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Constrained Nonparametric Copulas

Abstract

In this paper we introduce models with constrained nonparametric depen-
dence, for which the copula is characterized by a one-dimensional functional
parameter. They provide an appropriate specification for the analysis of non-
linear dependence in financial applications, as an intermediate case between
standard parametric specifications (which are in general too restrictive) and a
totally unrestricted approach (which incurs in the curse of dimensionality). A
natural nonparametric estimator is defined by minimizing a chi-square distance
between the constrained densities in the family and an unconstrained kernel
estimator of the density. We derive the asymptotic properties of this estimator
and of its linear functionals. We show that, under an appropriate choice of
the functional parameter, the expected nonparametric one-dimensional rate of
convergence of the estimator is obtained. Finally we derive the nonparametric
efficiency bound and show that the minimum chi-square estimator is nonpara-
metrically efficient.

Keywords: Nonlinear Dependence, Copula, Nonparametric Estimation, Effi-
ciency
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Copules non paramétriques contraints

Résumé

Dans cet article nous introduisons des modeéles a dépendance non paramétrique
contrainte, ou le copule est caractérisé par un parameétre fonctionnel de dimen-
sion un. Ils fournissent des spécifications adaptées a ’analyse des dépendances
non linéaires rencontrées dans les applications financiéres et constituent un in-
termediaire entre les formulations paramétriques standard, en genéral trop con-
traintes, et les approches non paramétriques purs, qui butent sur les questions de
manque de données. Un estimateur non paramétrique naturel est defini en min-
imisant la distance du khi-deux entre les densités contraintes de la famille et celle
estimée sans contrainte par une méthode de noyau. Nous dérivons les propriétés
asymptotiques de cet estimater et de ses fonctionnels linéaires. Nous montrons
que, sous un choix approprié du paramétre fonctionnel, il est possible d’obtenir
le taux de convergence espéré, c’est a dire celui non paramétrique pour la di-
mension 1. Finalement nous calculons les bornes d’efficacité non paramétrique
et montrons que 'estimateur du khi-deux est non paramétriquement efficace.

Mots clefs: dépendance non linéaire, copule, estimation non paramétrique,
efficacité non paramétrique

Classification JEL: C14, C51



1 Introduction

The copulas have been introduced as a tool for specifying the joint distribution
of a pair of continuous variables X and Y. Let F (z,y) denote the bivariate
cumulative distribution function (c.d.f.) of (X,Y), Fx(x) [resp. Fy(y)] the
marginal c.d.f. of X [resp. Y]. The joint c.d.f. can always be written as [Sklar
(1959)]:

F(a,y) = C[Fx(2), Fy (y)],

where C is the c.d.f. of a distribution on [0, 1}2, with uniform marginal distri-
butions. C is called the copula c.d.f. and

0%C
c(u,v) = 5ud0 (u,v),

is the copula p.d.f. (simply called copula in the rest of the paper). Thus it is
possible to specify the joint distribution by separating the marginal features (in-
cluded in Fx and Fy) and some dependence features (included in the copula).
The dependence features are those which are invariant by increasing transfor-
mations of either X, or Y.

There is a large literature on copulas, which focuses on the analysis of pos-
itive dependence and on the research of parametric families of copulas [see Joe
(1997), and Nelsen (1999) for general presentations and the references therein].
More recently risk management in finance requires a careful analysis of depen-
dence between risks, for instance:

- between the risk on interest rate and the default risk to analyze the term
structure of the spread between T-bonds and corporate bonds,

- between the default risk of different corporates to capture the so-called default
correlation, that is some clustering in corporate failure!,

- between the risks in different budget lines of a bank’s balance sheet, in order
to aggregate the Value at Risk (and the required capital) computed per line?.
This dependence is not well-captured by a gaussian model, or even by standard
parametric copulas. Indeed the standard parametric copulas are not appropri-
ate for describing the dependence between quantitative and qualitative risks
(as risk on interest rate and default risk), or for performing a separate analy-
sis of the dependence between low, medium and high risk for two quantitative
risks. An alternative followed by Deheuvels (1981) and Scaillet (2001) consists
in applying a completely nonparametric approach where Fx, Fy and c are let
unconstrained. However the copula is bivariate and its nonparametric estima-
tion is not very accurate due to the curse of dimensionality.

The aim of this paper is to study constrained nonparametric copulas, which
depend on a one-dimensional functional parameter a. The parameterized copula
is denoted by c¢(u, v; a), where function a is defined on [0, 1]. Such a constrained
copula can be used for different purposes. In a cross-sectional framework, it will

!See e.g. Li (2000), Schonbucher, Schubert (2001), and Gourieroux, Monfort (2002).
2See e.g. Durrleman, Nikeghbali, Roncalli (2000), and Embrechts, Hoing, Juri (2001).



be used to specify the joint distribution F (z,y) of two risk variables X and Y.
The bivariate distribution is generally parameterized by three one-dimensional
functional parameters:

A= (fXavaa)a

where fx and fy are the unconstrained marginal densities and a the one-
dimensional parameter, which characterizes the copula.

In a time series framework, it can be used to study the risk dynamics, that is
a time series X3, t varying. If (X;) is a stationary Markov process, the dynam-
ics is fully characterized by the joint bivariate distribution F (x4, z;_1), whose
marginals are identical because of the stationarity. The bivariate distribution
is parameterized by two one-dimensional functional parameters: A = (f,a),
where f is the p.d.f. of the stationary distribution and a the functional param-
eter which characterizes the copula.

Since the functional parameters are one-dimensional, we can expect consis-
tent estimators converging at the one-dimensional nonparametric rate /T hr,
where hp is a bandwidth. However it is well-known that the rate of convergence
is not invariant by one to one change of functional parameter. For instance a
nonparametric estimator of a marginal p.d.f. converges generally at rate /T hr,
whereas the corresponding estimator of the c.d.f. converges at a parametric rate
V/T. To ensure the expected rate, it is necessary to assume that the joint density
f(z,y; A) is first order differentiable with respect to functional parameter A,
with a nondegenerate differential.

In section 2 we introduce the differentiability assumption, define the infor-
mation operator and discuss identifiability. Various representations of the infor-
mation operator are introduced, and its invertibility is discussed. In section 3
we consider several examples of constrained nonparametric families of bivariate
densities, where the joint p.d.f. is specified either by means of the conditional
density and a marginal distribution, or by the copula and the marginal distri-
butions. For each example we discuss the parameter choice, and provide the
closed form expression of the first order differential and of the information oper-
ator. In section 4, we consider a natural nonparametric estimator of functional
parameter A. The idea is to minimize a chi-square distance between the con-
strained bivariate density f (z,y; A) [resp. the constrained conditional density
f(x¢|zi—1; A)] and an unconstrained kernel estimator of the bivariate density
[resp. the conditional density] in the cross-sectional framework [resp. in the time
series framework]. We derive the asymptotic properties of the estimator and of
its linear functionals. Intuitively the estimator will take account of the whole
information included in the observations, since the unconstrained kernel esti-
mator of the joint density provides semi-parametric efficient estimators for any
marginal or cross-moment of (X,Y"). Thus we can expect some efficiency prop-
erty of the chi-square estimator. The nonparametric efficiency of the minimum
chi-square estimator is proved in section 5, where the nonparametric efficiency
bounds are also derived for the cross-sectional and time series framework. In
many examples the functional parameter A is subject to restrictions, which are



due either to the natural constraint on the marginal density to integrate to 1,
or to identification constraints. The extension of the results to these cases is
considered in section 6. Proofs are gathered in Appendices.

2 The information operator

2.1 Differentiability condition

Let f (x,y; A) be a nonparametric family of bivariate densities, where the func-
tional parameter A belongs to an open set A of R?-valued univariate functions,
equipped with a norm ||.||;2,,, where the measure v will be precised later on
[see section 2.3 iii)]. The family f(z,y;A) can be parameterized in different
ways. For instance, if A is differentiable, we can replace the initial function A
by its derivative dA/dw, which provides the same information (up to a scalar
parameter). However it is well-known that nonparametric estimators of A and
dA/dw can have very different rates of convergence [see e.g. Silverman (1978),
Stone (1983)]. This explain why it is necessary to normalize the functional pa-
rameter A. This normalization is introduced by means of the derivative of the
density with respect to A.

Assumption A.1 The distributions of interest are continuous with respect to
the Lebesgue measure Ag, with p.d.f. f(x,y; A). We denote by Pa the distribu-
tion associated to f(x,y; A).

Assumption A.2 The Hadamard derivative of log f(x,y; A) with respect to A
exists:

log f(x,y; A+ h) —log f(x,y; A) = (Dlog f(z,y; A), h) + R(z,y; A, h),
for A, A+ h e A, where:

i. Dlogf(.,;A) : L? (v) — L?(Pa) is a bounded linear operator, for any
A€ A;

ii. the residual term R(x,y; A, h) is such that ||R(X,Y; A, h)|| 12 (p,) =0 (HhHLQ(U)),

uniformly on h in the class of compact sets, for any A € A3.

3Precisely: VA € A, K C A compact: ||R(X,Y; A, h)||L2(PA) / ||h||L2(u) — 0, uniformly in
h € K [see Ait-Sahalia (1993), Van der Vaart, Wellner (1996)].



2.2 Identification and Information.

Let Ag € A denote the true value of the functional parameter, and f(.,.) =
f(.,.; Ag) the corresponding true p.d.f. In this section we discuss the identifica-
tion of Ag as a minimizer of the chi-square proximity measure:

_ [ [Fay) —fay AP
Q(A)f// e dudy, A€ A,

Under Assumption A.2 and an additional technical condition?, @ is well-defined
in a neighborhood of Ag (w.r.t [|.|| () and it is locally equivalent to the Kull-
back proximity measure K(A4) = Eglog [f(X,Y;A)/f(X,Y)] (see Appendix 2).

i) Global identification
Under the global identification condition:
fz,y; A) = fx,y; Ag) Ag-as., Aec A= A= Ay,
Ap is the unique minimizer of @ over A.
ii) Local identification.

Under Assumption A.2 we can introduce the information operator I defined

[

by”:
(9, 1) 200y = Bo [{Dlog F(X, Y Ag), ) (Dlog f(X, Y3 Ag), B)], (1)

for g, h € L?(v). Under Assumption A.2 the information operator I is a
bounded, nonnegative, self-adjoint operator from L? () in itself.
Let us consider the following assumption:

Assumption A.3. i. Local identification: the differential operator has zero
null space:

(Dlog f(X,Y; Ag),h) =0 Py-a.s., h € L? (v) = h = 0.

Assumption A.3 i. is equivalent to any of the following conditions on the infor-
mation operator (see Appendix 2):

i. the information operator I has a zero null space:

Th=0,h € L*(v) = h = 0;

4See Assumption A.2.bis in Appendix 2.

see e.g Begun, Hall, Huang, Wellner (1983), Bickel, Klaassen, Ritov, Wellner (1993), Gill,
Van der Vaart (1993), Holly (1995). In Appendix 1 we relate definition (1) to those adopted
in the literature.



ii. [ is a positive operator:

(R Ih) 2y =0, h € L? () = h=0.

Under Assumption A.3. i. and an additional technical condition%, A is
locally identified in the following sense (see Appendix 2): Ag is the unique
minimizer of @ over any sufficiently small compact set © C A containing Ao,
and:

: inf A Ag) =
Ve >0 Ae@{%E(AO)Q( ) > Q(Ao) =0,

where B, (Ap) is a L? (v)-ball of radius ¢ centered at Ag. Assumption A.3 i. is
weaker than invertibility of the information operator I. In the next section we
will show that, if the differential operator admits a specific representation, then
Assumption A.3 i. is sufficient for invertibility of 1.

The identification of Ag over noncompact subsets requires a stronger as-
sumption:

Assumption A.3. ii. Local identification:

inf  (h,Ih)z2(, > 0.
h:||h|\,‘z(y~):1( )L (v)

Under Assumption A.3. ii. A is the unique minimizer of () over any sufficiently
small subset © C A containing Ay, and:

. inf A Ag) = 0.
Ve >0 Aeei%E(Ao)Q( ) > Q(Ap) =0

Assumption A.3 ii. implies in particular that operator I is invertible’.

2.3 Representation by measures

The differential operator and the information operator can often be represented
in terms of measure. We discuss below the link between both representations,
select the basic measure v and characterize the invertibility of the information
operator.

6See Assumption A.3.* in Appendix 2.

"Since I is a bounded self-adjoint operator, we have: infh:l\hl\L2<V):1(hv Ih)LZ(u) =
infygo(r) A, where o(I) C Ry is the spectrum of I [see Yosida (1995), Theorem 2, p. 320].
Thus Assumption A.3. ii. is equivalent to inf)\Eo'(I) A > 0. The invertibility of I just requires

0¢ o(l).



i) Representation of the differential operator.

The differential operator can generally be written in terms of a measure:

<Dmﬂ%%%m:/Mwﬁm%mm% (@)

where u(z,y, A;.) is a g-vector of measures, Vz,y. When this measure u(z,y, 4;.)
has both a discrete and a continuous part, we get for instance:

(Dlog f(w,y; A),h) = o(,y; A) B(x) + 71 (2, y; A) h(y)
+ [ (a0 4) hw)d, 6
where vq, v; and v, are R%-valued functions, that is:

w(z,y, A; dw) = yo(z,y; A)dz (dw) + 74 (z, y; A)by(dw) + vo(x, y, w; A)M(dw).

ii) Representation of the information operator.

We can deduce the form of the information operator I when the differential
operator Dlog f(X,Y; Ag) admits representation (2). We get:

(0:10) 2y = [ @) TGl (@),
where®:
nmwww:/fﬂmxnmmmmeﬂwm’wm

Ih is an R9%-valued function in L?(v), and v is a scalar measure.
A case of particular importance is when the measure p is such that:

Eo [u (X7Y;Ao;dw)u(X,Y;Ao;dv)/} = ag(w; Ag)du (dv) A (dw)
+ a1 (w, v; Ag) A2 (dv, dw) ,
(4)

where ag and a4 are matrix-valued functions, such that ag(w; Ag) = ap(w; Ag)’,
a1 (v, w; Ag) = o (w,v; Ag)’, Yo, w. In this case the information operator is such
that:
(9:1h) 12, = /g (w) ag(w; Ag)h(w)dw + //g (w) a1 (w,v; Ag)h(v)dvdw,
(5)

8We assume that the integrals with respect to g and Py can be commuted.



that is:

Th (w) = 732(/15;\1(4125h(w)+ / 70‘55/"6’;25)0)/1@)@.

Thus the information operator I admits a decomposition in two components,
corresponding to functions g and a;;. This decomposition is common in applied
examples (see section 3.2). In order to get intuition on it, let us consider the
case where the differential operator admits the form (3). We get:

ao(w; A) = / o, Ao, y; A)' £ (w, 5)dy

4 / 1 (w5 Ay, (0, w5 A)' f(, w)da

= Elvouioe | Xe = | fx(w) + B [y1,71 | Y = w] fr(w),
(6)

al(w’v;A) = ’YO(w,U;A)’Yl(w,’l};A)/f(w,U)

+/’yo(w,z;A)’yg(w,z,v;A)/f(w,z)dz
+ [ (e Ayl w0 4) £ (2,0) dz

1 ! '
+§//VQ(Zay,w;A)WQ(Zay,U;A) F(z,y)dedy + sym (w < v)

= yo(w,v; A)yy (w,v; A) f (w,v)
+E [’YO,t’YIQ,t (v) | Xi = w} fx(w)

E |11, (0) | Ve = 0] fy (w)

7

5B 12w )] + sym (w > 0) ™

where v, = 7o (Xe, Ya), Y1 =M1 (X, Y2), Y2, (v) = 72 (X¢, Y2, v). The com-
ponent «q of the information operator arises from differentiation of those parts
of the joint density f(z,y; A) which depend on the value of the parameter A at
some point. ag is called local component. The components of the density which
depend on functionals of A contribute only to term «;.

iii) Choice of the measure v
Let us assume that the measure p satisfies equation (4), and discuss the choice

of the measure v to ensure that the differential operator Dlog f(z,y; A) is a
bounded operator from L? (v) to L?(Pya).



