity, numerous plots were made. None indicated an alarming
pathology.

Estimates of posterior proportions of stayers are reported in Table 2. Normal and split-
normal importance functions give very close estimates for parameters si and their standard
errors. Nevertheless, the RNE is generally much higher for the split-normal density. Posterior
mean proportions of stayers obtained with the Gibbs sampler are generally very similar to the
ones obtained with normal and split-normal importance densities. However, they are higher in
the unemployment state, namely in the case where the posterior mean proportions computed
by importance sampling techniques are low (say, less than 15 per cent). This is particularly
true for the group of women aged from 36 to 50 years old: for that stratum, the posterior mean
proportion of stayers in unemployment is estimated to be zero with the importance sampling
technique while it is estimated to be around 7 per cent (though with a posterior standard
deviation equal to 3.8) with the Gibbs sampling algorithm. A kernel estimate of the posterior
marginal density of the proportion of stayers in unemployment for that subgroup is drawn on
Figure 1. This result makes clear that the Gibbs sampler allows to avoid a potential drawback of
the importance sampling technique when the ML estimate lies on the boundary of the parameter
space.

(Table 2 and Figure 1 around here)

Estimates of transition intensities and embeddability probabilities are given in Tables 3A
and 3B. Once again, estimates obtained from normal and split-normal importance functions are
rather identical, although RNE’s for the split-normal density are generally higher (see Table 3A).
Moreover, posterior mean transition intensities obtained with the Gibbs sampling algorithm are
generally very similar to (though slightly higher than) the ones obtained with the importance
sampling technique. Posterior probabilities of embeddability are 1 or very close to 1, indicating
there exists almost surely a continuous-time mover-stayer model generating the discrete-time
observations.

(Tables 3A and 3B around here)
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Estimates of mean sojourn durations, limiting probabilities and mobility indices are reported in
Tables 4A and 4B. Both techniques give similar posterior means for these variates, especially
at younger ages. However, they exhibit some discrepancies at older ages, for instance in the
cases of women between 36 and 50 years old and of men between 51 and 65 years old. In
general, posterior mean durations obtained by the Gibbs sampling algorithm are slightly lower.
On the whole, importance sampling and Gibbs sampling procedures give similar results for
this subsample. However, the Gibbs sampling algorithm runs faster, and it overcomes some
drawbacks of the importance sampling algorithm, in particular when one of the parameter lies
on (or is close to) the boundary of the parameter space. For these reasons, the Gibbs sampling
has been used to analyze the estimates of the continuous-time mover-stayer applied to the recent
period 1986-2000 in France.

(Tables 4A and 4B around here)

5.3. Movers and stayers in France since 1986

Figure 2 presents the changes in the probability to be stayer in the different states, by gender and
age. Each point (year) on the X axis corresponds to the first year of the panel; for example, the
point corresponding to the value 92 on the X axis corresponds to the estimate of the probability
to be stayer in the panel 1992-1994. At adult ages (namely, between 26 and 50), the probability
to be stayer in employment is approximately constant through the period,13 and it is slightly
higher for men. At the beginning of the observation period, this probability was higher for
younger and older women than it was in the same male subgroups. But it decreased for younger
and older women over the period, while it increased for men of the same age groups. In the most
recent years, the probabilities to be stayers in employment of young men and women (less than
25 years old) are almost equal. The probability to be stayer in unemployment depends also on
age; it is generally lower for women than for men, and it is lower for young people (less than
25). Two exceptions must be noticed: the probability to be stayer in unemployment is higher for
older women, and its estimated value is lower for women than for men at adult ages (between
26 and 50). Finally, the probability to be stayer out of the labour force is higher (and rather
stable over the period) for older men and women, and it is lower for young adults (between 26
and 35 years old). Our main result is that, for young adult women, this probability decreased
significantly over the period (its estimated value was 0.60 in 1986 but only 0.25 in 1998). These
results confirm that women are more and more attached to the labour force, and that, as in the
U.S., “women do not constitute a homogeneous group characterized by sporadic labour force
participation” (Light and Ureta, 1992, p.158-159).

(Figure 2 around here)

Figure 3 presents the changes in the transition intensities between employment and unem-
ployment for “movers”, by gender and age. In general, these intensities are higher for men (at
the exception of the intensity of transition from employment to unemployment which is higher
for women at younger ages) and they decrease with age (it is particularly true for the intensity
of transition from unemployment to employment). Generally these intensities of transition have

13However, this probability decreased during the recession of the early 90s, i.e. between 1991 and 1994.
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increased over the period (except for older workers). Figure 4 shows that the estimated equilib-
rium probability to be employed, given by equation (2.9), is higher for men and stable at adult
ages (around 90%). However it increased significantly for adult women. At younger ages (less
than 25), this probability is lower (around 40%), comparable for men and women, but more
correlated with the business cycle. However it is still lower for older workers (less than 30%
for older men, around 20% for older women). The equilibrium probability to be unemployed
decreases with age; but it has increased over the recent years for all the subgroups (except for
older workers). This increase does not correspond to an increase of the probability to be stayer
in unemployment (Figure 2 shows ups and downs with no clear trend for this probability); it is
due to the continuous increase of the intensity of transition from employment to unemployment
for the “mover” part of the population. For adult women, the estimated equilibrium probability
to be out of the labor force decreased continuously between 1986 and 2000. This is in line with
the continuous decline of the probability to be stayer in the non-participation state for this
subgroup. In 1986, stayers in this state represented approximately 17.8% of the women between
26 and 35 years old, but they were only 5.8 % in 1998. The equilibrium probability to be out
of the labour force is estimated to be very low for adult men (less than 5%), and it is very
high but slightly decreasing for men and women between 51 and 65 years old. Finally, Figure
5 shows that the mobility index considered here (see equation B.13) is generally higher for men
(at a given age), and lower for older workers. On the whole, the estimated values of this index
indicate that labour market mobility has slightly decreased over the recent period in France.14

(Figures 3, 4 and 5 around here)

Finally, we have conducted a simple exercise to predict state occupation probabilities in

March 2001 from the estimated parameters ŝ and ̂M obtained for the 1998-2000 panel data

set.15 The predicted probability to be in state j at date τ ′ (March 2001) is given by

p̂j(τ
′) =
∑3

i=1
P̂r (Xτ ′ = j | Xτ = i)× η̂i (τ) , i, j ∈ E,

where τ represents March 2000, η̂i (τ) is the proportion of individuals in state i at time τ , and
̂Pr (Xτ ′ = j | Xτ = i) is the estimated transition probability from state i to state j between these
two dates (see equation 2.8). Results of this exercise are given in Table V. Predicted probabilities
are quite good for males. Predictions are less precise for women, especially for unemployment
at younger and older ages. In general, the predicted probability to be out-of-the labor force is
higher than the observed probability for women.

