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Duration Time Series Models with Proportional Hazard

Abstract

The analysis of liquidity in financial markets is generally performed by means
of the dynamics of the observed intertrade durations (possibly weighted by price
or volume). Various dynamic models for such duration data have been intro-
duced in the literature, the most famous being the ACD (Autoregressive Condi-
tional Duration) model. However these models are often excessively constrained,
introducing for example a deterministic link between conditional expectation
and variance in the case of the ACD model. Moreover the stationarity proper-
ties and the potential forms of the stationary distributions are not satisfactorily
known. The aim of this paper is to solve these difficulties by considering the
properties of a duration time series satisfying the proportional hazard property.
We describe in detail this class of dynamic models, discuss various represen-
tations, and give ergodicity conditions. The proportional hazard copula can
be specified either parametrically, or nonparametrically. We discuss estimation
methods in both contexts, and explain why they are efficient, that is they reach
the parametric (respectively, nonparametric) efficiency bound.

Keywords: Duration, Copula, ACD model, Nonparametric Estimation, Pro-
portional Hazard, Nonparametric Efficiency.
JEL classification: C14, C22, C41



Modéles dynamiques & hazard proportionnel

Résumé

L’analyse de la liquidité sur les marchés financiers est généralement menée
par l'intermédiaire de la dynamique des durées observées entre transactions
(éventuellement pondérées par les prix ou les volumes). Des modéles dynamiques
pour de telles données de durée, comme le modele ACD (Autoregressive Con-
ditional Duration) on été introduits dans la littérature. Cependant ces modeles
sont souvent trop contraints, conduisant par exemple pour le modele ACD a
lier espérance et variance conditionnelle des durées de fagon déterministe. De
plus leur propriétés de stationnarité sont mal connues, ainsi que les formes po-
tentielles des distributions stationnaires. Le but de cet article est de résoudre
ces difficultés en considérant les propriétés d’une série temporelle de durées sat-
isfaisant I'’hypothése de hazard proportionnel. Nous décrivons en détail cette
classe de modéles dynamiques, discutons diverses représentations, et donnons
les conditions d’ergodicité. Le copule & hazard proportionnel peut étre spécifié
sous forme paramétrique ou non paramétrique. Nous discutons des méthodes
d’estimation dans ces deux contextes et expliquons pourquoi elles sont efficaces,
c’est a dire atteignent les bornes d’efficacité paramétrique et non paramétrique,
respectivement.

Mots clés: Durée, Copula, modele ACD, Estimation Non Paramétrique, Haz-
ard Proportionnel, Efficacité Non Paramétrique.
Classification JEL: C14, C22, C41



1 Introduction.

Series of durations between consecutive trades of a given asset have been recently
the object of a considerable body of research in financial econometrics (see
e.g. Engle [2000], and Gourieroux and Jasiak [2001]a). The interest in this
topic, supported by the increasing availability of (ultra-)high-frequency data,
is motivated from a financial point of view along several lines. In addition to
the links with microstructure theory and with the literature on stochastic time
deformation®, the dynamics of intertrade durations is an important aspect for
the management of liquidity risk. Indeed, durations between consecutive trades
are a natural measure of market liquidity, and their variability is related to
liquidity risk (risk on time). The aim of this paper is to introduce a class of
dynamic models for intertrade durations which are suitable for the analysis of
liquidity risk.

Empirical investigations of series of intertrade durations report several styl-
ized facts which must be taken into account in the specification of econometric
models?. Among the most significant ones are: a positive serial dependence,
in the form of positive autocorrelations and tendency of extremely large dura-
tions to come in clusters (clustering effects); persistency, with autocorrelations
decreasing slowly with horizon, and in some cases featuring long memory; un-
derlying strong nonlinearities in the dynamics, as emerging from the analysis of
nonlinear autocorrelograms; path dependent (under-)overdispersion in the con-
ditional distribution; significant departures from exponentiality of the marginal
distribution, with negative duration dependence and fat tails. In addition to
consistency with these stylized facts, flexible specifications for conditional mean
and conditional variance are desirable for the management of liquidity risk.
If extreme liquidity risks have to be taken into account, the first conditional
moments may not be sufficient, and measures based on the entire conditional
distribution may be more appropriate. This is the case of Time at Risk (TaR),
that is the minimal time without a trade that may occur with a given probability
(see Ghysels, Gourieroux, and Jasiak [1998]b). These measures require flexible
specifications for the entire conditional distribution of the duration process.