Proposition 1 : Assume that the measure p satisfies equation (4). For any
A€ A, let a(.; A) be a positive definite matriz function such that:

2
//H 2 A) V2 oy (x5 A)a (y;A)fl/QH dzdy < 00,VA, (8)
where ||.|| is a matriz norm on RY*9. Let the measure v be such that:
d
VA:3C4 >0: C’Ad—i(v)ldq > max {ag(v; A), a(v; A)}, Vo. 9)

Then Dlog f(.,.; A) is a bounded operator from L? (v) to L?>(P4), for any A € A.
Proof. See Appendiz 1.

The choice of a measure v which satisfies the conditions in Proposition 1
depends in general on the parameterization. In order to illustrate this point, let
us consider a bivariate independent family: f (z,y; A) = fx(z; A) fy (y; A).

i) If parameter A consists of the marginals themselves, A = (fx, fy), we get:

hx (x) hy (y)

(Dlog f(z,y; A), h) = A A h = (hx, hy)
and:
Eo[(Dlog f(X,Y; Ao), g) (Dlog f(X,Y; Ag), h)] = % o
gy (W) hy (y)
o[ g [ iy oo
Thus:

ao(w; Ao) = ( D s g ) a1(w,v; do) = ( Do >

The choice o« = « satisfies condition (8) in Proposition 1. Condition (9) be-
comes then:

dv 1 L
VA:3Cy4: CAd_/\(U) z max{fx(v;A)7 fy (v; A) } s

ii) If instead we choose A = (f1/2, 1/2) we get:
Ep [(Dlog f(X,Y; Ao), g) (Dlog f(X,Y; Ag), h)] =4 {/QX(I)hX(x)dI

+/9y(y)hy(y)dy+/[gx(w)hy(y) + hx(x)gy (v)] fx(:v;A)l/ny(y;A)l/dedy},



that is ag(v; Ag) = 41dp and:

Ca 0 fx(w; A)Y2 fy (v; A)1/2
w0 =4 (g Ay g a2 0 )

Conditions (8) and (9) are satisfied by oo = Ida, v = \.
iii) Finally, if A = (log fx,log fy ), we get:
Eo[(Dlog f(X,Y; Ao), g) (Dlog f(X, Y5 Ao), h)] = /gx(w)hx(w)fx(x; A)d

4 / gy (0)hy () f (s A)dy + / lox (@)hy (9) + hix (2)gy ()] Fx (: A) fy (y; A)dedy,

that is:
Ix(v; Ag 0
CMO(UQAO) = ( (0 ) fy(w;Ao) >7
. _ 0 Ix(w; A) fy (v; A)
ar(w,vido) = ( Fx (03 A) i (w; A) 0 )

The choice av = ag satisfies condition (8) in Proposition 1. Condition (9) is
equivalent to:

d
VA:3Ca: Cage(v) = max (fx (v A), fy (13 A)}, Vo,
that is the measure v dominates both marginal distributions in the family.
iv) Invertibility of the information operator

When the measure p satisfies decomposition (4) with additional restrictions on

v, a zero null space of the information operator I is sufficient for its invertibil-

ity?.

Proposition 2 : Assume the conditions of Proposition 1, and in addition let
ap(v; A) be invertible, Vo,V A, such that:

- _d
VA:3C4 >0: C’Ad—l//\(v)ldq < ap(v; A), Vv.

Assume further that the information operator I has a zero null space. Then the
information operator is continuously invertible.
Proof. See Appendiz 1.

9The following proposition uses the theory of Fredholm operators [see Van der Vaart (1994)
for similar results].



3 Examples

3.1 Differentials of the copula and of the conditional and
marginal densities.

A family of bivariate joint densities can be specified in various ways. One possi-
bility is to parameterize the conditional density and one marginal distribution.
Alternatively we can parameterize the copula and the marginal distributions.
In both cases, the differential of the joint density can be recovered from the
differentials of its components.

i) Conditional density and marginal density.

Assume fx|y(z | y; A) [resp. fy (y; A)] is a differentiable family of conditional
distributions of X given Y [resp. of marginal distributions of Y], parameter-
ized by function A. Let Dlog fx|y, and Dlog fy denote their differentials with
respect to A. A family of bivariate densities is defined by:

f(z,y; A) = fxiy (x| y; A) fv (y; A).
We have (see Appendix 3) 0:
Proposition 3 : The differential of log f(x,y; A) is given by:
Dlog f(x,y; A) = Dlog fx|y(z | y; A) + Dlog fy (y; A).
Moreover:

Dlog fy(y; A) = Q[Dlogf(X,Y;A)\Y:y]
- / Dlog f(x.y: A) fxpy (x| y; A) de.

Thus Dlog fx|y(x | y; A) is the residual in the projection of Dlog f(z,y; A)
on Y; in particular it is orthogonal to Dlog fy (y; A):

E [(Dlog fxy (X | Y;A),h)(Dlog fy(Y; A),g)] =0, Vh,g € L*(v). (10)

As a consequence the information operator I is the sum of a conditional and a
marginal information operators:

I=Ixy + Iy,

10The differential Dlog fy (y; A) is an operator indexed by y. Its integral
fga(y) Dlog fy (y; A) dy with respect to a function ¢ is defined in the usual distributional
sense as:

</<P(y)D10gfy (y; A) dy, h> = /«P(y) (Dlog fy (y; A) , h) dy.

Similarly for the other differentials.

10



where Iy|y and Iy are defined by:
(9: IxjyP) 2wy = Eo[(Dlog fxv(X | Y;Ag),g) (Dlog fxjy(X | Y;Ao),h)],
(9, Iyh)r2(y = Eo[(Dlog fy (Y5 Ao), g) (Dlog fy (Y5 Ao), h)]

for h,g € L? (v).

An interesting special case occurs in the stationary time-series framework
when there exists a unique stationary distribution. Then the conditional and
marginal distributions are linked by the Chapman-Kolmogorov equation:

f (2 4) = / Fxpy (2 1y A) £ (3 A) dy. (11)

By differentiating this equation, we get the relationship satisfied by the associ-
ated differentials.

Proposition 4 : If the marginal distribution satisfies the Chapman-Kolmogorov
condition, the differential Df satisfies the integral equation:

Df(a; A) = / D fxpy (ely; A) £ (v; A)dy + / Fxiy (zely; A)YDf (y; A)dy.

ii) Copula and marginal distributions

A family of bivariate densities for (X,Y’) can also be defined by specifying the
copula c(u,v; A), and the marginal distributions fx (z; A), fy (y; A):

f@,y; A) = c[Fx(a; A), Fy (y; A); A] fx (23 A) fy (y; A) -
Proposition 5 : The differential of the density f(x,y; A) is given by:
Dlog f(x,y; A) = Dloge[Fx(z; A), Fy (y; A); Al

+Dlog fx(z; A) + Dlog fy (y; A)

o1 ’
+ 6050 [FX(:E;A),FY(?J;A);A]/ fx(2;A)Dlog fx(z; A)dz
Ologc

ov

+

(Fx(as ) (s A)id] [ fo(a: A)D o (s A
(12)
Proof. See Appendix 3.

In a cross-sectional framework the functional parameter A is often chosen
as:

A= (vafYaa)7

where a characterizes the copula. The differential of log f(x,y; A) is given in
the following corollary, where the effect of the different functional parameters
are distinguished.

11



Corollary 6 : The differential of the density f(x,y; A) is given by:

D, logf(:r,y,A) = DlOgC[FX(I),FY(y);a’};
(Dyy log f(z,y; A),h) = ag)fc [Fx (2), Fy (y); o] /_Oo hz)dz + flzc(éz)’
‘ ~ Ologe ) v h(y)
(Dp, g Sz A1) = ZGEE P () el | heds+ L

Let us define the information operator I, associated with the copula den-
sity:

(gv ICOPh)L2 (v) = EO KD IOg C(Ua V; Ao)a g> <D lOg C<U7 Va A0)7 h” )
for h,g € L? (v). Since:
Eal(Dloge (U, V; Ag) by | U] = Ea [(Dloge (U, V; A) by | V] =0,

Vh € L? (v), the first term in the decomposition of the differential [see equation
(12)] is orthogonal to the second and the third ones. Let Ix and Iy be the
marginal information operators [defined in 1)], and Ixy, Iy x the cross operators,
defined by (g, Ixyh)rz() = Eo[(Dlog fx (X; Ao), g) (Dlog fy (Y3 Ao), h)], and
similarly for Iy x. Then the information operator I can be decomposed as:

I=Icop+Ix+1Iyv +Ixy +1Iyx +J,

where the term J comes from the last two terms in (12).

In particular when the parameter is A = (fx, fy,a) [see Corollary 6], the
information operator I has a block decomposition, with univariate versions of
Ix, Iy, and I, on the diagonal. The elements out of the diagonal correspond-
ing to (fx,a) and (fy,a) are not zero due to the first terms in the differentials
with respect to the marginal distributions given in Corollary 6. These terms
arise since the efficient copula estimator provides information on the marginal
distributions (see Genest, Werker [2001]).

3.2 Examples.

We consider below different constrained nonparametric families of bivariate den-
sities, and give the expressions of the differential of either the copula or of the
conditional density (see Appendix 4 for some derivations). We provide an ap-
propriate choice of the functional parameter in each example, in order to ensure
that Assumption A.2 is satisfied and the information operator admits the rep-
resentation (5).

i) Truncated model

Let us consider a latent variable X* with p.d.f. f*, f* > 0, and assume that,

12



for any value of Y = y, the value of X is drawn in the conditional distribution
of X* given X* < y. The conditional p.d.f. of X given Y is:

f*(z)
J2 fr(2)dz

By choosing the parametrization A = log f*, the differential of log f (x | y; A),
for x <y, is given by:

f(zly) =

To<y-

(Dlog f (x| y; A),h) = (/fz|% (2)dz

Let us now consider the conditional information operator Ix|y. By definition
we have:

(9 Ixpyh) 2,y = Eo{(9(X) = Eo[g(X) | Y]) (M(X) = Eo [(X) [ Y])}
= FEoCov(¢9(X),h(X)]Y).

It admits the measure representation with:
ag(;A4) = fx(z;4),
oo d) = = [ 1|54 ] 5A) Sy (s A)d:

Let us now discuss the boundedness of the differential operator (Proposition 1).
If we choose a(z; A) = fx(z; A) we get:

// oelxy,y’ ddy—// [ f mle( (y | % A) fy(z; A)dz]” dudy.

€3 A)fX(ya )

Thus condition (8) of Proposition 1 requires'!:

//‘LfﬂzA Fly| % A) fy(z A)dz)?
fx(x; A) fx (y; A)

Moreover the measure v has to satisfy:

dxdy < oo. (13)

d
VA:HCA:>O:CAE§Qw;zfX@;A% V. (14)

The measure v must dominate the marginal density of X, for any distribution
in the family.

1 Note that J F(x]2A)f(y]|z A) fy(z; A)dz is the joint density of two observations of X
having the same (unknown) conditioning value Y. This distribution has marginals equal to
fx(.; A), and the expression in the LHS of (13) is the sum of its squared canonical correlations,
see e.g. Dunford, Schwartz (1968), and Lancaster (1968).
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ii) Truncated dynamic models.

Let S be a differentiable survivor function on R and let a be a positive function
on R;. The positive valued Markov process (X;) follows a truncated dynamic
model if its transition survivor function satisfies:

Sz + a(zi—1)]
Sla(zi-1)]

Thus the distribution of X; given X; 1 = z;_1 is the distribution of the excess
X* —a(x¢—1), where X* is censored at a(zy—1), X* > a(x4—1), and X* ~ S.

Let us denote by g (resp. A) the density (resp. the hazard function) corre-
sponding to S. The conditional distribution is given by:

P(Xy >x | Xem1 =x021) =

g [ + a(wi—1)] '

Ty | X1 A) = = , A= (a,lo .
f (e | ) fa-tz,,,g (o) (a,logg)
The differential is:
(Datoef e 3 A). 1) = (DB ot o))+ Ala(0)] ) HG)
(Diogglog f(z|y; A),h) = h(z+a(y) — Ealh(Xe+a(Xe 1)) | Xe1 =y].

The information operator admits the representation (5), with local component:

ag (w; A) = Ea [(% [Xe +ar—a] + A [at—l])Q | Xi1 = w] f(w; A) 0

fX[+al—l (w; A)

where a; 1 = a(Xy—1) and f [resp. fx,+a,_,] is the stationary density of X,
[resp. X; + a(X;—1)].

iii) Stochastic unit root.

The stochastic unit root model has been introduced by Gourieroux and Robert
(2001) to study the links between long memory, endogenous switching regimes
and heavy tails, often encountered in financial time series. The process is defined
by:

Y, Xt 1+e , with prob. 7 (X¢ 1),
ER e , with prob. 1 — 7 (X; 1),

where the e; are i.i.d. errors independent from X;_1, with density g, g > 0, and
7 is a function with values in |0, 1]. This is a Markov process with two possible
stochastic regimes, corresponding to either a random walk, or a white noise. A

14



latent binary variable Z; can be introduced, with Z; = 1 (resp. Z; = 0) when
the process is in the random walk (resp. white noise) regime.
The conditional density is given by:

fly) =7y)g—y)+[1—-7()g(x).

’

For parameterization A = (logm,logg) , the differential is given by:
(Diognlog f (2 [y; A) ,h) = r(z,y;4)h(y),
<D10gg Ing (.’E ‘ Y3 A) 3 h> = pl(xa Y3 A)h (.’E - y) + pO(xv Y; A)h (LL') )

where r (z,y; A) = [f(z | y; A) — g(z; A)] / f(z | y; A), and po, p1 are the filtering
probabilities:

pi(ze, w15 A) = Pa [Zt =1 ﬁ] =PalZ; =1z, 04_4]
= m(x—1) g (@ — 2e—1) /[T (2e-1) g (20 — 2-1) + (1 — 7 (2e-1)) g (21)]
and:
po(ze, w—1;A) = Pa [Zy = 0| 2] =1 — p1(ay, w15 A).

In this example the differential operator is associated with a measure which
involves a discrete component only. The information operator admits the rep-
resentation (5) with:

Eo [r} | Xim1 = 2] f(2) 0
0 EO [pit | Xt B Xt—l = Z] fo,—Xr,—l (Z)
+Eo [po. | Xe = 2] f(2)

ag(z; Ag) =

and oy given in Appendix 4, where r, = 7 (X, X¢—1; Ao), po,t = po (X¢, Xi—1; Ao),
Pt = p1(Xe, Xe—1;A0), f (vesp. fx,—x, ,) is the stationary density of X

(resp. X; — Xy—1), and all functions are evaluated at Ag. The component of

ap(z; Ag) relative to log m depends on Ey [Tf | X¢ 1= z], that is the conditional

chi-square distance between the conditional distribution and the density of the

innovation. The component relative to logg depends on conditional expecta-

tions of the squared filtering probabilities, pit and pg,t, given Xy — X1 = 2

and X; = z respectively. The filtering probabilities are conditional to the inno-

vation, since the innovation ¢, is either equal to X; — X;_1, when the process is

in the random walk regime, or to X; when it is in the white noise regime.

iv) Copula with proportional hazard.