14This result can be put together with the main findings obtained by Buchinsky et al., 2001, who find that

wage mobility has decreased in France over the period 1968-1999.
15We thank the referee who suggested us to do this exercise.
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Table V: Predicted occupation probabilities in March 2001 (in percentage points)
(Source: “Enquêtes Emploi”, INSEE, 1999-2001)

Age groups

Males 15-25 26-35 36-50 51-65

Employment Observed 36.29 90.04 91.74 41.97

Predicted 36.46 89.76 90.87 40.75

Unemployment Observed 8.38 6.79 4.73 4.68

Predicted 8.12 7.11 5.20 4.18

OLF Observed 55.33 3.16 3.54 53.35

Predicted 55.42 3.14 3.94 55.07

Females 15-25 26-35 36-50 51-65

Employment Observed 26.14 70.36 74.13 30.95

Predicted 25.87 69.02 72.15 31.23

Unemployment Observed 6.93 9.08 6.00 5.73

Predicted 9.11 8.33 6.39 4.59

OLF Observed 66.92 20.56 19.87 63.33

Predicted 65.02 22.65 21.46 64.18

6. Conclusions

This paper has focused on bayesian estimation of parameters of a continuous-time mover-stayer

model using discrete-time observations. The estimation procedure relies on the use of bayesian

inference methods, namely an importance sampling procedure and a new Gibbs sampling algo-

rithm. Both algorithms work quite well and give similar results with observational data coming

from the 1986-1988 French Labour Force Surveys. But the Gibbs sampling algorithm runs faster,

and it performs better than the importance sampling algorithm when one of the parameter is

close to the boundary of the parameter space. Consequently we have implemented it on panel

data coming from the French Labour Force Surveys collected by INSEE between 1986 and 2000.

Results show that:

• the probabilities to be stayer in the different labour market states did not differ significantly
for men and women over this period;

• one noticeable exception is the group of young adult women (between 26 and 35 years
old) for whom the probability to be stayer out of the labour force decreased significantly
through the last fifteen years;

• this decline explains the decrease of the equilibrium probability to be out of the labor force
for this subgroup;

• the equilibrium probability to be unemployed has increased over the recent years for all
the subgroups (except for older workers);

• this increase is due to the continuous increase of the intensity of transition from employ-
ment to unemployment for the “mover” part of the population;
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• the probability to be stayer in unemployment is rather low, with the counter-intuitive
exceptions of adult men and older women.

The mover-stayer model captures a particular form of duration dependence: at the aggregate
level, i.e. in the whole population, this duration dependence (for example, for sojourn times
in an unemployment spell) results exclusively from the presence of stayers. In the data sets
analyzed in this paper, the length of the interval between two observation dates is relatively
small compared to the mean sojourn durations in some states, and the number of observation
dates is relatively small too (the persons are interviewed only three times). That means that
the difficulty to distinguish between duration dependence and the presence of stayers should
partly result from the sampling scheme. However the current form of the model does not allow
transition intensities of movers to be duration dependent. In the conditional model for movers,
duration dependence could arise, for example, from the aggregation of stochastic transition
rates. It is well known that, even if individual transition rates of movers are constant through
time but are affected by unobserved heterogeneity terms, their aggregated intensity rates may
decrease. This phenomenon is present in the mover-stayer model at the aggregate level, because
this model incorporates a particular form of unobserved heterogeneity. However the modelling
may be improved by permitting conditional transition rates of movers to be time-dependent and
to be affected by random terms (see Kamionka, 1998, for the estimation of duration-dependent
transition models using discrete-time observations).

Consequently, further research will extend the current work in two ways. Firstly, it could
be worthwhile to consider continuously distributed unobserved heterogeneity terms, as it is
usually assumed in the econometric literature on duration data (see Heckman and Singer, 1984,
or Lancaster, 1990), rather than dichotomous ones as in the elementary mover-stayer model.
Secondly, the analysis could be greatly improved by making parameters s and Q dependent of
explanatory variables, such as education or marital status. For that purpose, we may impose a
logistic specification for the probabilities to be stayers and/or a proportional hazard specification
for individual transition rates of movers.

APPENDIX A: ML ESTIMATION OF M AND s

Asymptotic covariance matrix

Here we set mij(0, T ) ≡ mij for simplifying notations. The derivation of the asymptotic
covariance matrix for the ML estimators of the parametersM and s requires the computation of
the hessian matrix of the log-likelihood function (2.10). Because M is a stochastic matrix, the
model has only K2 independent parameters, namely the K(K−1) elements of the matrix M

−K

obtained by dropping the last column of M , plus the K parameters si, i = 1, . . . ,K. Then the

covariance matrix to be computed is a K2
×K2 matrix. Let us notice that the hessian matrix

is block-diagonal. The i
−

th block (i = 1, . . . ,K − 1) consists of the elements:

18



∂ lnLi

∂m2

ii

,
∂ lnLi

∂s2
i

,
∂2 lnLi

∂si∂mii

∂2 lnLi

∂mii∂mij

, j �= i, j = 1, . . . ,K − 1

∂2 lnLi
∂mij∂mik

, j �= i, k �= i, j, k = 1, . . . ,K − 1

∂2 lnLi
∂si∂mij

, j �= i, j = 1, . . . ,K − 1.

(A.1)

The last (i.e. the K-th) block consists of the elements :

∂2 lnLK
∂mKj∂mKk

, j, k = 1, . . . ,K − 1,
∂2 lnLK
∂s2K

,
∂2 lnLK
∂sK∂mKj

, j = 1, . . . ,K − 1.