The Autoregressive Conditional Duration (ACD) model introduced by En-
gle and Russell [1998] is presently the most successful dynamic model for inter-
trade durations. It is based on an accelerated hazard specification, where the
conditional mean follows a deterministic autoregression®. The ACD is able to
replicate various stylized effects observed in the data. However, as pointed out
in Ghysels, Gourieroux, and Jasiak [1998]b, one limitation of this specification

Lsee Clark [1973], Stock [1988], Ghysels and Jasiak [1994], Ghysels, Gourieroux and Jasiak
[1998]a, An¢ and Geman [2000], and references therein.

2See Engle, Russell [1998], Jasiak [1998], Ghysels, Gourieroux, and Jasiak [1998]b, Giot
[2001], Gourieroux, Jasiak [2001]b.

3Various extensions of the basic specifications have been considered in the literature. As
an example, Jasiak (1998) introduces fractionally integrated ACD (FIACD); Bauwens and
Giot (2000) apply the GARCH dynamics on the log-durations and log expected durations;
Zhang, Russell and Tsay (2001) introduce a nonlinear dynamics by means of a deterministic
threshold autoregression.



is to impose quite restrictive assumptions on the conditional distribution of the
duration process. The dynamics of conditional moments of any orders and of
measures like TaR; are all implicitly determined by the dynamics of the condi-
tional mean. These restrictions are not supported by empirical evidence, since
they imply for instance path independent conditional dispersion, and, more im-
portantly, they are not desirable for management of liquidity risk. In order to
overcome these difficulties, alternative specifications to accelerated hazard may
be considered. As an example, Ghysels, Gourieroux, and Jasiak [1998]b pro-
pose the stochastic volatility duration (SVD) model, where conditional mean
and conditional variance are allowed to follow independent dynamics due to the
introduction of two underlying factors.

In this paper we introduce a Markov process for intertrade durations which
is based on a proportional hazard specification. In this model, the conditional
hazard function for duration X; given the past durations X;_; is the product of

a baseline hazard function Ay times a positive function a of the lagged duration®:
A (;p | XH) = a(Xi_1) do(z), >0,

where a and )¢ are unconstrained, up to identifiability conditions. This spec-
ification improves on the accelerated hazard specification of the ACD model
in two directions. First, it provides a flexible specification for the conditional
distribution of the duration process, which does not impose restrictive assump-
tions on the joint dynamics of conditional moments. Since the past information
scales the conditional hazard function instead of the duration variable itself, the
effect of the lagged duration on the conditional moments, and in general on the
conditional distribution, is not tied down by the specification of the conditional
mean. On the contrary, the effect of the conditioning variable is determined by
the interplay of the two functional parameters a and Ag. The second advantage
of our specification is that it allows to separate marginal characteristics and
dependence properties of the process. Specifically, we show that the bivariate
copula between two consecutive durations X; and X;_; is completely character-
ized by a univariate functional parameter A (say) on [0, 1]. The copula is defined
as the c.d.f. of the variables X; and X;_; after they have been transformed to
get uniform marginal distributions on the interval [0, 1]. The copula summarizes
the serial dependence between X; and X;_; which is invariant to monotonous
transformations. This result implies that our model can be parameterized in
terms of the marginal distribution of the process and the functional parameter
A which characterizes serial dependence. The marginal properties of the pro-
cess are fixed by choosing the marginal distribution. By focusing on parameter
A, the serial dependence properties of the process are controlled, by letting its
marginal distribution unaltered. We discuss how the shape of function A influ-
ences the patterns and the strength of serial dependence in the process, both in
the whole distribution and in the tails, by introducing appropriate (functional)

4In the Cox (1972) model function a is exponential linear. See Hautsch (1999) for an
application to intertrade durations.



concepts and measures of dependence. Specifically, it is shown that the dura-
tion process features positive dependence when the functional parameter A is
decreasing, whereas its negative elasticity —dlog A/dv can be used as an ordinal
measure of serial dependence. In addition, the behaviour of A at v =1 charac-
terizes dependence in the tails of the process, which is responsible for clusterings
of extreme large durations. We provide sufficient conditions on the behaviour
of functional dependence parameter A in neighborhoods of the boundary points
v =0 and v = 1 ensuring ergodicity and mixing properties of the process.

The rest of the paper is organized as follows. In section 2 we define the first
order Markov process with transition density satisfying the proportional hazard
property. In section 3 the temporal dependence properties of the Markov process
with proportional hazard are discussed, and in section 4 sufficient conditions
for geometric ergodicity and mixing are provided. Section 5 reports several
examples of Markov processes with proportional hazard. Section 6 is concerned
by statistical inference. Finally, section 7 concludes. The proofs are gathered
in appendices.

2 Stationary Markov processes with proportional
hazard.

In this section we introduce the stationary Markov process with proportional
hazard.