Let (U, V;) be variables with uniform margins, and let us assume that their
distribution features proportional hazard:

PU: = u| Vi = v] = exp[—a(v) Ho(u)],
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where a is a positive function on [0, 1], and Hp is a baseline cumulated hazard
on [0, 1]. Functions a and Hy are restricted by the condition of uniform margins:

1—u=E[PlU;>u|V]], Yuel0,1],
that is

H(;l(z) =1- /0 exp [—za(v)] dv, z > 0. (15)

Thus the proportional hazard copula of (Uy, V;) is characterized by the functional
parameter a and it is given by:

¢ (u,v;a) = a(v)ho(u; a) exp [—a(v)Ho(u; a)],

where H(u;a) is defined by (15), and hg = dHg/du. Note that two functional
parameters differing by a multiplicative constant, a and ka (say), define the
same proportional hazard copula!?.

The differential of the copula density is given by [see Gagliardini, Gourieroux
(2002)]:

<D10gc(Ut, Ui—1; a) 7h> = (1 - at—lHOt) (ht—l/at—l - FE [ht—l/at—l \ UtD

—-F {(1 - at—lHOt) (ht—l/at—l —-F [ht—l/at—l ‘ UtD | Ut}

= U Ui )b (Up) + / vy (Us, Us 1, w) h(w)dw,

where a;—1 = a(U—1), Hot = Ho(Uy, a),

1 —a(v)Ho(u;a)

a(v) ’

(2002), formula (a.13), Appendix 7.
()

Yo (u,v;a) =

and ~y, is given in Gagliardini, Gourieroux

The information operator admits the form (5) with local component:

1

ap(w;a) = W’

and «; given in Appendix 8 of Gagliardini, Gourieroux (2002) 3 .

12 Gagliardini, Gourieroux (2002) use the proportional hazard copula for specifying dura-
tion time series models with proportional hazard, and for discussing their serial dependence
properties.

131t is possible to consider the example of general distributions (X,Y) with proportional
hazard:

PIX >z |Y =y] =exp[-a(y)Alz)],
where a is a positive function, and A is the baseline cumulated hazard.

14T he results on proportional hazard copula can be extended to more general transformation
copulas, that is the c.d.f. of variables (Ug, Vi) with uniform margins and satisfying:

€t
Ho(Ur) = ——,
a(V)
where a is a positive function, Hy is increasing, and the innovation ¢ is independent from V4,
with a distribution with support in Ry. The case where £; has an exponential distribution
corresponds to proportional hazard.
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v) Archimedean copula.

The family is usually defined by [see Genest and Mc Kay (1986)]:
Cluv) = [¢7 W+ ()], (16)

where the (strict) generator ¢! is a convex, decreasing function defined on
(0,1], such that ¢~'(1) = 0, and ¢~ (0) = +o00. Many of the most well-known
archimedean copulas are derived from factor models (for failure, called frailty
models, see e.g. Joe [1997]). In this case ¢ is the Laplace transform of a positive

random variable Z representing a latent factor with common effect on X and
Y:

¢(s) = Elexp(—sZ)], s > 0. (17)
Assume ¢ is twice continuously differentiable. The copula p.d.f. is:

c(u,v) = ¢ [p™ () + ¢~ (v)] )
’ ¢ [0 W] d [67 ()]

However even if the generator ¢ (or </)_1) is a natural functional parameter for
the Archimedean copula, it does not satisfy the differentiability condition given
in Assumption A.2. The proposition below introduces an equivalent functional
parameter in one-to-one relationship with ¢. Let us consider the transformed
variables:

W o= CUYV)
zZ = V.

Proposition 7 : The joint p.d.f. of W and Z is given by:

A0
foz f*(v)dv

where the latent measure density f* is given by:

f(w, z) lu<z, w,z€(0,1),

gy — O [0 ()]
f ( ) (75/ [(ﬁ*l(w)]’

Moreover we have a one-to-one relationship between the measure F* and the
-1 .
generator ¢~ since:

we (0,1). (18)

7

Fr(w) =~ [¢7 ()] = ¢ (y) = /
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under the condition fol 1/F*(w)dw = co 5.
Proof. See Appendiz 4.

The generator ¢~ ' and the function f* are identifiable up to a multiplicative
constant. This identification problem can be solved by imposing that f* is a
p-d.f., as we will do in the following. Then variables W and Z follow a truncation
model [see example 1)], with latent density f* in (18) and Z ~ U(0, 1).

We choose to parameterize the copula density by means of function
a = f*. Thus the copula density is:

F*[C(u,v;a);a]
F*(u;a) F* (v;a)’

c(u,v;a) = a[C(u,v;a)]

where functional parameter a is a positive function defined on [0,1] and such

that:
1
/ a(v)dv = 1.
0

hC(u,v;a)]
a [C(u,

The differential is given by:

1
(Dlog c(u, v;a), h) = + / 1 (v, w3 ) h(w)du,
0

v;a)]

where function v is given in Appendix 4. The information operator is of the
form (5), where the local component is given by:

fwlua) o7 (usa)
ol = Toty ~ atw)

where fiy(.;a) is the p.d.f. of variable W, and «; is reported in Appendix 4.
vi) Extreme value copula

Let (Z;,W;), i = 1,...,n be independent pairs of random variables. Extreme
value bivariate copulas are associated with the limiting joint distribution of

5By the mean value theorem: F*(v) ~ f*(0)v, for v ~ 0, and thus condition
Jo1/F*(v)dv = oo is satisfied if £*(0) < co. Since:

J* ) = lim £ (w) = tim ~%,

this condition is equivalent to:
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marginal maxima (max; Z;, max; W;), as n tends to infinity. Extreme value
copulas are of the form [see e.g. Joe (1997)]:

Cy(u,v) = exp {(logu +logv) x (k’i> } ,

logu + logv
where the generator x is a function defined on [0, 1], is convex, and satisfies:
max(v,1 —v) < x(v) < 1.
Assume function x is differentiable. The copula p.d.f. is given by:

C u, v uv "o
( ){— x (u)
uv logu + log v

+ @+ @] [x@ - ax @]}

where @ = logu/ (logu +logv), v = logv/ (logu + logv). The functional pa-
rameter x does not satisfy Assumption A.2. Asin the example of the archimedean
family, we look for a parameter which is related to x . In order to get intuition,
let us consider an alternative characterization of function x. The generator x of

an extreme value copula can be written as (see e.g. Joe [1997], and Appendix
4):

ey (u,v) =

x (v) :2/0 max {(1 — 2)v,z(1 —v)} dF*(2),

where F* is a c.d.f. on [0,1] such that: fol zdF*(z) =1/2. When F* admits a
density f*, we get:

X// _ 2f*

Thus, an extreme value copula can be parameterized by the functional param-
etera = f* =y /2:

c(u,v;a) = C(U,U;a){

uv

2uv

7logu + logva (@)
+ [x@a)+ X (@a)| [x(@a) - X (@a) |,

and the functional parameter a is a positive function defined on [0, 1] satisfying
the constraints:

/01 a(v)dv = 1, /01 va(v)dv = 1/2.

The differential of the copula density is of the form:

(Dlogc(u,v;a), h) =g (u,v;a) h (@) + /(; 1 (u, v, w; a) h(w)dw,
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where:

7o (1, 030) = { (i)~ BUL 08 [1 -/ ’ wa(w)dw] [ / " o) - / ' wa(w)dw] }

The copula information operator admits representation (5) with local compo-
nent:

ag (w;a) = E, [70 (U, V;a)2 | U= w} fo (wsa),
where U = log U/ (logU + log V), and [z is the density of U.
vii) Copula with one dimensional canonical decomposition

Nonlinear canonical analysis provides a decomposition of a stationary Markov
process Xy, t € N, in orthogonal functional directions ¢;(Xy), ¥;(Xi—1), j € N
varying, of decreasing nonlinear dependence!®. Functions ®;, ¥, j varying, are
called canonical directions, and A\; = corr [gpj (X1), 0, (Xt_l)], j varying, are the
associated canonical correlations. The copula of a stationary Markov process
with one dimensional canonical decomposition is obtained when A\; =0, j > 2,
and A; = A > 0 [see Gourieroux, Jasiak (2001)]. It is given by:

c(u,0) =14+ Ap (u) ¢ (v),

where the canonical directions ¢ and 1 satisfy the conditions:

1 1
| ewau= [ v@an—o,
0 0
with the normalization:

[ ewran= [vera=t,

and are such that the copula density is positive. Let us for simplicity consider
the case of reversible Markov processes, that is ¢ = 1. Then the copula density
can be parameterized by a = v/Ap, and we get:

c(u,v) =1+ a(u)a(v),

where the functional parameter a satisfies the constraint:

/0 1 a(v)dv = 0.

16See Lancaster (1968), and Dunford, Schwartz (1968).
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The canonical correlation A and the canonical direction ¢ are deduced from a
by the equations:

1 \ Y
)\:/0 a(v)dv, go(u)f\/xa(u).

The differential of the copula admits the form (3) and it is given by:

av) oy o) .

Dloge(u,via) = o res T+ a(u)a(v)

From (6) and (7) the information operator admits representation (5), with local
component:

2
ag(w;a) = 5 Fe
o=

9

(Sdtat) v

and:
_ 5 a(w)a(v)
=2 1+ a(w)a(v)

Thus the local component o involves the conditional chi-square distance be-
tween the copula c(., .;a) and the independent copula.

(€3] (wa U3 a)

4 Minimum chi-square estimators.

In this section we study the properties of minimum chi-square estimators. We
first consider the cross-sectional framework, where the observations (X, Y}),
t varying, are i.i.d., define the estimator, prove its consistency and derive its
asymptotic distribution. Then we provide similar results in the time series
framework.

4.1 Definition of the estimator.

Let us consider the cross-sectional framework:

Assumption A.4: The variables (X, Yy), t varying, are i.i.d., with distribution
f(z,y; A). The support of the p.d.f. is [0, 1]2.

It is always possible to transform variables (X}, Y;*) with values in R into vari-
ables with values in [0, 1] for instance by applying the logit transformation.
Therefore the assumption of compact support [0, 1]2 is not restrictive.

Let us introduce a kernel estimator of the unconstrained bivariate density
function [Rosenblatt (1956), Parzen (1962)]:

T =1
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where K is a kernel and At is a bandwidth. Under standard regularity prop-
erties (see Appendix 5, Assumptions B.1-B.4), the estimator is consistent and
asymptotically normal:

VT [Fr(wy) = flaoy A)] =5 N (0,0% (2,5 4)) (20)

where 02 (z,y; A) = f(z,y; A (f K2(w dw) . Moreover, we have also the con-
sistency and asymptotic normality of hnear functionals of f, that are conditional
and cross-moments, at rates depending on the number of integrations:

Thr [ [o@iraas- [ g<x>f<x,y;A>dx} N (0,02 (5.9: 4)) . (21)

where 02 (y,g; A) = E [g(X0)? | Vi = y] fy (y) [ K*(w)dw, and

VT [ / / 9(w,y) Fr (e, y)dady — / / g(w)f(x,y;A)dwdy} L N (0,0% (95 4)),
(22)
where 02 (g) = Va [g (X¢, Y7))].

The unconstrained estimator of the bivariate density can be used to derive
a minimum chi-square estimator of A:

fT z,y) — f(z,y; A) i
Ap = arg mm Qr(A / / @) wr(z,y)dedy, (23)

where © is a subset of A, wy is a smooth weighting function, converging point-
wise to the identity function on (0,1)?, when T tends to infinity. Estimator Ay
is well defined under the assumption:

Assumption A.5 FEither:

i. the criterion Qp is continuous and the set © is compact with respect to
the norm ||.|| 12, or

il. the criterion Qr is weakly lower semicontinuous and the set © is bounded
and closed with respect to the norm H'HLZ(U) 17,

1TLet (X, |.||) be a normed linear space. A sequence (zn) C X converges weakly to = € X,
noted z,, — x, if for every linear functional [ in the dual space X*: I (z,) — I(x). A function
® on X is weakly lower semicontinuous (w.ls.c.) if: @, = z implies ®(z) < liminf & (z,,).
Assume that the space X is reflexive, that is the bidual space X** is in one-to-one relationship
with X under the canonical isomorphism (this is the case if X is an Hilbert space). Let function
® be w.ls.c., and let M C X be closed and bounded. Then function ® reaches a minimum
over M [see Theorem S.6 of Reed, Simon (1980), p. 356].
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The constrained estimator of the bivariate density is given by:

Pa,y) = fx,y; Arp). (24)

Remark: The chi-square measure is invariant by one to one transformation ®
of the basic variables X*, Y*. Thus it is equivalent to minimize a chi-square
distance between f and f or a distance between f* and the transformation of f
by ®. Similarly, the information operators corresponding to the families induced
by f and f* are the same. However it can be noted that the transformation of
the kernel estimator of f is not a kernel estimator of f*.

4.2 Consistency of the estimators

Let us consider the consistency of the minimum chi-square estimator fAlT. In
Appendix 6 it is shown that under the following two assumptions and additional
regularity conditions (see Assumptions A.7 - A.11 in Appendix 6), Q1 converges
to the chi-square proximity measure (), uniformly in A € O, and that @ is
continuous.

Assumption A.6 There exists compact sets (NZT,QT such that SNIT C Qr C
[0, 1]2, wr has support in Qp, is smaller than 1 with restriction wT|~§2T =1,

T e N, and ) (SNIT) — 1, as T — oo, where Ay is the Lebesgue measure.

Assumption A.7 Dlog f(X,Y; A) is a bounded operator from L?(v) in L*(F),
for any A, Ag € O.

In particular, under Assumption A.7, the information operator I4 at A, defined
by:

Ey KD IOg f(Xa Ya A)vg> <D IOg f(X7 Y; A)a h>] = (ga IAh)Lz(U)v
for h,g € L?(v), is a bounded operator from L?(v) in itself, for any A, Ay € ©.
We have the following proposition.

Proposition 8 : Under Assumptions A.1-A.11 '8 the chi-square estimator A\T
18 consistent in norm:

HET B AOHLZ(U) 0.

18We assume that either A.3 i. and A.5i., or A.3 ii. and A.5 ii. hold.
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Let us now consider the constrained density estimator ﬁ%, and show its
consistency in L'-norm!'?. Uniform convergence of Qr to @ implies convergence
of Q(Ar) to Q (Ag) = 0. By using the Cauchy-Schwarz inequality:

= Ve

£ Ar) = 1)

L2 = Q(A\T)1/27

we deduce the following proposition.

Proposition 9 : Under Assumptions of Proposition 8, the constrained density
estimator ]R% is consistent in L* norm:

|7 -]

0.
Lt

4.3 Asymptotic expansion of the minimum chi-square es-
timator

In this section we derive asymptotic expansions of the minimum chi-square es-
timator. We assume that the minimum chi-square estimator satisfies the first
order condition in the following sense?”.

Assumption A.12 For any g € L? (v): Ar +tg € © with probability approach-
ing to 1, for t in a neighborhood of 0 small enough.

Then it is possible to derive a set of first order conditions along the one-
dimensional paths defined in Assumption A.12. The expansion of the first
order condition satisfied by the minimum chi-square estimator is performed
in Appendix 8 under additional regularity conditions (Assumptions A.13-A.15)
described in this Appendix.