Each of these blocks has dimension (K ×K). The computation of the information matrix
R(M

−K , s) requires the knowledge of the conditional expectations of the variables ni, niK ,
(nii −Lni) and nij (i, j ∈ E), given η (see equation 2.10). Given that the proportion of stayers
in state i is equal to si, and that transition probabilities from state i to any other state j are
mij (i, j ∈ E), it is easily found that

E(ni | η) = ηiN
[
si + (1− si)m

L
ii

]
, i ∈ E

E(nij | η) = mij

∑L−1

l=0

∑
K

k=1
Nηk(1− sk)m

(l)
ki
, j �= i, i, j ∈ E,

E(nii | η) = LNηisi +mii

∑
L−1

l=0

∑
K

k=1
Nηk(1− sk)m

(l)
ki
, i ∈ E,

E(nii − Lni | η) = mii

∑L−1

l=0

∑K

k=1
Nηk(1− sk)m

(l)
ki
− LNηi(1− si)m

L
ii
, i ∈ E,

(A.2)

where m
(l)
ki

is the element (k, i) of the matrixM l, withM0 = IK . The ratios ni(0)/N , i ∈ E, are
consistent estimators of ηi, i ∈ E. Estimated variances for the ML estimators of (M

−K , s) are
given by the diagonal entries of the inverse of R(M

−K , s), computed for the values of the ML

estimators (̂M
−K , ŝ). Let us notice that R(M

−K , s) being block-diagonal with squared blocks,
its inverse is also block- diagonal, each block being equal to the inverse of the corresponding one
in R(M

−K , s). Estimated variances for the m̂iK , i = 1, . . . ,K are obtained by application of
the formula

v̂ar(m̂iK) =
K−1∑

k=1

v̂ar(m̂iK) + 2
K−1∑

k,j=1

k<j

ĉov(m̂ik, m̂ij), i ∈ E. (A.3)
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When ŝi = 0, the estimation is conducted by setting si = 0 at each step of the procedure.
In that case, the computation of first and second-order derivatives of the log-likelihood function
is implemented after partitioning the state space E into two subsets, denoted E1 and E2, such
as ∀ i ∈ E1, si �= 0, ∀ j ∈ E2 , sj = 0. Derivatives with respect to si (i = 1, . . . ,K) are defined
only for i ∈ E1.

Then the model consists of two subsets of states, a subset E2 of states from which individuals
can move to any other state according to the transition probability matrix M(0, T ), and a subset
E1 of states in which two kinds of individuals coexist initially: the “stayers”, permanently
sojourning in the same state, and the “movers”, moving from one state to another according to
the matrix M(0, T ).

Computation of the ML estimators for transition probabilites when si = 0

To simplify the notations, we set all along

mij(0, T ) ≡ mij , i, j ∈ E.

Let Li = lnLi + λisi, where the expression of Li is given by (2.10). Setting si = 0 in the

previous equation and using the fact that
∑
K

k=1
mik = 1, we get

Li = ni ln(m
L

ii
)+ (nii − Lni) lnmii +

∑
K−1

k=1;k �=i nik lnmik

+niK ln

(
1−
∑
K−1

k=1
mik

) (A.4)

Firstly, we compute the derivative of this expression with respect to mi,K−1, and we apply
the first order condition to obtain :

mi,K−1 = ni,K−1

(
1−

∑K−2

k=1
mik

)
/
∑K

k=K−1
nik

This expression is then substituted into Li. The procedure is iterated, firstly by computing
the derivative of Li with respect to the next parameter (namely, mi,K−2, . . . ,mi,1), then by
substituting into Li the expression of this parameter deduced from the first-order condition.
Thus, after computing the derivative of Li with respect to the parameter mij , we get :

mij = nij

(
1−mii −

∑j−1

k=1,k �=i
mik

)
/
∑K

k=j,k �=i
nik (A.5)

for i �= j and j �= K. This expression is introduced into Li, which is then shown to depend on
the sole parameter mii:

Li = niLog m
L

ii
+ (nii − Lni)Log mii +

K∑

k=1,k �=i

nik ln(1−mii) + C

for i = 1, . . . ,K, C being a constant. As
∑
K

k=1,k �=i
nik = n∗i − nii, the condition

∂Li

∂mii

= 0

implies that
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mii = nii/n
∗

i (A.6)

By mathematical induction based on formula (A.5), (A.6) implies :

∀ i, j = 1, . . . ,K, mij = nij/n
∗

i (A.7)

Sampling distribution of the restricted MLE ŝ
c

i
= 0

In finite samples, ŝi is a discrete random variable with possible values

ŝi =
ni − ni(0) [m̂ii(0, T )]

L

ni(0) [1− m̂ii(0, T )L]
, ni = 0, . . . , ni(0).

So the conditional distribution of ŝi can be directly derived from the binomial distribution of
the number ni of individuals permanently observed in state i:

ni ∼ B
(
ni(0), si + (1− si)mii(0, T )

L
)

Asymptotically, when ni(0) tends to ∞, this distribution may be approximated by one of the
usual approximations of the binomial distribution, such as the Camp-Paulson approximation
(see Johnson and Kotz, 1969, p.64). If ŝc

i
denotes the restricted MLE of si, then

Pr (ŝc
i
= 0) = Pr (ŝi < 0)

= Pr
(
ni < ni(0) m̂ii(0, T )

L
)

= G
(
ni(0) m̂ii(0, T )

L
)

where G is the c.d.f. of the approximation for the binomial distribution of ni. The density
function of ŝc

i
on R+∗ is the density g(.) of this approximation. Then, following Gouriéroux and

Monfort (1995, chapter 21) the law of ŝ
c

i
may be written as

P
ŝ
c

i = G
(
ni(0)m̂ii(0, T )L

)
1ŝi=0 ∈(0) +g

(
ni(0)

[
ŝi + (1− ŝi)m̂ii(0, T )

L
])

1ŝi>0λ
+

(A.8)

where ∈(0) denotes the unit mass on 0 and λ
+ denotes the Lebesgue measure on R+.

Conditions for embeddability of the matrix ̂M(0, T )

The unique necessary and sufficient condition for embeddability was given by Kendall, who
proved that, when K = 2, the transition matrix ̂M(0, T ) is embeddable if and only if the trace

of ̂M(0, T ) is strictly greater than 1. When K ≥ 3, only necessary conditions are known; they
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are presented, for example, by Singer and Spilerman (1976a), and Geweke et al. (1986b). The
solution to the equation (2.11) is given by the following theorem (Singer and Spilerman, 1976a):

If ̂M(0, T ) has K distinct16 eigenvalues (λ1, . . . , λK) and can be written ̂M(0, T ) = A×D×

A−1, where D = diag(λ1, . . . , λK) and the eigenvector corresponding to λ� (� = 1, . . . ,K) is

contained in the �
−

th column of the (K ×K) matrix A, then:

loĝM(0, T ) = Q̂T = A×




logk1(λ1) . . . 0
...

. . .
...

0 . . . logkK (λK)


×A−1 (A.9)

where logk�(λ�) = log | λ� | +(argλ� + 2k�Π)i, k� ∈ Z, is a branch of the logarithm of λ�, when

λ� ∈ C.
17

Because equation (2.11) has as many solutions ̂Q as there are combinations of the form

(logk1(λ1), . . . , logkK (λK)), the number of these solutions is infinite when the matrix ̂M(0, T )
has at least two complex conjugate eigenvalues. However, an important implication of the
necessary condition for embeddability given by Runnenberg (1962) is that only finitely many

branches of log ̂M(0, T ) need to be checked for membership in Q. In fact, this condition implies
that the only branches to consider are such that

∀λ�, −L� ≤ k� ≤ U� (A.10)

with

U� = intpt

∣
∣
∣
∣

log|λ�| tan{( 12+
1

K
)Π}−|argλ�|

2Π

∣
∣
∣
∣
,

L� = intpt

∣
∣
∣
∣

log|λ�| tan{( 32−
1

K
)Π}−|argλ�|

2Π

∣
∣
∣
∣
,

where the function “intpt” yields the integer part of a real number. So the number of branches

of λ� which must be computed is L� + U� + 1, the last one corresponding to the main branch

with k� = 0. Then the number of solutions Q̂ that must be examined for membership in Q is

denoted k∗(̂M) and is equal to

k
∗(̂M) =



∏v

j=1 {Lj + Uj + 1} , if v ≥ 1,

1 , if v = 0,
(A.11)

16The case of repeated eigenvalues arises very rarely in the empirical applications. For its treatment, the reader
can consult the paper by Singer and Spilerman (1976a, p. 19-25).
17Let us recall that the logarithmic function is multiple valued in the complex set C. If z = a + ib (z ∈ C),

then : logk(z) = log | z | +i(θ + 2kΠ), k ∈ Z, with | z |= √
a2 + b2, and θ = arg(z) = tan−1(b/a). Each value

for k generates a distinct value for log(z), which is called a branch of the logarithm.
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where v denotes the number of complex conjugate eigenvalue pairs of the matrix ̂M(0, T ). Let
us remark that:

• for a real eigenvalue, only the principal branch of the logarithm must be examined: other
branches (with k� �= 0) correspond to complex intensity matrices ̂Q;

• each element of a complex conjugate eigenvalue pair has the same number of candidate
branches; moreover, only combinations of branches involving the same k� in each element
of the pair must be computed; all others correspond to complex intensity matrices; this
fact explains why the computation of k∗(̂M) is based on the number of complex conjugate
eigenvalue pairs, and why the number of branches needing to be checked for each pair j is
equal to Lj + Uj + 1, but not to {Lj + Uj + 1}

2
.

APPENDIX B: BAYESIAN INFERENCE WITH IMPORTANCE SAMPLING

Choice of the importance sampling density

The importance function I(M,s) must be conveniently chosen in order to improve conver-
gence properties of ĝI . Several contributions (Kloek and van Dijk, 1978, 1980; van Dijk et al.,
1985; Geweke, 1989) have emphasized the necessity for the tails of the importance function no
to decay more rapidly than the tails of the posterior density. For instance, Geweke (1989) pro-
poses a procedure for tailoring the importance sampling density more routinely and introduces
a measure of relative numerical efficiency (RNE) to evaluate the adequacy of any importance
sampling density.

Following the general definition given by Geweke (1989, p.1322), we can write the RNE of
an importance sampling density I(M, s) for the function of interest g(Q(M), s) as

RNE ≡

∫
D
∗

K

∑B(M)

k=1
h
(k)(M)

[
g(Q(k)(M), s)− ḡ

]2
J(M)L(M, s;N,n)µ(M, s)d(M, s)

∫
D
∗

K

∑B(M)

k=1
h(k)(M)

[
g(Q(k)(M), s)− ḡ

]2
J(M)ω(M, s)L(M, s;N,n)µ(M, s)d(M, s)

≡ var [g(Q(M), s)] /σ2
(B.1)

where the weight function ω(M, s) is the ratio P (M, s)/I(M, s) of the posterior distribution
to the importance sampling density. In fact, the RNE is the ratio of the posterior variance of
the interest function g when the importance sampling density is the posterior density itself, to
the posterior variance of g when the importance sampling density is the function I(M, s). If
the RNE is less than 1, one should draw (RNE)−1 times more replications with the function
I(M, s) than with the function P (M, s) in order to obtain a certain numerical standard error.
Geweke (1989, Theorem 3) shows that if the mean deviation of the function g(Q(M), s) under the
posterior density, denoted md(g(Q(M), s)), is finite, then the importance sampling density that

minimizes σ2 has kernel |g(Q(M), s)− ḡ|P (M, s), and for that choice, σ2 = {md(g(Q(M), s))}
2
.

Consequently, if the RNE is greater than 1, the function I(M, s) is “closer” to that kernel than
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the posterior density itself. In fact, if we define RNE∗
≡ var(g(Q(M), s))/md(g(Q(M), s)),

then RNE∗ ≤ 1 (with RNE∗ = 1 when the importance sampling density belongs to the previous
kernel).

In order to obtain a better behavior of the function I(M, s) away from the posterior mode
and with a possible asymmetry of the posterior density, Geweke (1989) suggests the use of split-
normal or split-Student densities as importance sampling densities. Let us denote SNk(θ, T, q, r)
and STk(θ, T, q, r, ν) the k-variate split normal and split-Student distributions, respectively.