Proposition 10 : Under Assumptions A.1-A.15 the minimum chi-square esti-
mator Ar is such that:

I (,ZT - AO) ~ o, (25)

where the efficient score ¥ € L2 (v) is defined by*!:

(rih)gay = [ [ oFr (@) wr (@) (Dlog fGo.ys Ao). ) dudy, h e 120,

et Q C [0, 1]2 be Ag-measurable. We denote by LP (Q), p > 1, the space of p-integrable
functions with respect to the Lebesgue measure restricted on €, and LP = LP([0,1]2).

20This assumption is immediately satisfied when Ag is an interior point of ©, in the sense
that a L2 (v)-ball B,(Ag) centered at Ag is contained in ©. This is typically the case under
Assumption A.5 ii.

21 The differential operator D log f(z,y; Ao) smoothed by the kernel density estimator, that
is [ [ 8fr (z,y) wr (z,y) Dlog f(z,y; Ag)dzdy becomes a linear functional on L? (v). Function
Yr € L2 (v) corresponds to the Riesz representation of this functional. See Appendix 7.
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where 6}’} = fT — f.

As an example, when the differential operator is of the form (3), function
Y 1s given by:

) = [eFrtwerw.oyo o dy+ [ oFewor o @ v

+//6fT(x,y)wT(:r,y)’yQ(:v,y,w)dxdy. (26)

Moreover when the information operator admits the representation (5), the
first order condition is equivalent to:
~ ~ dv
oo(w)sAr(u) + [rw.06Ar()dv = Flwrw),  (20)

where 6A\T = XT — Ap. To deduce the asymptotic expansion of the estimator
itself, we have to assume that the information operator is invertible and that
its inverse is continuous at zero [see section 2.3 iv) for sufficient conditions].

Corollary 11 : When I is invertible and continuous at zero:
A\T —Ag > 171’1/1T. (28)

Since I = Dlog fiDlog fo and ¥ = D log f§ (wT(S]?T/f), where D log f§

denotes the adjoint of the differential operator Dlog fo = Dlog f(.,.; Ag), the
asymptotic expansion in (28) can be written as:

Ay — Ay = [Dlog f§ Dlog fo] * Dlog fi (wréfr/f)
that is a regression of the ”errors” (5]?T / f on the score D log fo.

Let us finally consider the expansion of the constrained estimator of the
density [see Appendix 8, v)]:

Proposition 12 : The constrained estimator is such that:

P(a.y) = fla.y) = (Df (. y: Ao). 6Ar )

4.4 The asymptotic distribution of the minimum chi-square
estimator

The asymptotic distribution of the minimum chi-square estimator ET is derived
from the asymptotic expansion given in Corollary 11. To simplify the presenta-
tion we assume decomposition into measures of both differential and information
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operators. We distinguish the pointwise estimation of A and the estimation of
linear functionals of A, such as f01 g(w) Ap(w)v (dw), for which different orders

are expected 1/y/Thy and 1/y/T, respectively.
i) Pointwise estimation

To give some intuition on the asymptotic distribution let us consider equation
(27). For pointwise estimation, the second term of order 1/4/T can be neglected
leading to [see Appendix 8 iv)]:

\/ThT(SA\T (UJ) ~ g ( ) ThT ( )wT( )

When the differential operator admits the measure representation (3) we directly
deduce from (26), (21), and (22) that v/Thpyp(w) is pointwise asymptotically
normal (see Appendix 9).

Lemma 13 : When the differential admits the measure decomposition (3):

ThT ( Vb (w) [ </K2 d:r) ao(w )}, A-a.s. in w.

The asymptotic distribution of A follows.

Proposition 14 : Under Assumptions A.1-A.15 the estimator /TT s A-a.s.
pointwise asymptotically normal:

VT (A () = aow) < 8 (0. ( [ K2 ) o () 1))

A-a.s. inw.

The intuition beyond this result is the following: since functionals of A
converge at a parametric rate 1/v/T (see below), for pointwise estimation we can
neglect differentiation of those parts of the density which depend on functionals
of A. The relevant component of the information operator is the local component
ap, and the asymptotic variance of the estimator is essentially its inverse.

When the differential operator admits the representation (3), the asymptotic
variance is given by:

</ KQ(x)dx> (E [

Finally we get from Proposition 12 the asymptotic distribution of the con-
strained estimator.

=] fxw) + B [0t | Vo= w] )
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Corollary 15 : The constrained estimator /T h (f/?(:r, y) — f(x, y)) s asymp-

totically normal, with asymptotic variance:

([ 52@e) £ @? [r0 o @ 20 ) + 71 )0 ) 3 ]

In particular the constrained estimator has a one-dimensional nonparametric
convergence rate, and:

VT [Frtey) = Be)] = TR [Froy) - fon)]
AN l(),f(:c,y) (/K2(w)dw)21 .

The discrepancy +/Th2. [fT(:r, y) — ﬁ%(m, y)}7 x,y varying, between the uncon-

strained and the constrained estimators can be used as a basis for a (pointwise)
misspecification test.

ii) Estimation of linear functional

Let us now consider the estimation of a linear functional G = [ g(v) Ao(v)v (dv),
with g € L? (). We expect the estimator Gy = fg(v)lgT(v)y (dv) to have a
parametric rate, so that the second term of equation (27), which is of order
1/ VT, can no longer be neglected. We deduce from Corollary 11:

ﬁ(@T—G) = ﬁ/g(v)léA\T(v)y (dv) = ﬁ(g,éET)
VT (9.1 ) s, - from (28),
VT (I_lg, wT)LZ(u) , since 17! is self-adjoint on L? (/).

L2(v)

1

The following Lemma provides the asymptotic distribution of VT (9,%7) 12(v)
g€ L?(v).

Lemma 16 For g € L? (v):
d
\/T(gv’l/}T)Lz(u) — N |:07 (g’ Ig)Lz(l/)

Proof. We have:

VT (9,97)120) = ﬁ//éfT(:r,y)WT(:r,y) (Dlog f(,y; Ao), g) dwdy

12

VT / / 6Fr(z,y) (Dlog f(z,y; Ao). g) dudy.
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By using (22), the latter expression is asymptotically normal. Its variance is
given by:

o (9)

Vo [(Dlog f(Xy,Ye; A), g)]
Eo [<Dlog F(X1,Yi; A), g)°

= (9:19) 12, -
Q.E.D.
The asymptotic distribution of a linear functional follows.

Proposition 17 Under Assumptions A.1-A.15 the estimator Gy = S/ g(v) Ar(v)v (dv)
of a linear functional of A is asymptotically normal, with parametric rate of con-
vergence:

VT (@T - G) 4N (o, (9, I_lg)Lz(U)) .

4.5 Time series framework.

The previous results are easily extended to the time series framework. We need
some mixing condition.

Assumption A.4.TS Process X;, t varying, is strictly stationary, Markov,
with transition distribution f (x| y;A), and B-mizing coefficients such that:
B, =0 (k_5), 6 > 1. The support of the marginal p.d.f. is [0, 1].

Moreover the minimum chi-square estimator is now defined by minimizing a
chi-square divergence between the conditional distribution in the family and its
unconstrained kernel estimator:

_ | v [Fr(ely) = flaly; A) N
Ar = arg min Qr(4) = /0 /0 ) wr(z,y) fy,r(y)drdy.
(29)

We also need some assumptions similar to A.1-A.3, A.5-A.15, valid for the time
series framework. They are deduced by considering the conditional distribution
f(z|ly; A), instead of the joint one, and the conditional information operator
Dlog f(z|y; A). They are denoted by adding TS.

Proposition 18 : Under Assumptions A.1.TS-A.11.TS the minimum chi-square
estimator At is consistent.

The asymptotic expansion of the chi-square estimator in the time series
framework is given by:

Ixpy (ET - AO) ~ Yo,
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where the function ¢y € L2 (v) is defined by:

()= T

FXTY) wr(X,Y)(Dlog f(X | Y; Ag),h) |, h e L2 (v).

In particular, when the conditional information operator Ix|y admits a measure
representation with ag, a1, say, the asymptotic expansion becomes:

Go(w)sAr(w) + [ G (w,0) A (u)dv = G (w) o),

The asymptotic distribution of ET is immediately deduced from that of 171T:
dv ~ 2 .
V ThT ( ) Y (w) K*(z)dz | ap(w)|, Ma.s. in w,

VT (g’JJT)LQ(u) 4N [0, (g,IX|yg)L2(U)] , for gin L? (v).

Note that the asymptotic variance (g, Ix|y9) L) = Vo [{Dlog f( Xy | X¢—1; Ao),9)]

includes no cross-term, since (Dlog f(X; | X¢—1; Ag), g) is a martingale differ-
ence sequence.
We deduce:

Proposition 19 : Under Assumptions A.1.TS-A.15.TS we have:

VThr (Ar ()~ Aov) - N (o, (/ K2(m)dx> o (v)1> . A-asinwv,

and:

VT (g, Ap — AO) ) AN [O, (g, )_(llyg) LZ(U)] , forgin L?(v).

5 Nonparametric efficiency.

The aim of this section is to show that a minimum chi-square estimator is
nonparametrically efficient. We first review the approach to derive the non-
parametric efficiency bound.

5.1 Nonparametric efficiency bound

The nonparametric ”efficiency bound” for functional A is defined in the usual
way from the parametric efficiency bound. The idea is to consider continuous
linear functionals of function A, such as [ A(v) g(v)v (dv), which can be con-
sistently estimated at rate 1/4/T, and to construct the semi-parametric bound
B(g), say, for this parameter [see e.g. Severini, Tripathi (2001)].

More precisely the approach consists in two steps:
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i. First introduce a one dimensional parametric model A (.; 6), and derive the
Cramer-Rao lower bound B4(g, ) for fol A(v;6) g(v)v (dv) in this model.

ii. Then the nonparametric efficiency bound is defined by:

Ba(g) =max Ba(g,0), g varying,

where the maximization is performed on all possible parametric specifica-
tions A(.,0).

Since a parameter is defined up to an invertible transformation, for any
parametric specification we can select the parameter € such that:

/A(v; Q)Ig(v)y (dv) = 6.

In a neighbourhood of 8y, this condition is equivalent to:

1 0A
/g(v) 5g (v30o) v (dv) =1.
Then the nonparametric efficiency bound is given by:
Ba(g) = maxBal(g,9), (30)
st o+ [ o) 98 i) v (@) =1
t 9(v) 55 (vibo) v (dv) =1,
g varying, where maximization is performed over all parameterizations A (., 0).

Proposition 20 : i) In the cross-sectional framework the nonparametric effi-
ciency bound is given by:

Ba(g9) = (9. 17"9) 120
where:
(9,1h) 12(,) = Eo [(Dlog f(X,Y; Ao), g) (Dlog f(X,Y; Ao), h)] -
i) In the time series framework the nonparametric efficiency bound is given by:
Ba(g) = (9, I)_(|1Yg)L2(u)7
where:

(ga IX|Yh)L2(V) — EO K-D IOg f(Xt ‘ Xt—l; AO)ag> <D IOg f(Xt | Xt—l; A0)7 h>] .

__ From Propositions 17 and 19, we immediately deduce that the estimator
Gr = [ g(v) Ar(v)v (dv) reaches this bound.

30



Corollary 21 : The minimum chi-square estimator A\T is monparametrically
efficient.

The efficiency property of the minimum chi-square estimator is important
in practice. Indeed a number of inefficient nonparametric estimation methods
have been introduced for some specific copulas (see e.g. Genest, Rivest [1993] for
archimedean copulas, Abdous, Ghoudi, Khoudraji [2000] and references therein
for extreme value copulas).

6 Constrained estimation. Identifying restric-
tions.

Until now we have assumed that the functional parameter A is free to vary over
an open ball of L? (v). However this condition is not met in some examples
described in section 3. We consider therefore in this section the case of a con-
strained functional parameter. From the examples, two sources of constraints
can be distinguished. First, when one component of A is a marginal distribu-
tion, fy say, this component satisfies the unit mass restriction [ fy (y)dy = 1.
Second, some parameters may be not identified unless additional restrictions
are imposed. This is the case for the copula parameter a in the proportional
hazard and archimedean copulas [examples iv) and v)], since a and ka, where k
is a positive constant, define the same copula. A possible identifying restriction
is: [a(v)dv =1.

6.1 Restricted information operator.

Let us assume that functional parameter A satisfies n linear constraints:
/A(v) Gi(0) (dv) = (A, 03) oy = ki = 1,00,

where g; € L2(v), k; € R, i = 1,...,n. Let us denote by A C A the subset of
functional parameters satisfying these restrictions. The tangent space H of A
at Ag € A does not depend on Ag, has a finite codimension, and it is given by:

H={heL’): (hgi)r2) =0, i=1,.,n}

The differential operator Dlog f (.,.; Ag) can be restricted to the linear space
H C L?(v), and we assume that Dlog f (.,.; Ag) : H — L?(P) is a bounded
operator. The information operator Iy is the bounded linear operator from H
in itself defined by:

(g7IHh)L2([/) = EO K.Dlng(X,Y, AO) 7g> <D10gf(XaYa AO)ah>]a hag €H.

Then we can extend to the constrained framework the definitions of identifica-
tion and measure decomposition.
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i) Local identification
Let us introduce the following local identification condition:

Assumption A.3. i. Local identification:

(Dlog f (X,Y;Ap),h) =0 Py-a.s., h€ H=— h=0.

Assumption A.3. i. is equivalent to the assumption that Iy has a zero null
space or that Iy is positive, and implies that Ag is locally identified over any
sufficiently small compact subset © C A containing Ag.

Local identification over non-compact subsets requires a stronger assump-
tion:

Assumption A.3. ii. Local identification:

inf h,Igh), s > 0.
hen, ||h|uz<,,):1( 1h) 12

ii) Measure decomposition

When the information operator Iy admits a measure decomposition:

Iyh (w) = —do;‘;gf(ww))h(w) + / —‘le C;;U(;Z))h(v)dv, heH,

it is possible to characterize boundedness and invertibility of Iy in terms of
22
Qo,H and a1 H .

Proposition 22 :

i. Assume that for any A there exists a positive definite matriz o (., A) such
that:

—1/2 —1/2)?
s (@42 avu (a5 Ao (3 A) 2| dady < o0,v4, - (31)
where ||.|| is a matriz norm on R9%9. Let the measure v be such that:
d
VA:3C4 >0: CAd_Z\(v)qu > max{ap y(v; A),ag(v;A)}, Yv. (32)

Then Iy is a bounded operator from H in itself.

22Let I : L?(v) — L2(v) denote the unrestricted information operator defined by the
differential Dlog f(.,.; Ao) with domain L2(v). Since Iy = PgIPg =1 — Pyl — IPy. —
P}iL IPy .1, where Py (resp. Py 1) denotes the orthogonal projector on H (resp. HL), and
H-— has finite dimension, it follows that Iy has a measure decomposition if I has such a
decomposition. Moreover, both decompositions have identical local component: ag g = ao.
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it. Assume further that o, g(v; A) is invertible, Vv,V A, and such that:
~ ~ dv
VA :3C4 >0: C’Aa(v)ldq < agu(v;A), Yu. (33)

Assume finally that Ig has a zero null space. Then Iy is invertible, with
bounded inverse.

Let us consider the example of the proportional hazard copula [example iv)
in section 3.2]. The functional parameter a of the copula is subject to the

identifying constraint: fol a(v)dv = 1. The corresponding tangent space H is

given by:
H= {hELQ(V):/Olh(v)dv_O}.