If y = (y1, . . . , yk)
′
∼ SNk(θ, T, q, r), then there exists a (k × 1) standard normal vector

ε = (ε1, . . . , εk)
′, ε ∼ N(0, Ik), such as

y = θ + Tx, (B.2)

where x = (x1, . . . , xk)
′
, xi = εi

[
qi1[εi≥0] + ri1[εi<0]

]
, i = 1, . . . , k. In the application, θ is the

posterior mode and T is an upper triangular matrix obtained from the Choleski decomposition of
the negative inverse of the hessian matrix of the log posterior density computed at the posterior
mode. The k-variate split normal p.d.f. evaluated at y is

fk(y) = (2Π)−k/2
∣
∣TD

2
T

′

∣
∣
−1/2

exp
{
−

1

2
(y − θ)′(TD2T ′)−1(y − θ)

}

= (2Π)−k/2 |TT ′|
−1/2

{∏k

i=1

[
qi1[εi≥0] + ri1[εi<0]

]}−1

exp

{
−

1

2
ε
′
ε
}

(B.3)

where D denotes a diagonal matrix with entries dii =
[
qi1[εi≥0] + ri1[εi<0]

]
, i = 1, . . . , k.

A (k × k) random vector y ∼ STk(θ, T, q, r, ν) can be constructed following the same steps,
setting now xi = εi

[
qi1[εi≥0] + ri1[εi<0]

]
(ξ/ν)−1/2 with ξ ∼ χ2(ν). The split-Student t distrib-

ution is derived from the multivariate t distribution with a common denominator (see Johnson
and Kotz, 1972, for a general presentation). Consequently, the split-Student p.d.f. evaluated at
y is

fk(y) =
Γ((ν + k)/2)

(Πν)k/2Γ(ν/2)
|TT ′|

−1/2 {
1+ ν−1(y − θ)′(TD2T ′)−1(y − θ)

}
−

(ν+k)
2

×

{∏k

i=1

[
qi1[εi≥0] + ri1[εi<0]

]}−1

=

Γ((ν + k)/2)

(Πν)k/2Γ(ν/2)
|TT ′|

−1

{∏k

i=1

[
qi1[εi≥0] + ri1[εi<0]

]}−1

×(1 + ν
−1

ε
′
ε)−(ν+k)/2

(B.4)

Geweke (1989, p. 1325-1326) proposes to choose scalars qi and ri(i = 1, . . . , k) in order to
fit the variance of the univariate normal or Student distribution to the slowest rate of decline of
the posterior density along each axis. More precisely, qi and ri are defined by

qi = sup
δ>0

fi(δ) and ri = sup
δ<0

fi(δ) (B.5)
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where fi(δ) is given by

fi(δ) = |δ|
{
2
[
logP (θ)− logP (θ + δTe

(i))
]}
−1/2

(B.6)

for the split normal density, or

fi(δ) = ν−1/2|δ|

{[
p(θ)/p(θ + δTe(i))

]2/(ν+k)
− 1

}
−1/2

(B.7)

for the split Student density, where e(i) is a (k×1) indicator vector, such as e
(i)
i

= 1 and e
(i)
j = 0

for j �= i. In practice, δ is chosen to vary through the range {0.1, 0.2, . . . , 10}.
Considering analytical expressions of ML estimators (M̂, ŝ) for parameters (M, s) of the

mover-stayer model, it is possible to simplify slightly the replication procedure induced by
formula (B.2), in which θ is in practice replaced by (M̂, ŝ), and T is the Choleski factor of the
covariance matrix V (M, s) evaluated at (M̂, ŝ) and defined by

V (M, s) = R−1(M, s) = −E

[
1

N

∂2 ln(L(M, s;N,n))

∂θ∂θ′

]−1
, (B.8)

where R(M, s) is the information matrix associated to L(M, s;N,n), and

ln(L) =
K∑

i=1

ni(0) ln(ηi(0)) +
K∑

i=1

ln(Li),∀i ∈ E

Define now

Vi(M, s) = −E

[
1

N

∂2 ln(Li(M, s;N,n))

∂θ∂θ′

]
−1

= Ri(M,s)−1. (B.9)

The covariance matrix V satisfies V = diag(V1, . . . , VK) (see appendix A) where Vi (i ∈ E)
is defined by equation (B.9). So V is block diagonal, consisting of blocks Vi(M, s), i ∈ E.

Consequently, to generate multivariate split-normal (or split-Student) vectors (M, s)�=1,... ,I ,
we can generate independent multivariate split-normal (or split-Student) drawings (M, s)�,i =
(s�i ,m

�
i1, . . . ,m

�
iK) where � is the index of the drawing, i is the index of the state, s�i is the

proportion of stayers in state i and m�
ij is the transition probability from state i to state j for

the �− th drawing. More precisely, to ensure that (M, s)� ∈ DK , firstly we draw vectors

(s�i ,m
�
i1, . . . ,m

�
iK−1) ∼ SNK((ŝi, m̂i1, . . . , m̂i,K−1), Ti−, qi, ri)

or ∼ STK((ŝi, m̂i1, . . . , m̂i,K−1), Ti−, qi, ri, ν)
(B.10)

where Ti− is the Choleski factor of V̂i− obtained by dropping the last row and the last column
of V̂i = Vi(M̂, ŝ) = Ri(m̂, ŝ)

−1, qi and ri being (K × 1) vectors whose elements are given by

(B.5), (B.6) and (B.7). Then we obtain m�

iK
by setting m�

iK
= 1−

∑K−1

j=1 m
�
ij .

18

18To generate drawings (M,s)�,i verifying constraints si ∈ [0, 1], mij ∈ [0, 1] and
∑K

j=1 mij = 1, we apply
a naive acceptance-rejection method which is known to be possibly inefficient. More efficient procedures are
proposed by Geweke (1991) and Robert (1995).
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When at least one of the true values of the parameters lies on the boundary of the parameter

space, we have seen in Appendix A that the joint distibution of the restricted MLE is difficult to
obtain. In that case, another way to construct the likelihood is to use a “normal approximation
of prior” (see van Dijk and Kloek, 1980, pp.316-317). This procedure consists firstly in using
an approximation of the uniform prior by a N(θ0,

1

k
V0) density, and then in constructing an

“information contract curve” or “curve décolletage” by maximizing the expression

lnL(x; θ)−
1

2
k(θ − θ0)

′V −1

0
(θ − θ0)

with respect to θ for a sequence of values for k.
In the case we consider, L(x; θ) is the likelihood function of the discrete time mover-stayer

model and θ = (s,M). Moreover, we have to choose a value of k such that the approximation
obtained for the posterior mode of θ is just inside the parameter space. The approximations
obtained for the posterior mode and covariance matrix may then be used to construct the
importance function. This method can be improved through a “two-step normal approximation
of prior”: the posterior mean and covariance matrix obtained as indicated before may be used as
moments of a new normal prior (denoted θ′0 and V ′

0) for a second application of the procedure.
The normal prior used at the first step becomes less informative in the sense that the information
brought by the data is now used twice.

Algorithm

Let us consider drawings of vectors (M, s)�=1,... ,I from the importance function I(M,s).

Step 0: Compute the maximum likelihood estimates (M̂, ŝ) and the estimated covariance matrix

V̂ = −

[
1

N

∂2 lnL(M, s;N,n)

∂θ∂θ′

]−1
(M,s)=(M̂,ŝ)

The indices � and i are relative to the drawing from the importance function and to the state
for which the parameter vector (s�

i
,m�

i1
, . . . ,m�

iK−1
) is drawn, respectively.

For � = 1, . . . , I, and for i = 1, . . . ,K, the following steps are examined:
Step 1: Compute scalars qi and ri according to formulas (B.5)-(B.7) and draw (M, s)�,i from
the chosen importance sampling density.
Step 2:

• if (M, s)�,i ∈ DK and i < K, then i = i+ 1 and return to Step 1.

• if (M, s)�,i ∈ DK and i = K, then go Step 3.

• if (M, s)�,i /∈ DK then return to Step 1.

Step 3:“Check for embeddability”

• if (M, s)� ∈ D∗

K
then go to Step 4.

• if (M, s)� /∈ D∗

K
then go to Step 5.
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Step 4: Compute g(Q
(k)
�
, s�), k = 1, . . . , B(M�). Then go to Step 5.

Step 5: If � < I, then return to step 1 with � = �+ 1 and i = 1. Else go to Step 6.
Step 6: End.

Functions of interest

a) Transition intensities

To compute the posterior mean of qij (respectively si), we set g(Q, s) = g1(Q, s) = qij
(respectively si) and we use equation (3.5). To compute the posterior standard deviation of qij
(respectively si), we define functions g(Q, s) = g2(Q, s) = q2ij (respectively g1(Q, s) = s2i ), we
use equation (3.5) and we form

[
E [g2(Q, s)|N,n;M ∈M∗

K
]−E [g1(Q, s)|N,n;M ∈M∗

K
]
2

]1/2
. (B.11)

b) Posterior mean duration

The computation of the posterior mean sojourn duration of a mover in state i can be made
by setting g1(Q, s) = −q−1

ii
. For the posterior standard deviation, we consider g2(Q, s) = q−2

ii

and we use one of equations (B.11).

c) Equilibrium probabilities

Let us recall that the limiting probabilities for the mover-stayer model are given by the
formula (2.9). This formula involves the equilibrium distribution Π(m) for the “mover”part of
the population, which is given by equation (2.7). Let Π(m) = F (Q) denote the solution of the
system of equations Q

′

Π(m) = 0. To compute the posterior moments of Π(m), we set :

g1i(Q, s) = Fi(Q) and g2i = (Fi(Q))
2
, i ∈ E.

So, using the formula (2.9), we get the limiting probabilities of the mover-stayer model by setting
:

g1i(Q, s) = siηi + Fi(Q)
K∑

j=1

(1− sj)ηj , i ∈ E, (B.12)

and

g2i(Q, s) = {g1i(Q, s)}
2
, i ∈ E.

The posterior moments of Π(m) and Π are obtained by application of formula (3.5).

d) Mobility indices

For the movers, the mobility index considered here is given by the formula :

M(Q) = − log [detM(0, T )] /K = − tr(Q)/K. (B.13)

27



This index satisfies the criteria of monotonicity, strong immobility, velocity and freedom from

aliasing (see Geweke et al., 1986b). Its posterior moments are estimated using formula (3.5).
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Table II. Proportions of stayers (%)

Age groups
15-25 26-35 36-50 51-65

State M W M W M W M W
Employment

Normal IS 42.63 53.49 87.43 68.68 82.84 81.02 28.93 58.40
(4.70) (4.30) (2.26) (5.88) (3.32) (2.65) (11.64) (3.88)

RNE 0.28 0.02 0.19 0.01 0.05 0.30 0.04 0.09
Split Normal IS 42.77 53.25 87.63 69.65 83.04 81.07 28.67 58.47

(4.55) (4.21) (2.25) (4.42) (3.38) (2.71) (11.71) (3.85)
RNE 0.70 0.37 0.35 0.46 0.08 0.26 0.03 0.23

Gibbs sampling 43.22 53.54 87.55 70.06 84.00 76.32 37.89 58.33
(4.44) (4.17) (2.15) (4.64) (2.67) (3.21) (8.87) (3.97)

Unemployment

Normal IS 4.91 7.25 13.42 6.01 15.70 0.00 11.08 12.52
(2.83) (4.16) (5.82) (3.70) (6.05) — (5.73) (7.11)

RNE 0.69 0.26 0.41 0.13 0.15 — 0.14 0.51
Split Normal IS 4.72 6.90 13.27 6.04 14.96 0.00 10.77 12.35

(2.81) (4.15) (5.81) (3.79) (6.12) — (5.79) (7.06)
RNE 0.89 0.66 0.63 0.72 0.20 — 0.20 0.51

Gibbs sampling 6.47 9.53 16.06 8.36 17.55 6.93 13.61 16.10
(2.78) (3.96) (5.17) (3.72) (5.39) (3.78) (5.55) (6.60)

Out of the labour force

Normal IS 59.06 56.16 30.34 56.91 68.02 68.20 89.15 86.66
(2.04) (5.07) (6.79) (4.16) (5.74) (3.42) (2.75) (2.03)

RNE 0.84 0.01 0.30 0.02 0.28 0.43 0.05 0.23
Split Normal IS 59.01 55.51 30.27 56.63 68.43 68.33 89.97 86.82

(2.01) (4.65) (6.63) (4.12) (6.28) (3.37) (2.40) (2.04)
RNE 0.74 0.25 0.57 0.42 0.14 0.58 0.24 0.37

Gibbs sampling 59.11 56.59 31.61 57.10 67.72 74.46 89.11 86.85
(1.94) (4.21) (6.42) (3.74) (5.89) (2.26) (2.88) (1.96)

Remarks on Table II:

• Data source: “Enquêtes Emploi” (INSEE)

• Posterior standard deviations are reported in parentheses below the posterior means; for im-
portance sampling algorithms, the RNE of a parameter estimate is given below the posterior
standard deviation.