Boundedness and invertibility of the copula information operator If; on H is
discussed in Gagliardini, Gourieroux (2002) using Proposition 22. Let us for
instance show that Ij; has a zero null space on H. Indeed let us consider a
function h € H such that:

(Dlogc (U, Us—1;a0) ,h) =0 as.

Then by using the differential of the proportional hazard copula [see section 3.2
iv)], we deduce that:

(1 — agt—1Hot) (hi—1/aoi—1 — E [hs—1/aoi—1 | Ut))
= [l —ao (Ut—1) Ho (Ue)] {h (Ut-1) /a0 (Ui-1) — E [h (Ut-1) /ao (Ur-1) | U]}

is a function of U; only.

This implies that h/ag is a constant. Since fol h(v)dv = 0, it follows that
h = 0. Thus I§ has a zero null space and is a positive operator. The copula
information operator is not invertible when defined on the entire space L? (v),
since the differential Dlogec(.,.;ag) has a non zero null space, consisting in
functions kag, where k is a constant.

6.2 The minimum chi-square estimator.

Let © be a subset of A. The minimum chi-square estimator is obtained by
minimizing the chi-square divergence under the constraints:

~ Lot | fr(ey) = fzy; A)
Ap = argmin Qr(a) = [ fr = wrle,y)dedy.  (34)

A€O z, y)

The consistency of the constrained estimator is proved in complete analogy with
section 4. Here we focus on the asymptotic expansion. We modify Assumption
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A 12 and assume that AT satisfies the first order condition in the sense that
Ar + th € © with probability approaching to 1, for ¢ small enough, for any
h € H. The first order condition is equivalent to (see Appendix 12):

(h, IyéAp — wT) ~0,Vhe H,
that is:
InbAp ~ Py,
If the operator Iy is invertible, the asymptotic expansion of A\T is:
Ar — Ag =~ I Py
By using:
VT (hy ) 2, LN [07 (h’IHh)LZ(u)} , heH,

we get (see Appendix 12):
Proposition 23 : Under Assumptions A.1-A.15:

VT (g, Ap - Ao) L

d _
— N [O, (g,]HlPHg) ,gelL? (v).

0]

@)

When the differential operator admits a measure decomposition (3):

VThr (XT (v) — AO(U)) N (o, </ K2(x)dx> a0, (v)1> ,
A-a.s in v,

6.3 The nonparametric efficiency bound.

The following proposition reports the efficiency bound By4(g) for linear func-
tionals (g, A) 2., 9 € L? (v), under the constraint A € A.

Proposition 24 : The nonparametric efficiency bound is given by:
Ba(g) = (9. 15" Pug)r2(), g€ L*(v).

The constrained minimum chi-square estimator is therefore nonparametri-
cally efficient.
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7 Concluding remarks.

The analysis of nonlinear dependence is crucial for financial applications and re-
quires an appropriate copula specification. To avoid the curse of dimensionality
the copula cannot be let unconstrained. At the opposite a standard parametric
specification of the copula is generally too restrictive to get the expected fit. In
this paper we have considered the intermediate case in which the copula depends
on a one-dimensional functional parameter. The functional parameter is defined
up to a one to one transformation. We have explained what representation of
the functional parameter has to be selected to get results on the information
operator, efficiency bound, and efficient estimators similar to the standard re-
sults of the pure parametric framework. The approach has been illustrated by
discussing different families of constrained nonparametric copula.
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Appendix 1
The information operator

i) Definition.

Let us relate the definition of the information operator given in (1) with those
normally adopted in the literature. For functions h such that Ag (1 + h)2 €A,
denote by f/2(h) the square root density:

1/2
c*(R).

o [t

Assume there exists a measure v such that the mapping /2 : L? (v) — L? (Pp)
is differentiable at h = 0, with continuous derivative:

aft? 12 (v) — L2 (Py) .

Then, following Begun, Hall, Huang, Wellner [1983], and Gill, Van der Vaart
[1993], the information operator can be defined as:

I=dfy/*af}? 12 (v) > 12 (v).
Operator [ is bounded, nonnegative, self-adjoint, and satisfies:

Eo [{dfs’?, 9} (dfs/* 1)| = (9. 1h) )+ hog € L),

Under the differentiability Assumption A.2, df& /2 s equal to the differential
operator Dlog f(.,.; Ag). Indeed:

12 N f(.,.;A0(1+2th))]1/2 N [ 2t (DF(., ; Ag), )"/
frh) = { f(., 5 Ao) =t f(. 3 Ao)
1+t(Dlog f(.,.; Ag),h), tsmall,

12

and the mapping f1/2: L? (v) — L? (Py) is differentiable at i = 0, with contin-
uous derivative df& 2 Dlog f(.,.; Ag). The information operator reduces to
I =Dlog f(.,.; Ag)*Dlog f(.,.; Ap), and satisfies:

EO [<D10gf(X’Y;A0)’g> <D10gf(X7Y7A0)7h>} = (Q’Ih)LZ(u) ) hvg € L2(V)'

This is the definition adopted in our paper, and in Holly (1995).
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ii) Choice of the measure v
Let us prove Proposition 1. We have:
[(Dlog f (X, Y3 4), W3ap,) = Ea|(Dlogf(X,Y:4),1)%]

/ h(v) ag (v; A) h(v)dv + / / h(v) aq (v, w; A) h(w)dvdw.

Both terms are easily bounded. For the first one we get:

7

/h(v)’ao (v A) h(v)dv < CA/h(v) B} (dv) = Ca [h] 2,

Let us now consider the second one, and denote:
5 1/2
kg = <// Ha(v; A) 2 oy (v, w; A) a(w;A)fl/QH dwdw> < o0.
We get:
//h(v)/al (v, w; A) h(w)dvdw

= // (a (U;A)1/2 h(v))/ [a (U;A)71/2 a (v,w;A)a(w;A)flm] a(v;A)1/2 h(w)dvdw

< [ [ ot a7 | [ s 47 o 05 47 o ) s )2 )| et
- </ / o ) e (v,w;A)am;A)I/QHQdwa)” i
< / o (v )7 () HQ dv) , by applying twice Cauchy-Schwarz inequality,
= ka / h(v) o (v; A) h(v)dv
< kaCa / h(v) h(v)v (dv)
= kaCallk|z(,, -
Thus:

2 2
[(Dlog f (X, Y5 A), Wl[12(py) < Ca (L4 Ea) [[Allz2q,,
and Proposition 1 is proved.
iii) Invertibility

Let us prove Proposition 2. The information operator can be decomposed in
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two components:

Th(w) = mao(w;Ao)h(w)+/

= Ioh(w) + Ilh(w).

1

Wm(w,v;flo)h(v)dv

The invertibility of I is proved by using results on Fredholm operators, as in
Van der Vaart (1994). In particular, let us consider the following Lemma [see
e.g. Rudin (1973), p. 99-103].

Lemma A.1. Let H be a Banach space. Let I9 : H — H be a continuously
invertible operator, and let I' : H — H be a compact operator. Assume that
I =1%4+T" has a zero null space. Then I is continuously invertible.

Let us verify that the conditions of this Lemma are satisfied by operators I°
and I' defined above. In the previous paragraph it has been shown that they
are both bounded operators of L? (v) into itself. In addition:

|

v = () Heen @

L2(v)
o / B(©) By (dv) = E72 bl

IN

thus I° is continuously invertible. Let us now consider the operator I'. We
have:

I'h(w) = /K (w,v; Ag) h(v)v(dv),

where

1 1
K (w,vi 4o) = 273ty o) 1 (0 U5 Ao)-

‘We have:

[ [ 15 s o) vawpptan

o5 )| (25 )72 s 3 A 3 4)7 72 e 5 )
// v (dx) v (dy)

(dv/dA(z) dv/dA(y))?

IN

a(z; _1/2a1:r,; a(y; -172|®
Oi//H (23 4)7% a5 A)er (3 4)7 oy ()

dv/d\(z) dv/d\(y)
= C’I%/‘/~Hoz(:z:;A)fl/2 o (z,y; A (y;A)71/2H2d:cdy< 0.

It then follows from Hilbert-Schmidt theorem [see e.g. a generalization of The-
orem VI.23 in Reed, Simon (1980)] that I' is a compact operator. Then all
conditions of Lemma A.1 are satisfied, and Proposition 2 is proved.
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Appendix 2
Local Identification

i) Local equivalence of the minimum chi-square and Kullback prox-
imity measures.

The Kullback proximity measure between f(x,y; A) and f(z,y) is defined by:

B [(X,)Y)
K(4) = Eplog [m] |

Its second order expansion in a neighbourhood of A = Ay is:

K(A) = —Eolog [1 pic.s Yf(A))(—Y J)“ (X, Y)]
o L [y -] 1 SV A) = X Y)\2
- EO{ FXY) ]+2EO< FX,Y) >
- 3Q(4).

ii) Local expansion of the minimum chi-square proximity measure.

In Appendix 6 we will derive expansions of the minimum chi-square proximity
measure. In particular, it will be shown that the expansion around Ag is given
by:

QAo +h) = (hIh), // my’AO’

(// X Z/,A07 d dy) (h,]h)ég(u)‘| 5

where R(x,y; Ag, h) denotes the residual term in the first-order expansion of the
density: f(z,y; Ao+h) = f(z,y; Ao) + (D f(z,y; Ao), h) + R(x,y; Ao, h). Let us
assume:

Assumption A.2.bis. For any Ag € A, there exists a neighborhood Ny of Ag

such that:
R(.’L‘,y; AO,h)2 B A
// f(I,y) d.’I}dy*O(HhHLZ(U)) R AO—‘,-hGNO'

We get:
Q(Ao + h) = (h,Ih) j2(,) +1(h), Ao+ h € Np,
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where r(h) = O (th‘;(u) (h,[h)lL/f(V)) -0 (HhHiz(V)). In particular, Q is
well-defined on M.

iii) Local identification over compact sets.

Let © C Ny be a compact set containing Ag. Let us first give an upper bound
for the residual term r(h). For h such that Ag + h € © we have:

()| C 1Al
B Th) o = 172
A 2wy (b, Ih)Lz(u)

for some constant C.

Assumption A.3*:

1 (hIh)pa,,

. 1an 5
e©0) I,

> 402,

) R0z

Thus: |r(h)| < 5 (h, Ih) 12,y h €O — Ap, and we get:
1
Let us now show that Ag is locally identified. We get:
1
QAo+ h) > 3 (R, Ih) 12,y > 0, for any h € © — Ag, h #0,

since [ is positive, and

inf A = inf A h
Aee{%E(AO)Q( ) he(e—gﬁ)\BE(O)Q( o+h)
1
> = hoIh) .
2 Zneio s 0 B IM L)

1
= 3 (h*,Ih*)Lz(U) > 0, say,

since (© — Ap) \B:(0) is compact.

iv) Local identification over non-compact sets.
Let © C Ny contain Ag. Under Assumption A.3 ii., Assumption A.3* is imme-
diately satisfied if © is small enough. Thus r(h) can be bounded and for any
h €0 — Ay we get:

QAo+ 1) > = (h 1)z, -

1
2
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Let us now show that Ag is locally identified. We get:
1
Q(Ag+h) > 5 (R, Ih) 12,y > 0, for any h € © — Ag, h #0,

since [ is positive, and:

3 f A = 1 f A h
Ae@illl?s(Ao)Q( ) he(eflfﬁ)\Bs(o)Q( o+
‘ o (A Ih)paq,
> = inf 1hlZ2 ) ——5——
2 he(0- A0)\B.(0) 17720
h,Ih),.
> %EQ g UM

2
W20 Rl 72,

v) Equivalence of Assumption A.3 i. and the conditions on the
information operator.

ii) = i): Let h € L? (v) such that Th = 0. It follows (h,Ih)12(,, = 0 and thus

h =0.

i) =>A.3 i.: Let h € L? (v) such that (Dlog f(X,Y; Ao),h) = 0 Pp-a.s. Then

for any g € L? (v): (g, Ih) 2,y = 0. It follows ITh = 0, and thus & = 0.

A.3i.=ii): Let h € L? (v) such that (h, Ih) 2,y = 0. Then Eo [(D log f(X,Y; Ag), h)?| =
0. Therefore (Dlog f(X,Y; Ag), h) =0 Pp-a.s., and thus h = 0.
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Appendix 3
Differential of the copula and of the conditional and marginal
densities

i) Proof of Proposition 3.

The first equation is clear. To derive the second one, let us differentiate the

relationship:
A) :/f(:v,y;A dz
We get:

Fr(yAth) = / Fay; A+ hyde = / f(y; A)da + / (Df (2,5 A), by de
= A+ / (Dlog f (z,y; A) , h) f(x,; A)da.

Thus:

(Dlog fy (y; A), h) = / (Dlog f (z,5; A) , h) Fx)y (]y; A)d.

ii) Proof of Proposition 5.

By taking the logarithm of the joint density we get:
log f (,y; A) =logc[Fx (w3 A), Fy (y; A); A] + log fx (5 A) +log fy (y; A) .

Let us derive the expansion of the first term with respect to A. We have:

loge[Fx(x; A+ h), Fy(y; A+ h); A+ h]
log ¢ [Fx (25 A) + (DFx (z; A), h) , Fy (y; A) + (DFy (y; A), h) ; A + ]
~ logc[Fx(xz;A), Fy(y; A); Al

dloge

ou

+agovgc [Fx(w; A), Fy (y; A); A| (DFy (y; A), h)

+(Dloge[Fx(x; A), Fy (y; A); Al h) .

12

+

[Fx (23 A), Fy (y; A); A (DFx (z; A), h)

Thus the differential of log f (z,y; A) with respect to A is:

Odloge

ou
+22%5C [ (a; 4), By (3 ) A] (DFy (33 4), )
+(Dloge[Fx(r: A), i (y; A): 4], 1

+(Dlog fx(x; A), h) + (Dlog fy(y; A), h) .

[Fx (z; A), Fy (y; A); A| (DFx (x5 A), h)
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Moreover the differentials D Fx (z; A) and DFy (y; A) can be expressed by means
of Dlog fx(x; A) and Dlog fy (y; A), respectively. For instance:

Fy(a:A+h) = /w (2 A+ h)dz

1

/ " Uz A) + (D (25 A), 1Y) d

— 00

F(asd)+ [ (s 4) (Dlog fx (5 4). ) d
and thus:
(DFx (z; A),h) = / fx(z; A)(Dlog fx(z; A), h) dz.

The proposition follows.
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Appendix 4
Examples

ii) Truncated dynamic models

Let us first derive the differential with respect to a. The first order expansion
is given by:

400

log g [z + a(y) + h(y)] — log ( / o )g(z)dz>

log f(z|y; a + h,log g)

dl
log f(x | y:a,log g) + —=7 [ + a(y)] h(y)

1

g[a(y)]

Loy 9(z)dz

+

Thus we get:

dlogg
dz

(Dalog £z | y: A)) = ( &+ a(y)] + A [a(y)}) W),

Let us now derive the differential with respect to log g. The first order expansion
is given by:

+oo
log f(ely;a,logg +h) = logg e +a(y)] +hlz+a(y)] - log </ g<z>eh<z>dz)
a(y)
+oo h d
~ log f(= | y;a,logg) + hz +a(y)] — M7
Jat) 9(2)dz

and thus:

(Drogglog f(z | y; A)) = hlz +ay)] = Ea[h(Xe + a(Xe—1)) [ Xer = 9]

iii) Stochastic unit roots

Let us first compute the differential of f(x | y; 7, ¢g) with respect to = and g. By
linearity, we have:

(Drf(z|y;m,g),h) = [g(x—y)—g(@)]h(y),
(Dgf(x|y;m,9),h) = m(y)h(z —y)+[1—7(y)]h(z).
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Thus the differential of log f(z | y; A) with respect to A = (log,log g) is given
by:

[9(x —y) —g(z)]7(y)
faTyd) W
 flelyA) —g(x)
= T el W
= r(z,y;A) h(y),
(Diogglog f(z | y; A),h) = —”%ﬂf;A)y)h(xy>+—“f(;f|<?jj§x>h<x>
= pi(@,y; A)h(z —y) + po(z,y; A)h(z).

<Dlog7rlogf(:r ‘ yaA)7h> -

Let us now derive the information operator. We compute separately each block.
We get:

([ —— oy = Fa |( Diognlog F(X | Y5 A), h) (Diogn log £(X | Y5 A), )
- Ey4 [r (X,Y; A)QTL(Y)h(Y)]
- E4 [EA [r (X,Y;A)? | Y] E(Y)h(Y)]
_ / Ea[r (XY 47 | ¥ = 2] fy (2 AV(2) (=),
(%,Ilogg,loggh)wu) = Ea [(Diogy10g f(X | Y3 A), 1) (Diog g log £(X | Y3 A), )|
= Ea|Ea[p(X,Y;4)7 | X = Y]h(X = Y)ha(X — V)|
+Ea [ (XY A)po(X, Y3 (X — ¥ )h(X))
B [p1(X, Y5 A)po(X, Y AR(X)R(X V)

+Ea [Ba[po(X, Y3 4)7 | X] R(OR(Y)]

- / Ea[p(X.Y: A | X Y = 2] fx—y (2)h(z)h(z)dz
+ /ﬁ(x) </p0(z, z— 2 A)pi(2z, 2 — 2 A) f(z, 2 — a3 A)h(z)dz) du
+ /E(x) </p0(:1?, z—z; A)py (.2 — 2 A) f (2,2 — z;A)h(z)dz) da

T / Ea [po(X,Y;A4)% | X = 2] fx(2)h(2)h(2)dz,
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and finally:

(y—— oy = Fa |(Diognlog (X | Y3 A)h) (Diog  log F(X | Y3 A), )|
= Ea|[r(X.Y5 A)R(Y)p(X,Y; A)h(X ~ V)]

+E, [r (X,Y; A)R(Y)po(X, Y A)h(X)]
- [ ( [l 4) = g+ ) pi(e + x,x;A>h<z>dz) fo(a)da
+ ) ( U155 - ol A)h(z)dz) fo(x)da

Thus the information operator admits a measure decomposition with:

Eo [r} | Xi—1 = 2] f(2) 0
ao(z; Ag) = 0 Eo [p3,| Xi — Xio1 = 2] fx,—x,_, (2)
+Eo [ph: | Xi = 2] f(2)

and:

0 F@){[f (= + z|lz) — g(x + 2)| pr(z + 2, 2)
a1(z,z;40) = +[f (2|z) — 9(2)] po(z,2) }

0 po(z,xz — 2)p1(z, 2 — 2) f (z, @ — 2)

+(z z)/.

v) Archimedean Copulas
a) Proof of Proposition 7.

The Jacobian of the transformation is:

Thus:

c(uv) ¢”{¢‘ o)}
J(w,v) ¢ {p7"[C (u,v }¢[ )]

and the joint p.d.f. of W and Z is given by:
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Let us define the function:
) = 28 W] we [0,1]
/ dw ’ T

Since d)/ [dfl (0)] = d; [+00] = 0, we have:

7

o @] == [ £ =), sy
0

Thus the joint p.d.f. of W and Z can also be written as:

[ (w)

flw,z) = ————ly<:.

foz f*(v)dv v

Let us now show that ¢ and f* are in one-to-one relationship. We have:

F*(w) = —¢ [¢7" (w)],

or equivalently:

1 de !t (w)
F* (w) dw

By integration, with ¢ (1) = 0:

1N ! dv
¢ (Z/)—/y W7 y€(0,1).

Let us finally check that this function satisfies the properties of a (strict) archimedean
generator. The properties ¢~ (1) = 0 and ¢ *(0) = oo are evident. Moreover:

d 1

d—y¢71(y) = T (w)dw <0,

2 *

j_y2 “y) = —(fy f{(ij))dw)Q >0,
0
and thus ¢! is decreasing and convex.
b) Differential of the copula.
The log copula density is given by:
logc(u,v;a) = loga[C(u,v;a)]+ log F*[C(u,v;a);al

—log F* (u;a) —log F* (v;a),
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where:
a=f*.

The general expression

Let us derive the differential with respect to a. We get:

(Dlogc(u,v;a),h) = Z%gEZ: Z: Z;% + d;oia [C(u,v;a)] (DC(u,v;a),h)

Dlog F* [C(u,v;a);a], h) + % (DC(u,v;a),h)

+(
—(Dlog F*(u;a),h) — (Dlog F*(v;a),h)
|
[©

(
= % + (Dlog F* [C(u,v;a);al , h)
—(Dlog F*(u;a),h) — (Dlog F*(v;a),h)
dloga ‘a a[C(u,v;a)] S
+ (S ool + i ) PO,
(a.1)
Let us now derive the differentials of C' (u,v;a) and F*(u,v;a) with respect to
Differential of C(u,v;a)
We get:
(DC(u,v;a),h) = <D¢[ 71 (u; a) +<7571( ; )'a] ,h>
+¢ [(75 (u a)+¢ ] {<D<75 (u; a),h>+<D¢71 (v;a),h)}

= (D¢ (¢7" [C(u,v;a) ) h>
+¢I ((7571 [ (u,v,a),a} ) ) {<D¢ ! (UQC") 7h> + <D¢71 (UQQ) ) h>} .
By the implicit function theorem we have:
(Do [07" (yia)ia] \h) = —6 [ (y;a) ;0] (D" (y3a) ,h),

and thus we get:

(DC(u,v;a),h) = F*[C(u,v;a);a) {<Dd)_1 [C(u,v;a);a] , h)

— <D¢71 (u; a) ,h> — <D¢71 (v;a), h>} . (a.2)

Differential of F*(y;a)

Let us now derive the differential of F*(y;a). We get:

(Dlog F* (y;a),h) = m /Oy h(v)dv
= E.[h(W)/a(W) | Z =y]. (a.3)
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By inserting (a.2) and (a.3) in (a.1) we get:
: _ e, via)] _ :
(Dlog c(u,v;a),h) = m + E, [h(W)/a(W) | Z = C(u,v;a)]

—Eq [h(W)/a(W) | Z =u] = Eq [h(W)/a(W) | Z = 1]
+{ (u, v; a)}—l—dzoja[C(u v;a)] F* [C’(u,v;a);a]}

{<D<75 [C(u,v;a);a > <D(]§ u; a),h> — <D¢71(v;a),h>}.

Let us finally compute the differential of </J71(y; a) with respect to a.
Differential of ¢~ (y; a)

‘We have:

o= [ e

Let us consider the first order expansion:

¢~ (y;at+h) = / ™a vdv+f s
N fo v
o / fo (v) dv fow a dv] d
= (7571( ) ) {(7)1* (U(Jj)i?;)

Thus:

(Do (ya), ) = /J o ( /Owh(v)dv>dw

where k(y;a) = — fyl (l/F*(v)Q) dv.

By inserting (a.5) in (a.4), we get the differential of the copula density, which
is of the form:

h ; !
(Dlogc(u,v;a),h) = hlC(u, via)] +/ v (u, v, w; a) h(w)dw, say.
a ] 0
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c) The information operator.

Let us now compute the information operator I. of the copula. We get:
Ey [(Dlogc(U,Viag),g) (Dloge(U,V;ag), h)]
= Bo {g[Co(U. V)] h[Co(U, V)] /ao [Co(U, V)] |

+ [ Eota (Colv. V)] (U V2 o [CoU, V)] i
+ [ Bo 3 UV, b ColU. V)] o [CoU V) o)y
+ [ [ Boty @)y WV alaht)dads.

Let us consider the four terms separately. The first one is:

o {4 CoU. V)] 0 [Co(. V)] faa [Co( V) = [ gt D),

ap(w)?

where fiy(.;a0) is the density of W. The second term is:
[ Eala CoU. V)] (U.V.) fao [Cow, V)] )y

- / Eo {g(W) (W, Z,) Jao(W)} h(y)dy, say,

_ // EO{’VWZy)‘W_w}fW(wa())h(y)dy
ao(w) '

Similarly we get for the third and fourth terms:

/ Eo{y (U, V, y) h[Co(U, V)] /ao [Co(U, V)] } a(y)dy

ao(w ) ’

and:
/ / Eo {7 (U, V,) v (U, V,9)} g(w)h(y)dady
/ / 9(2)Eo {5 (W, Z,2) 7 (W, Z,9)} h(y)dady.

Thus the information operator I, admits representation (5), with local compo-
nent:
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and:

a(x,y;a) = E{F(W,Z,y) | W =a} fw (x,a) /a(z)
+E AW, Z,2) | W =y} fw (y,a) /a(y)
+EAY (W, Z,2) 7 (W, Z,y)} .

d) The density of the variable W

The c.d.f. of W is given by [see Genest, Rivest (1993)]:

Fy(w) = P[CUV)<w=w-— %
= w—¢" (w)e [p7!(w)]
— w T W) (w).
Thus the density of W is given by:
1 * w —1 w * w
fw (w) = 1+mF( )+ ¢~ (w) [ (w)

vi) Extreme value copula
a) Copula p.d.f.

Let us introduce the variables x = logu, y = log v, and the function:

D) = e+ ()

Then we have:
C(u,v) = exp [D(z,y)],

and thus:
oC(u,v)  C(u,v) dD(x,y)

ou U ox

and:

9*C(u,v)  C(u,v) [8D(x,y) OD(z,y) , 9*D(x,y)
N { Ox dy * dzdy }

Oudv uv
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The derivatives of function D are:

oD(x,y) < x >+ Y /< x )
ox - X Tty :13+yX x+y)’

0D(z,y) < x > x /< x )

“on = X - X )
Yy Tty Tty Tty

82D(z,y) zy < e )

dxdy _(x+y)3x T4y

By substitution, the expression of the copula p.d.f. follows.

b) Characterization of the generator x

By the Pickands representation (see e.g. Joe [1997], Theorem 6.3), a c.d.f.
C with uniform margins is an extreme value copula iff function A(z,y) =
—log C' (e *, e ¥) admits the representation:

Az,y) = /sl max {q12, g2y} o (dq) ,

where o is a finite measure on the one-dimensional simplex S* = {q = (q1,¢2) €
Ri : q1 + g2 = 1}. Thus the generator x of an extreme value copula is such that
there exists a measure F* on [0, 1] with:

>

—
<

S~—
Il

1
2/ max {(1— 2) v, 2 (1 — v)} dF*(2),
0
x(0) = x(1)=1L
The boundary conditions on x are equivalent to:
1 1 1
/ (1 2)dF*() :/ AP (z) = &
0 0 2
that is F* is a c.d.f. such that fol 2dF*(z) = 1/2.
c) Expression of the generator and of its derivatives

When F* admits a density f*, we get:

x (v) —QU/OU (1-2) f*(z)dz+2(1—v)/ z2f*(z)dz.

Let us now compute the derivatives of x. We get:
v 1
x (v) = 2/ (1-2) f*(z)dz—Q/ zf*(2)dz
0 v
2/ ff(z)dz -1,
0
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and:

2

X (v) =2f"(v).

Let us introduce functional parameter a = f*. Using the restrictions on f*, we
deduce the expressions of x and x in terms of functional parameter a:

) = o[ atwyo~ [ watwdur1-0,
K@ = [ a1
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Appendix 5
Kernel estimators

Let us consider the following assumptions.

Assumption B.1: 7, = (X, Y1), t varying, is a strictly stationary process,
with B-mizing coefficients (k) such that: B (k) = O (k*‘s), 6> 1.

Assumption B.2: The stationary density f has compact support [0, 1]2, van-
ishes at its boundary, and is of class C?.

Assumption B.3: The kernel K is of class C", with derivatives in L? (R).
Further K is of order m = s.

We have the following theorem [see Theorem 3 of Ait-Sahalia (1993)].

Theorem. Consider a functional ® from an open subset of C° to R. Suppose
that ® is Hadamard differentiable at the true c.d.f. F with Hadamard derivative

(DB (F), H) = [ ¢ [F (z,y)dH (z,y):
B(F + H) =& (F) + / o [F] (e, y)dH (z.y) + R [F. H]

with |R[F,H]|| = O (HHH2 ) uniformly on H in the class of compact set.

Assume the bandwidth hr is such that hy — oo, ThQT — o00. Then under
Assumptions B.1-B.3:

i. if p[F] is a cadlag function, and ThZ™ — 0:
VT [@ (ﬁT) — 9 (F)} 4 N0, Vs (F)],

where:

o0

Vo (F) = ) cov(p[FI(Z),¢[F](Zi-1)-

k=—o0

i If @ [F] is of the form [F] (x.y) = %o (2,3) 6ay () + 71 (2.9) 80 () +
Yo (2,y), where vq,7, € C% v, € C*, and Thi™ ' — 0:

VThr [@ (Pr) - @ (F)| -5 N[0, Ve (F)),

where:
Vo (F) = ( / K(Z)de) (E [70 (Z)?| X, = :130] Fx (o)

+E [71 (Z)? | Vs = yo] fy(yo)) .

o4



ili. If @ [F) is of the form ¢ [F) (x,y) = a(z,y) 8 (20,y0) (z,y), and Th2Ter2 —

0:
VT [@ (Fr) o (F)] -4 N (0.Va ()],

where:

Vo (F) = (/ K(Z)de>2 a(z0,y0) f (%0, o) -

Let us introduce the last assumption:

Assumption B.4: The bandwidth hr is such that hy — o0, ThQT — 00,
ThZm™ — 0.

i) Density estimators.
Let us consider the kernel estimator for the density at (xg, o), ]?T (x0,90). The

functional ® (F) = f (z0,y0) is Hadamard differentiable, with ¢ [F] (z,y) =
8(zo,y0) (7, ), and R[F, H| = 0. Thus, under Assumptions B.1-B.4:

\/ﬁ(ﬁf (z0,y0) — f(xoayo)) LN [va($0a90) (/K(z)%lz)j .

ii) Conditional moment estimators.

Let us consider a conditional moment of the type:

o(zo,v0) = / 7o (20,9 f (20, ) dy + / 71 (0 30) £ (@, 90) d

+//72 (,9) f(z,y)dz,

where 7¢,7; € C%, 75 € O, and xg,yo € R. The functional ® (F) = g(xo, yo) is
Hadamard differentiable, with ¢ [F] (z,y) = vo (2,Y) 4, () + 71 (2,Y) &y, (y) +
Y2 (#,y), and R (F, H) = 0. Then the conditional moment estimator:

~

gr(zo,y0) = / 7o (20,9) Fr (20, ) dy + / 7 (2, 90) Fr (2, y0) de

+//72 (z,y) fr(z,y)dz,

is asymptotically normal, with:

VThr [gr(20, y0) — 9(x0,y0)] ~= N (0, Vs (F))
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where:

Vo (F) = ( / K(Z)de> (B [0 (20)* | X1 = wo| fx(a0)
+E [, (27 | Yi = o] fr(w0)) -
Formula (21) is a special case.

iii) Moment estimators.