• Abbreviations : M for men, W for women, IS for importance sampling.
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Table IIIA. Transition intensities of “movers” (×10−4) obtained by importance sampling

Age groups

15-25 26-35 36-50 51-65

Transition M W M W M W M W

E → U

Normal 7.30 12.59 7.89 3.56 5.35 4.90 1.15 1.59

(1.15) (1.88) (2.11) (0.91) (1.31) (1.06) (0.28) (0.42)

RNE 0.45 0.06 0.22 0.01 0.13 0.40 0.05 0.29

Split Normal 7.35 12.55 8.02 3.58 5.42 4.89 1.15 1.59

(1.14) (1.90) (2.26) (0.78) (1.40) (1.01) (0.29) (0.42)

RNE 0.70 0.45 0.14 0.49 0.08 0.45 0.04 0.52

E → OLF

Normal 8.30 4.91 2.95 4.61 1.93 6.41 5.39 13.65

(1.13) (1.08) (1.12) (1.05) (0.58) (1.29) (1.09) (1.96)

RNE 0.41 0.01 0.21 0.01 0.07 0.38 0.03 0.20

Split Normal 8.28 4.72 2.94 4.63 1.93 6.35 5.86 13.61

(1.12) (0.82) (1.12) (0.92) (0.58) (1.27) (1.08) (1.94)

RNE 0.71 0.54 0.25 0.41 0.10 0.42 0.04 0.31

U → E

Normal 25.72 20.61 20.80 13.98 20.30 12.54 7.34 2.38

(3.16) (2.56) (3.75) (1.83) (3.18) (1.65) (1.48) (1.24)

RNE 0.73 0.47 0.50 0.13 0.22 0.65 0.13 0.20

Split Normal 25.75 20.64 21.00 13.98 20.17 12.45 7.34 2.28

(3.14) (2.59) (3.94) (1.86) (3.16) (1.63) (1.43) (1.21)

RNE 0.76 0.62 0.23 0.66 0.27 0.65 0.17 0.52

U → OLF

Normal 10.63 5.67 8.18 13.75 5.96 7.16 15.14 18.43

(2.11) (1.11) (2.83) (2.06) (1.68) (1.36) (2.37) (3.21)

RNE 0.55 0.06 0.44 0.07 0.18 0.50 0.11 0.42

Split Normal 10.58 5.63 8.03 13.72 5.72 7.06 15.14 18.45

(2.08) (1.11) (2.91) (2.07) (1.60) (1.35) (2.25) (3.21)

RNE 0.78 0.76 0.74 0.71 0.37 0.49 0.13 0.44

OLF → E

Normal 16.78 7.81 16.27 6.20 8.40 10.89 1.97 5.14

(1.81) (1.84) (6.09) (1.18) (3.32) (1.94) (0.47) (0.93)

RNE 0.68 0.004 0.22 0.02 0.19 0.54 0.07 0.18

Split Normal 16.88 7.55 15.99 6.15 8.28 10.89 1.93 5.05

(1.82) (1.22) (5.92) (1.13) (3.31) (1.91) (0.41) (0.87)

RNE 0.70 0.37 0.54 0.59 0.22 0.56 0.14 0.44

OLF → U

Normal 6.88 4.28 25.61 11.08 14.68 5.98 1.21 2.12

(1.15) (0.95) (8.98) (1.89) (4.72) (1.25) (0.32) (0.47)

RNE 0.66 0.01 0.39 0.09 0.16 0.54 0.12 0.26

Split Normal 6.56 3.95 25.75 10.80 14.21 5.61 1.09 1.93

(1.07) (0.77) (8.76) (1.86) (4.61) (1.16) (0.30) (0.41)

RNE 0.98 0.54 0.65 0.70 0.25 0.87 0.19 0.70

Posterior probability

of embeddability

Normal 1.00 1.00 0.997 1.00 0.995 1.00 1.00 0.982

(0.00) (0.00) (0.001) (0.00) (0.002) (0.00) (0.00) (0.002)

Split Normal 1.00 1.00 0.996 1.00 0.998 1.00 1.00 0.984

(0.00) (0.00) (0.001) (0.00) (0.001) (0.00) (0.00) (0.001)
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Table IIIB. Transition intensities of “movers” (×10−4) obtained by Gibbs sampling

Age groups

15-25 26-35 36-50 51-65

Transition M W M W M W M W

E → U

7.51 12.98 8.23 3.75 5.88 3.58 1.39 1.61

(1.18) (2.04) (2.23) (0.87) (1.37) (0.71) (0.33) (0.42)

E → OLF

8.40 4.80 3.00 4.77 2.08 5.50 6.35 13.70

(1.14) (0.86) (1.16) (0.96) (0.59) (0.98) (1.20) (2.06)

U → E

26.37 21.52 21.99 14.53 21.14 10.55 7.90 2.80

(3.28) (2.81) (3.96) (1.93) (3.12) (1.42) (1.59) (1.42)

U → OLF

10.93 6.02 8.98 14.39 6.28 9.06 15.68 19.23

(2.10) (1.17) (3.08) (2.20) (1.77) (1.38) (2.37) (3.36)

OLF → E

16.86 7.72 15.80 6.18 8.35 11.00 2.03 5.22

(1.78) (1.21) (5.98) (1.16) (3.44) (1.57) (0.46) (0.91)

OLF → U

6.99 4.35 26.95 11.46 15.30 6.34 1.31 2.24

(1.14) (0.84) (9.16) (1.97) (5.01) (1.09) (0.38) (0.50)

Posterior probability

of embeddability 1.00 1.00 0.994 1.00 0.996 1.00 1.00 0.985

(0.00) (0.00) (0.077) (0.00) (0.065) (0.00) (0.00) (0.121)

Remarks on Tables IIIA and IIIB:

• See remarks for Table II.