Finally let us consider a moment estimator [ [ g(z, y)fT(m, y)dzdy, where g is
cadlag. The functional ®(F) = [ [g(z,y)f(z,y)dzdy is Hadamard differen-
tiable, with ¢ [F] (z,y) = g(x,y) and R[F, H] = 0. Thus, under Assumptions
B.1-B.4:

ﬁ( [ [swnfnasas— [ [ g(x,y>f<x,y>dxdy) N (0, Va (F)),

where:

oo

Vo (F)= Y covlg(Zi).g(Zi-r)]-

k=—oc0
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Appendix 6
Consistency

It is well-known that the estimator is consistent under the following assump-
tions:
i) Qr converges in probability to a deterministic limit Q, uniformly in A;
il) Qoo is continuous with respect to A;
iii) Ve > 0: inf4ep. (40)ne Qoo(A) > Qoo(Ao), where B-(Ag) denotes a ball of
radius e around Ag, w.r.t. the norm [|.[[ ;2.

In the proof of these three points we use the following technical assumptions.

Assumption A.8: There exist p > 1 such that:
sup f(5A4)?
A€o f(7 ) P

Assumption A.9: For g > 1 such that 1/p+1/q=1:

< 00.

fT("/'\) — f(’ )
fr(,.)

0.

La(Qp)

Assumption A.10:

v [ - )
/0 /(; @) dzdy = Op(1).

Assumption A.11: Let R(z,y; A, h) be the residual term in the first order
expansion of the density with respect to A:

f@y; A+ h) = f(z,y; A) + (Df(z,y; A), h) + R(x, y; A, h).
For any A € O:

[ [REEAIE iy 0 (1) e 22 0.

i) Uniform Convergence.

‘We have:
Qr(4) = / / Fr(a,y)wr (e, y)dady

2 / / £ y; Aywr (a, y)dady

+ff il Tl iy wr(e, y)dady,

o7



and:

A)—//%dmg—l.

/ / Fr(z, y)wp(z,y)dedy — 1
. ( / / F (5 AYwor (z, y)dady — 1)

// fxy’ way) 1) dwdy

= S+ 8,7 + S3,T + Sy, say.

Thus:

Qr(A) - Qoo(4)

Let us now check that each term converges in probability to 0, uniformly in
A € ©. We have:

Sl = ' [ [ Fr @rte.) - 1) daay
//fT z,y) lwr(z,y) — 1| dedy

//fTwy (z,y)dxdy

Lo )’fﬂﬁi L

<//fT ddy) (// :cyda:dy>2
(//[J?T(:r,j/c)@;(:r )] d:rdy+1) P, [(Xtht)EQCTT/Q&O,

due to Assumptions A.6 and A.10.
The proof is similar for Sy 7:

IN

IN

IN

IN
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< //f(:v,y;A)H@v (z,y)dzdy
- () (] )

< <Sup Q(A) + 1) Py [(Xt, Y,) e QT] 12

AcO
— 0, in probability uniformly in A € O,

due to Assumption A.6, whenever sup 4o Q(A) < co. Under Assumption A.5.
i. © is compact, and sup 4cg Q(A) < oo since @ is continuous [see ii) below].
Under Assumption A.5. ii. © is bounded, and sup 4cg Q(A) < 0o since:

QAo+ h) = Cu [[hll72) + Co P72,y + Ca Rl 720,

for some constants Cq, Ca, C3 [see ii) below].
Let us now consider S3 r:

Ssr| < //fxy

FCs AP | fr=f
£ o poan
— 0, in probability uniformly in A € ©,

Fr(z,y) = f(z,y)
fT(I,y)

wr(x,y)dzdy

< sup
A€O

Lv

due to Assumptions A.8 and A.9.
Finally, the last term Sy 7 is such that:

‘A 2
[Sar| < //MMT(%?J)UdIdy

</ / Ty Ay (@, y)dady
< Hfi L || .
o 1 rllLe
f(, 5 A)? ~ \1/a
< sup [/ A2 (95 )
- AE% f(a ) Ly 2 ( T)

— 0, in probability uniformly in A € ©,

due to Assumptions A.6 and A.8.
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ii) Continuity of the chi-square criterion.
To show the continuity of the limit criterion Q. = @ , we have to prove:

lim Q(4 + 1) = Q(4), VA€,

where . — 0 denotes convergence in norm ||.[|;2(,,. For this purpose let us
consider the expansion of the chi-square criterion:

QA+h) = // (z.9) xx;;;AJrh)] dxdy

_ // (z,y)— f x,y;A)*(Df(x,y;A),m*R(x,y;A,h)]dedy
f(z,y)

— Q)+ / / (Dlog f(z,y: A), )2 f(zr,y)ddy

f [

2 / / F(@.y) — f(e5; A)) (Dlog f(z,y; A), by ddy

+2//<D10gf(:v,y;z4),h> R(z,y; A, h)dxzdy

B fay) = ey A) g .
2// @) R(z,y; A, h)dxdy.

Let us now bound the terms in the last three lines. For the first one we have:
'// z,y) — f(z,y; A)] (Dlog f(z,y; A), h) dzdy

X Y) f(X, Y; A)
Fo { FX.Y)

]

(Dlog f(X,Y; A), h>} ’

1/2 1/2
Eo [(Dlog f(X, Y3 4),1)’]

IN

Eq

= QA2 (h, Iah) 45,

Similar upper bounds can be obtained for the last two terms. Thus the expansion
of Q is:
(z,y; A h)?
QUA+R) = QA)+ (h Iah) () + // y dwdy

+0 (b, 1) 3, Q(A) 2]

[ . 2 1/2
([ [ e <h,fAh>;/.f(,,)]
1/2
+0 (// xy,Ah dmdy) QA2 .
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Under Assumptions A.7 and A.11 we get:
QA +h) =Q(4) + 0 (IIhlZs(,))
and the continuity follows.
iii) Identification.

Under Assumption A.3 i. or ii. we have (see Appendix 2):

sup  Q(A) >0.
A€®\B:(Ao)

iv) Sufficient conditions for compactness.
In Assumption A.5 i. the set © is supposed to be compact in L? (v). We report
here a theorem providing sufficient conditions for compactness in LP spaces [see

e.g. Yosida (1995)].

Theorem. (Fréchet-Kolmogorov). Let © be a subset of the Banach space LP
of p-integrable functions with respect to the Lebesque measure on R. Assume:

i. © is bounded: sup ||A|l;, < oo;
Ac©O
il. supyce ||[A(+u) —A()||, — 0, as u — 0;
il liMa—oo SUP Aco flm\>a A(x)Pdx = 0.
Then © is precompact, that is its closure is compact.

Generalizations of this theorem when the LP-space is defined with respect to a
general measure are possible.
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Appendix 7
The efficient score

Let g be a function on [0, 1]2, such that g(.,.)/f(.,.; Ao) € L?(P). By Riesz
representation theorem, there exists ¢ (g) € L? (v) such that:

(0 (6) W) = Bo | S (Do FOXY o)1) e £20).

It is given by 9 (g) = (Dlog f(.,.; Ao)*,9/f). When the differential admits a
measure decomposition (3), function ¢ (g) is given by:

v0©) = g7 |1 o ome i

// 9(@, y)v2(2,y, 2 )dwdy}

Let us now apply these results to function gy = {(fT - f) /f} wp = (6]?T/f) wr.
For any T € N, ((5]?T/f) wr € L?(Py) with probability 1. Thus there exists
Yy € L? (v) such that:

Sfr(X,Y)

SFoeyy T (X,Y) (Dlog f(X,Y; Ag), )

(Y, h)Lz(,,) = FEy , YVheL? (v).

When the differential admits a measure decomposition (3), function ¢ is given
by:

1

Yp(z) = NG [/5fT(Zay)wT (2,9) 70 (2,9) dyJF/éfT(IvZ)wT (z,2) 71 (2, 2)dx

+//6fT(x7y)wT (z,y) 72($’y’z)dmdy} '
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Appendix 8
Asymptotic expansion of first order conditions

i) Expansion of the first order condition

From Assumption A.12, Ar satisfies the set of first order conditions:

// fT(w,y}—(i(;),y: Ar) <Df (xy gT) ,g> wr(z,y)dady = 0, Vg € L2(v).

Let us denote 6/TT = /TT — Ap. We can expand the functions involved in the
first order condition. We get:

f(xvy; A\T) = f(.%‘,y)+<Df (xvy;AO)véA\T>+R($7y; 6A\T)a
<Df (IvaA\T) ,g> (Df (x,y; Ao) ,9) +§(I,y;6ﬁT,g)-
The behaviour of the residual terms R and R has to be constrained to ensure

that they are negligible for small h. This is achieved for R by Assumption
A.2.bis. For R we assume:

Assumption A.13: The residual term R is such that:

é(.’l},y;h,g)2 2 2
———————dxdy = O (||h|[7- 2 .
[ [ G dwdy = 0 (1hl s ol )

By writing:

1 _ 1 1 6fT(x,y)
fT(xay) f(x,y) fT(xvy) 7
where 6]?T = fT — f, the first order condition becomes:

0 = [ [ehrteertey) (Do (v 40) 0 (1@) dady

fr(z,y
(Df @,y 40) 841 ) (DF (2,53 40),9) [ §Fp(ary)
f// o) (1 — fT(x,y) ) wr(x,y)dzdy
_ T 1 <Df (.’L‘,y;Ao) ’g> - 6fT(x7y) wrlz "
//R( 7y’6AT) f(z,y) (1 ]?T(m,y)> 7(@,y)dedy
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Sfr(x o 75J?T(I,Z/) ol u)de
] [ R i) (1= it

~

// Df ik AO 6XT>§(m,y; 6/TT,9) (1 — %x’y))) wr (2, y)dedy

fT(l‘vy

// :13 y,éAT (:z: . ) < %) wr (@, y)dxdy.

The leading terms are the first one [where we recognize (g,%r)z(,). see Ap-

pendix 7] and the second one [with (g, I 6/TT) L )]. Thus the first order con-

dition can be rewritten as:

(9.vr —184r) | +R(64r.9) =0.vg € L* (v),

™)
where the residual term R (6/TT, g) is:

R(64r.9) = = [ [ 6Futa.) (D1og f (2. 40) ) JfT( D (o)

T(may

— [ [(Dlog s .3 40) 520 (D1og f (2,34 .9) Fo.9)

B I PRI P
[(1 ]?T(%y)) (,y) 1] /

—//R (:U,y; 62T) (Dlog f (x,y; Ag) , g) (1 — M) wr(x,y)dzdy

fr(z,y)

// ofr (x y x y;cS/TT,g) (1 — %) wr (2, y)dzdy
T\,

~

// Df T y,Ao 6A\T>}~{(x,y;(52T,g) <1 _ (SILx,y))) wr(z,y)dzdy

fT(xay

// x y’(SAT R (l‘,yﬂSA\T,g) <1 - %) wr(z,y)dedy

R (6AT, g) + Ry <6AT, g) + Ry (MT, g) + Ry (MT, g) + Rs (MT, g)

1 Rg (MT, g) .
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ii) A bound for the residual term

The following Lemma provides a bound for the residual term R (&ZT, g) under

the additional assumption:

Assumption A.14: There exists p > 1 such that:

|(D1og £ 40), 6} (D1og £ 40), ) £ Ml = O (19 1l o)) -

Lemma A.2: Under Assumptions A.13 and A.1} the residual term R (6/TT, g)

1s such that:

R (33r.) = o) O |-+ (rra + r) 03], + o]

LZ(V)]

where

~. 1/q
, TT2= A2 (QT) , I/p+1/qg=1,
Lee(Qr)

and p is defined as in Assumption A.14.
Proof. We bound each of the siz terms in the expression of R <6A\T,g).
i) The first term is such that:

—~ 112
N B ;
‘Rl (5AT,9)’ < % o /\ Dlog f (z,y; Ao) , 9)| V f(2,9) fo(i, )d:vdy
—~ 112 ~
fr 2112 ([ fr(z,y)?
fr Lo (@) 0[ ( 0) g>} </ f(z,y)
2
—~ 112
= (tﬁ (9.19); 1/2 // my)} dzdy + 1
I || oo ()

= O |lgll 2y 1)

by continuity of the information operator I and Assumption A.10.
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ii) The second term is such that:

’RQ (MT,Q)) < //)<Dlogf(:v,y;Ao),5/TT><D10gf(:v,y;Ao),g>’
f(z,y) |wr(z,y) — 1| dedy
+ [ [|(P1og £ .01 40) 830) (D10 £ 252 40) )

(6772,
fla.y) e wr (e, y)dedy
fr(z,y)
< [[(D1og £ 4o),0) (Dlog £, 5 Ao), 8Ar ) ()|, wr 1]
5 _
I [pros st 40).0) (Dlog £ 40), 622 £
T llze(@r)
~ ~.\1/4 6f
= 0, [lalls [0, | (2 (@) + 2
) Fr il Lo
= 0, [lalls e ., (a2
by Assumption A.14, where we used that ||¢|| ;. < |||y, p > 1, for a function
¢ defined on [0, 1}2, by Holder inequality.
iit) The third term satisfies:
~ Rz » Ys 6AT
‘R3(5AT,9)) < (I+7u7) //|D10gfxyaA0 NV xy%dmdy

1/2

1/2 iL' ya(SAT
(1+71,7)(9,19), // dxdy

2
= 0, (ol 0], ).

by Assumption A.2.bis.

IN

=
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iv) The term Ry is such that:

N 7 (2.:847.9) | Fr(a,y)
B (83r.0)| < Q4mp)Tr / / W‘(w) W(Lyy)dxdy

1/2

2
:13 TR 6AT, n 2
A+ 7)) T1r // ) dzxdy (/%dwdy)
L%u)) ’

IN

=

0y (rar ol
by Assumptions A.10, A.13.

v) The fifth term is bounded by:

1/2

2
‘R5 (MT,g)) < (+77) (52T,15AT o // xy’MT’ ) dady

—~ 112
0y (ol 3], )-

vi) Finally, the last term:

1/2

’Re (62@5])’ < (1477) //%dmdy

2
I » Y5 6AT7 )
/ / dxdy

3
= 0, (llsa0, W)) -

By gathering the dominant terms, the bound for R <6A\T, g) s proved.
Q.E.D.

1/2

»m

iii) Negligibility of the residual term.

Finally we have to introduce an additional assumption to ensure that the resid-
ual term is negligible with respect to the other terms.
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Assumption A.15:

= Op(T_1/4)-
L (Qr)

Lemma A.3: Under Assumptions A.1-A.15:
i
|42, =0 (1/vT).
1.
VT (9,64r) = VT (9.1 %1) 12, +0p (1), g€ L2 ().

Proof. From Lemma A.2, Assumptions A.6 and A.15 we get:

R (sr.9) =0, (lall- V) + 0y (lal: [o3r]] ).
Then the first order condition is such that:
LZ(V)) ’
for any g € L? (v), and since I~ is bounded we get:
(9:64r) , = (9.77%1) 1o, + 0p (9l VT)

L%u)) ’

§A7 ]

MT]

(9:161) , = .62+ 0y (Il IVT) + 0, (s

=

top (mw
(a.6)

for any g € L? (v).

‘&ZX\T‘ Since \/T(I_lg,d)T)Lz(u) 4

NIO, (g,]‘lg)LQ(U)} (see Lemma 16 in the text) and I~ is bounded:

Let us now deduce a bound for

L2(v)

(9:17167) 200y = O (llgll = VT

Thus:

(9:63r) ., = O (lolls VT) 0, (Il

L)

)52THL2(V)> L ge L2 (v).
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We get:

H(SXT)

‘ = sup (g, 6A\T) ‘
L2(v) 9€L2(v):g]l 2, =1 L2(v)
L%u)) ’

= 0, (IVT) +0, (H&ET]
that is H(SETHB(U) =0, (1/\/T) From (a.6) we deduce ii.