• Data source: “Enquêtes Emploi” (INSEE)

• Below the estimate of the posterior probability of embeddability is its numerical standard
error, computed with the formula given by Geweke et al. (1986a, p. 658).

• Abbreviations : E for employment, U for unemployment, OLF for out of the labour force
state.
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Table IVA. Mean sojourn durations (in days), limiting occupation probabilities (%)
and mobility indices (%) estimated with the importance sampling

procedure (with a split-normal importance function)

Age groups
15-25 26-35 36-50 51-65

States M W M W M W M W
Employment

T̄
(m) 647.98 588.95 967.23 1256.17 1441.95 918.80 1599.94 671.12

(73.85) (77.89) (235.37) (225.69) (353.30) (168.29) (322.58) (95.90)
RNE 0.71 0.38 0.28 0.47 0.09 0.35 0.04 0.24

Π(m) 56.40 43.86 64.44 52.86 68.56 50.81 26.24 23.86
(2.11) (2.86) (4.46) (4.12) (4.73) (3.95) (4.75) (3.07)

RNE 0.71 0.30 0.25 0.46 0.09 0.43 0.08 0.31

Π 40.59 35.39 91.30 65.56 91.20 67.05 27.56 25.48
(0.84) (1.11) (0.51) (0.86) (0.48) (0.66) (3.38) (0.74)

RNE 0.77 0.36 0.43 0.70 0.19 0.61 0.03 0.35

Unemployment

T̄
(m) 277.64 384.96 354.74 364.98 394.54 516.46 452.53 494.71

(25.78) (40.47) (59.73) (37.62) (57.47) (46.27) (59.24) (78.17)
RNE 0.79 0.64 0.45 0.71 0.22 0.63 0.17 0.47

Π(m) 16.31 25.47 26.02 18.05 20.23 20.71 4.68 8.21
(1.12) (1.88) (3.51) (1.83) (3.18) (2.12) (0.93) (1.34)

RNE 0.75 0.54 0.31 0.53 0.11 0.45 0.08 0.55

Π 8.50 13.11 6.00 7.40 4.63 5.54 2.55 2.30
(0.48) (0.80) (0.42) (0.47) (0.34) (0.45) (0.43) (0.27)

RNE 0.78 0.44 0.55 0.70 0.17 0.69 0.15 0.56

Out of the labour force

T̄
(m) 430.21 887.79 250.76 602.36 469.81 620.91 3411.71 1469.08

(39.37) (129.37) (53.09) (86.95) (116.11) (97.48) (619.41) (235.65)
RNE 0.73 0.31 0.47 0.54 0.13 0.61 0.14 0.48

Π(m) 27.29 30.67 9.54 29.09 11.21 28.48 69.08 67.93
(1.74) (3.06) (1.62) (3.19) (2.37) (3.18) (4.83) (3.51)

RNE 0.72 0.31 0.25 0.48 0.10 0.53 0.10 0.35

Π 50.91 51.50 2.69 27.04 4.17 27.41 69.89 72.22
(0.85) (1.35) (0.27) (0.75) (0.34) (0.62) (3.28) (0.73)

RNE 0.76 0.36 0.46 0.65 0.19 0.53 0.03 0.36
Mobility index 0.25 0.18 0.27 0.18 0.19 0.16 0.11 0.14

(0.02) (0.02) (0.04) (0.02) (0.02) (0.01) (0.01) (0.01)
RNE 0.76 0.49 0.49 0.65 0.20 0.56 0.14 0.39
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Table IVB. Mean sojourn durations (in days), limiting occupation probabilities (%)
and mobility indices (%) obtained by Gibbs sampling

Age groups
15-25 26-35 36-50 51-65

States M W M W M W M W
Employment

T̄
(m) 636.45 572.71 939.80 1213.90 1313.83 1131.61 1337.79 667.26

(72.24) (77.58) (219.26) (229.87) (283.70) (193.49) (248.85) (99.51)
Π(m) 56.25 44.09 64.57 52.64 67.58 54.46 24.25 24.46

(2.12) (2.71) (4.20) (4.30) (4.16) (3.73) (4.65) (3.05)
Π 40.46 35.14 91.14 65.45 91.20 63.69 30.39 25.57

(0.84) (1.05) (0.49) (0.85) (0.45) (0.58) (2.62) (0.74)

Unemployment:

T̄
(m) 270.43 367.51 331.65 349.65 371.62 514.42 431.42 464.20

(25.31) (40.06) (53.37) (36.16) (51.06) (47.51) (56.61) (69.78)
Π(m) 16.42 25.49 25.54 18.22 20.75 18.56 5.30 8.62

(1.10) (1.75) (3.29) (1.83) (2.86) (1.91) (1.10) (1.39)
Π 8.64 13.09 6.08 7.54 4.66 5.50 2.70 2.48

(0.48) (0.76) (0.42) (0.47) (0.32) (0.38) (0.45) (0.29)

Out-of-labor-force

T̄
(m) 422.54 844.76 244.18 578.17 445.87 586.22 3115.80 1376.93

(37.43) (117.28) (49.83) (80.27) (106.93) (74.72) (643.73) (228.75)
Π(m) 27.33 30.42 9.89 29.13 11.67 26.97 70.45 66.92

(1.75) (2.91) (1.59) (3.28) (2.21) (2.74) (4.96) (3.49)
Π 50.91 51.76 2.78 27.01 4.14 30.82 66.92 71.95

(0.83) (1.26) (0.27) (0.73) (0.32) (0.50) (2.54) (0.73)
Mobility index 0.26 0.19 0.28 0.18 0.20 0.15 0.12 0.15

(0.02) (0.02) (0.04) (0.02) (0.03) (0.01) (0.01) (0.02)

Remarks on Tables IVA and IVB :

• See remarks for Table II

• Data source: “Enquêtes Emploi” (INSEE)

• Abbreviations : T̄ (m) : mean sojourn duration of movers, Π(m) : limiting occupation probability

for movers, Π : limiting occupation probability for the whole population.
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