Q.E.D.

iv) Pointwise expansion.

Let us now focus on pointwise expansions. Intuitively, these are derived from the
first order condition corresponding to a variation g of the functional parameter
A which involves only a point zg € [0,1]. We use an approach by localization,
and consider variations g which are more and more concentrated around xg as
T — oo, at an higher speed than kernel localization. For simplicity we consider
the case where A has one component. B

Let ¢ € C§° be a symmetric kernel with compact support, and let hr be a
bandwidth converging to 0. For any zg € [0, 1], define the function:

9700 () = — so(m:%), ze0,1].

\/ by hr
Then:
2 1 T — To 2 dv
. = — — —(x)d
ozl = [ hTw( - ) Y (@)

= /w(U) ZA($0+hTU)duN </<p(u)2du> %(IO)_

Thus g7, € L? (v) Mas. in zg, and HgT:onLZ(V) converges to a constant as
T — co. In addition, for any h € L? (v):

T xo) h@) % (2)da

e, = [ Y o (%
o foton

dv

(W

dv ~
20 + hou) — (20 + hou)du

dX

= \/hirh (o) 2 (zo)

A [0 (1) o~ (1)
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The idea is to apply Lemma A.3 ii. to g = g7 a,. Since function gr , depends
on T, it is important to know the rate of the residual term in Lemma A.3 ii)
and for this purpose we have to strength Assumption A.15.

Assumption A.15:

TT,1:OP<T_1/4_51), TT’QZOP(T_ﬁz), 51,52>0.

Lemma A.4: Let gr € L? (v) for any T, such that HgTHLQ(V) < const, inde-
pendent of T, for T sufficiently large. Then under Assumption A.15°:

VT (gT,MET)Lz(U) = \/T(QT,IUT)L%/) +0, (T77),

where = min{26,,1/4+ B4, 05,1/2} > 0.
Proof. Since the first order condition holds for any given T, and gr € L? (v):

(gTvléA\T) ) (97, %7) L2 + R (5A\Ta9T) :
From Lemma A.2, Lemma A.3 i., and using A.15’, we get:
R (6XT,gT) = llgrllr2¢) Op [T—l/“’—”1 + (T—l/“—ﬁl + T—ﬁz) T2 47!
= 0, (17127,
Q.E.D.

Let us apply Lemma A.4 to gr = ¢r,4,, where the bandwidth for localization
hr is selected such that:

TLT =0 (hT) 5 hT = O(ETTQﬁ).

We get:
\/ ThT/ET (QT,moaI(SA\T)LZ( ) — \/ ThT/%T (gT,zmwT)Lz(l,) + Op <T/6 \/ hT/ET> .

(a.7)

Let us consider the RHS of (a.7). We get:

\/ ThT/%T (gT,.'Eov 1ﬂT)LZ(V) + Op <T/6 \/ hT/%T>
= V/Thr gy (wo)ir (o)

VT [0 [(Br) (v + ) — () )] .
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Let us now consider the LHS of (a.7). We get:

\/The/hr (91,00, 1647 ) o

_ \/TTT% (o) I6 A (o)
++/Thr / o (u) [(%15&) (:1:0 +ETu) - (%mﬂ) (:1:0)} du
Thrao(o) A (o)
+v/Thr / o (u) [(aoéﬁT) (mo +%Tu) - (aowTT) (xo)] du.
Thus, from (a.7) we get:
VThrag(z0)8 Ar (w0)
+/Thr / ¢ () [(a00Az) (w0 + hrw) ~ (a0dAr) (w0)] du

= VTR (o) (v0)
T [ o [(Svr) (st ira) - (Svr ) ()] o

Let us now show that the second term on the RHS is negligible, since ET =
o(hr). We have:

dv ~ dv
VTt [ o) |(Gor) (mn+ hr) - (Gor ) o) au
72 72
%F% (g—in> (z0) /u2<p (u) du, (since the kernel ¢ is symmetric),
x

= op(1). (a.8)
Indeed, since %wT (z9) involves conditional moments of kernel estimators of
a density [see (26)], we have 4. (z9) = O, [(ThT)_l/Q} (see Lemma 13),

and since each differentiation diminishes the rate of convergence of a kernel
estimator by the factor hy (see Theorem 3 in Ait-Sahalia [1993]), we deduce

dd_;z (%apr) (w0) = Op [(ThT)_l/2 h}ﬂ. Thus we get:

VThrag(zo)8Ar (o)
~ —\/T_hT/go(u) [(ao(SA\T) (mo —i—ﬁTu) — (aoéfTT) (xo)} du

d
+ Tth—Z\(aco)wT (z0), Mas. in o € [0,1].

12

>~ ThT

This is an integral equation for +/ ThTaoégT which has a unique solution [see
e.g. Theorem 5.2.3 in Debnath, Mikusinski (1998)]. By subsitution and using
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(a.8), we see that the solution is of the form /ThpaosAp = VThr % +0,(1).
We conclude:

Thrao(x0)8 A1 (20) ~ \/ThT;lZ\ (w0) by (z0), Mas. in 20 € [0,1].

v) Expansion of the constrained estimator.

Let us now consider the asymptotic expansion of the constrained estimator
fT(:r y). We get:

Rla,y) — fy) = flo,y;Ar) — fz,y; Ao)
= (Df(@,y; Ao),84r) + R(w,y; 6Ar).

Let us now derive a bound for R(z, y; &ZT). By Assumption A.2.bis and Lemma
A3 we get:

1/2
(] [ Hertlanss) o (Joae];

For any g, yo € [0,1] let us introduce the function:

o (2.y) = 1<p<:v—xo><p(y—yo>
»Z0,Yo Y hT hT hT )

where ¢ € C§° is a symmetric kernel with compact support and the localization
bandwidth ET is selected such that %T =o(hr) and \/hr/T =0 (%T) 23 Then:

2 2
2 1 T — g Y — Yo
lorsanliony = [ 7 (S522) @ (L2 flonpdsdy
T T T

~ (/W(U)Qdu)Q F(@o,90).

Thus g7.20.40 € L?(Pp) with HQT,mo,yoHLz(po) < C independent of T, for T
sufficiently large. Then by Cauchy-Schwarz inequality:

6A 1/2
Z,Y; T
l97,20,50 ll .2 (Po) (// d dy)

= 0,(1/T), [from (a.9)]. (a.10)

2(y)> = 0,(1/T).  (a9)

IA

//gT,zo,yo(:v,y)R(w,y;63T)dxdy

23This is possible since Thr — oo by Assumption B.4 in Appendix 5.
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On the other hand:

N 1 _ _ N

//gTyszyo(:c,y)R(:v,y;(5AT)da:dy //~—<p <I~ xO) %) <y~ yo) R(z,y; 6Ar)dzdy
bt \ By Iy

= ET//SD(U)SD(U) R(wo + hru, yo + hrv; 6AT)

ETR(I‘(),y(); 5A\T), (all)

1

since hp = o(hr). In particular, from (a.10) and (a.11) we get:
R(x0,y0; A7) = Op(1/Thr).
Since 1/hy = o(v/T/hr) it follows:
R(m,y;é//l\T) = Op(l/TﬁT) =0p (1/%) , A-a.s. in z,y.
Thus:

ﬁ(xvy) — flz,y) = <Df(x,y;A0),(5A\T> + 0p (1/\/ThT) , A-a.s. in x,y.
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Appendix 9
Asymptotic distribution of v

Let us consider the case where the differential operator admits the measure
decomposition (3) 2*. From Appendix 7, function v is such that:

S vrtw) = [ 6ntw.yr (o, o)y + [ 6Frtewhor (@,0) 1 (@ w)da

+//6fT($’y)wT (x’y)’YQ(xvy’w)dxdy
[ shrtwo by + [ 6Fs (e wp(a,w)ds
+//6J?T(x,y)72(x,y,w)dxdy.

12

From Appendix 5, point ii), it follows that:

VIR Y (o) 5 N (0.0 )

where:

0% (w)

([ xera) (B3 1 X =] fxtw

+E [v1; | Yi = w] fy (w))

( / K(z)2dz> ao (w).

24This is the case in example i), iv) and vii) in section 3.2. It is possible to extend the result
to more general cases including the other examples.
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Appendix 10
Asymptotic expansion in the time series framework

In this Appendix we essentially derive the first order expansions to under-
stand the form of the asymptotic distribution. The first order condition is:

// fT - fr(z ?y’AT” <Df (:v\y;fTT) ’9> wr(,y) fyr (y)dudy,

Vg € L? (v). Let us expand this condition. We get:

[fT<x|y> ()]

// F(aly) (Df (xly; Ao) , 9) fy (y)dady
Df (z]y; Ao) 5A\T>

// f(zly) (Df (z]y; Ao) , 9) fr(y)dady

— // fT zly) — (;p\y)} (Dlog f (x|y: Ao) , g) f(z,y)dady
f(zly) 140/ ;

o
12

~ [ [ (Dlog s Galy: A0) 822’y (D10g f (alys Ao) ) f )y
- @T’g)y(u) - (IXlYMTT’g)

Thus the first order condition is equivalent to:

L2(v)

(o Txvodr — i) , =0, Vge ().

75



Appendix 11
Nonparametric information bound

i) Cross-sectional framework.
Let us introduce a one dimensional parametric model A(.,0) and derive its

Cramer-Rao bound. The score is given by:

Odlog f
00

(5,354 (80) = ( Dok .15 A0). S 0) ).

The Fisher information is:

<8logf

Eo 00

(XtaYt§A(90))) =Ey 70

<Dlog f(X,Y; Ap), %(90)>2]

dA dA
- (@@ rm®),,,,

Thus the Cramer-Rao bound is given by:

dA dA, N\
B0 = (GO0 TG ew)
L2(v

The parametric specification can be chosen such that:

/g(v)’A(v,e)) v (dv) =6,

which is equivalent (in a neighborhood of ) to the constraint:

/g(v)/%(v,%)y(dv) =1,

that is:
dA
(g, @wo)) —1. (a.12)
L2(v)

Thus both the Cramer Rao bound and the constraint (a.12) depend on the
parameterization only by means of the function é (.) = dA/df(.,0y). Therefore
problem (30) in the text is equivalent to:

i 6,10) 72, ,
5eHLI¥(1u)< 10) 120

s.t . (g,(s)Lg(u) = ]..

By Cauchy-Schwarz inequality we have:

1= (g,é)iz(u) = (1—1/297[1/25) < (]—1g’g)L2(u) (6,16) 12, -

2
L (v)
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Therefore (6, I6)L2(V) > (I71g,9) ;j(u) and the bound is reached for

§* =1"'g € L? (v). Thus we deduce:

BA(g) = (971719)112(”)'

ii) Time-series framework.

In this case the score is given by:

Odlog f
00

dA
(o354 60) = ( Do x| 15.4o). G 60)).
and the Fisher information is:

(alogf

Eo 00

(X, | Xt_l;Awo))) ~ B

" do

2
<D10g F(Xe | Xe—q; Ag) %(90)> ]
dA dA
- (GO Gw),

Thus the Cramer Rao bound is given by:

dA dA -1
B(g,0) = <@(90),IXY@(90)> »
L2 (v

The solution of the maximization problem is similar to that of the cross-sectional
framework, and the nonparametric efficiency bound is immediately derived.
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Appendix 12
Constrained estimation

i) Asymptotic expansions.

By arguments similar to those in Appendix 8, the first order condition is given
by:

(s 1noAr - ‘”T)Lz@ = op (I1hll 2 /ﬁ) , heH.

This is equivalent to:

(971H6A\T)L = (9, Patbr) 12y + 0p (HQHLz(u) /\/T) , 9€L*(v). (a13)

2(v)

Let us first consider the asymptotic expansion of linear functionals. Since [ is
continuously invertible we get:

(9:842),, = (0T Perr) 1agy + 00 (l0ll2) VT) . 9 €17 ().
Thus for any g € L? (v):

VT (g, (LIT)

1

-1
L2(v) \/T(gaIH PHwT)Lz(V)

= VT (Ii;* Prg. vr)

20 since I;JI and Py commute,

Y {0, (Pug, IﬁlpHg)Lz(u)} .

Let us now consider pointwise expansions. Equation (a.13) can be general-
ized to the case where g = g7 € L? (v), such that lgrllr2(,) < C independent
of T, for T large enough (see Appendix 8):

(QT, IH(SfTT)L,

o) (97, Prtor) 200y + Op (T-7), for any gr. (a.14)

Let us apply (a.14) with g7 = g7,2,, o € [0,1], as defined in Appendix 8. Let
us consider g;, i = 1,...,n, an orthonormal basis of H+. We have:

dv
VT (97,20 PH1) 12,y = cOmSt Tth—/\(xo)PHwT (z0)

Y (z0) — Z (96 1) 12() 9i(20)

i=1

~ dv
= const Tth—/\(xo)

2

~ const T%T;Z—K(iﬂo)wir (20) ,
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where the last equivalence is due to (g;, ¢T)L2(V) =0, (1/\/T) Thus we can

neglect in condition (a.14) the effect of the projector Py on ¢, and deduce with
similar arguments as in Appendix 8 iv):

~ dv .
Throg i (o) 6Ar (x0) =~ \/Tth—)\($0)¢T (z0), Ma.s. in xq.

Therefore:

VThr8Ar (20) ~ oo i (z0) ™" \/m%(xo)% (z0) - N {o, ( / K(x)de) aojH(l‘o)_l} .

ii) The constrained nonparametric efficiency bound.

Let A(.;0) be a one-dimensional parametric model satisfying the constraints.
Then we have dA/df (0g) € H. It follows that the Fisher information is given
by:

dA dA
(G0 0) .,

and the constraint:

(9:A4(0)) 12y = 0, 0= b,

is equivalent to:

dA
( do L2(v)

Problem (30) becomes:
gréljr{l (67 IH(S)Lz(U) P
s.t (.PI—Ig7 6)L2(U) =1.
As in Appendix 11 it follows:

Ba(g) = (9. 15" Prg) r2)-

iii) Proof of Proposition 22.

The proof of the boundedness is the same as the proof of proposition 1. Let us
now discuss the invertibility of the information operator Iy. Operator Iy can
be written as:

oo, (w) ay, g (w,v)
= I%h(w) + Ih(w).
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As in the proof of Proposition 2, operators I% and I} extend to continuous
operators on L? (v), such that 1% is continuously invertible, and I}; is compact.
Let I be the operator with domain L? (v) defined by:

I =1IyPy+ Py

Then H and H* are invariant subspaces of 1:, such that f|H = Iy, and EHL =

Id g1 Thus, if we show that Iis invertible, invertibility of Iy will follow. We
have:

I = (I} +1Iy)Pu+ Py
= 1% — 1% Py 4 I Py + Py

Now, using that: i) the product of a compact and a bounded operator is com-
pact: ii) the sum of two compact operators is compact; iii) an operator with
finite dimensional range is compact, we get that —I% Py + 15 P+ Py is com-
pact. Thus T is the sum of a continuously invertible operator and a compact
operator. In addition, operator I has a zero null space. Indeed:

Ih = 0= IyPyh+ Py h=0= IyPyh=Py. h=0
—> Pgh = Py.1h =0, since Iy has zero null space,
= h=0.

By applying Lemma A.1 in Appendix 1, T is invertible, and the proof is con-
cluded.
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