2.1 A Markov Process of Durations.

Let Xy, t € N, denote the sequence of consecutive intertrade durations. We
assume that Xy, t € N, is a stationary Markov process of order one and fea-
tures proportional hazard. The conditional hazard function is the product of a
baseline hazard function g times a positive function a of the lagged duration:

PXy<z+h|X; >z, X; ]

A (x | XH) = lim > = a (X 1) Molz), =>0.

Thus the effect of the lagged duration is a parallel shift of the conditional hazard
function.

The transition density of the process is characterized by the conditional
survivor function:

P[Xy > x| Xooq1 = x—q] = exp[—a(zi—1)Ao(z4)],, t €N, (1)

where Ag is the baseline cumulated hazard corresponding to Ag: Ag(z) =
Jo Ao(w)du, x > 0. Thus the distribution of the process is characterized by two
functional parameters: the baseline cumulated hazard Ag, which corresponds
(up to a multiplicative constant) to the cumulated hazard of the conditional



distribution of X; given X;_1 = z;_1, and the positive function a on R, which
describes the effect of the lagged duration X;_; on the conditional distribution®.

The proportional hazard specification satisfies an invariance property with
respect to increasing transformations, that is any increasing transformation Y; =
h(X:), t € N, of a Markov process X;, t € N, with proportional hazard features
proportional hazard. This suggests alternative representations of X;, ¢t € N, in
which the distribution of the process features simpler characteristics. Two such
representations are considered in the following sections.

2.2 The transformed nonlinear autoregressive representa-
tion.

In this section we are interested in transformations of process Xy, t € N, which
follow autoregressive dynamics. In order to derive them, we consider the non-
linear autoregressive (NLAR) representation with exponential innovations of
Markov process X;,t € N, (see Tong [1990]), which is given by:

1 1
Xt—A() <a(Xt_1)Et) s tEN, (2)
where ¢, t € N, is a white noise, independent of X; 1, with a standard exponen-
tial distribution vy (1). Thus, the duration process X;,t € N, can be represented
(up to the transformation Ay') as a stochastic time deformation of an i.i.d series
of exponential durations e;, t € N. The time deformation factor is function of
past duration.

In the NLAR representation (2) the error term &;, t € N, does not enter in
an additive way. An autoregressive representation with additive noise can be
derived if we consider another transformation of the duration variable X;, t € N
. Let us introduce the transformed process:

Y; = log (Ao(Xy)) . € N.
Then we have:

i = —loga(X;—1)+loge,
= oY1) +tmn, teN

where ¢ (y) = —loga [Aal (exp y)], y € R, and 1, = loge; follows a Gompertz
distribution.

Proposition 1 The stationary Markov process Xy, t € N, features proportional
hazard if and only if there exists an increasing transformation of X;: Yy = h(Xy),
t € N, (say) such that:

Yi=¢Yir) +my, tEN, (3)

°The restriction on parameters a and Ag implied by stationarity is derived later in this
section.



where n, t € N, is a white noise independent of Y:—1 with a Gompertz distri-
bution.

The additive NLAR representation (3) is characterized by two functional
parameters, that are the autoregression function ¢ of the transformed process,
and the transformation function h 8. It is equivalent to representation (1), since
the functional parameters (a, Ag) and (h, ) are in a one to one relationship:

h(z) = logAo(z), x € [0, 00), 4)
e(y) = -—loga [Agl (exp y)] , Y€ (—o0,00). (5)

2.3 The copula representation.

We may also use the invariance property of the proportional hazard specification
to obtain processes with given marginal distribution. Indeed, let F' be a c.d.f.
on Ry with strictly positive density, and let X, ¢ € N, be a stationary Markov
process with proportional hazard and a marginal c.d.f. F. Then U; = F(X}),
t € N, is a stationary Markov process with proportional hazard and uniform
marginal distribution on [0, 1]. Thus, the entire class of stationary Markov pro-
cesses with proportional hazard can be obtained as transformation of processes
with uniform margins on [0,1]: X; = F~}(U;), t € N.
Functions A and Hg in the conditional survivor of process Uy, t € N:

PU; > uy | Up—1 = up—1| = exp [—A(us—1)Ho(ue)], we, ug—q € [0,1],

are constrained by the given form of the marginal distribution of U;. Indeed we
have:

P[UtZU]ZE[P[UtZU|Ut,1H, VuE[O,l},t>1,
or equivalently:
1
l1—u= / exp (—A(v)Hp(u)) dv, Vu € [0,1].
0
This condition identifies Hy in terms of A:
1
Hyt(z) =1 —/ exp (—A(v)z) dv, z € [0, 00),
0

and thus the functional parameter A characterizes the distribution of the process
U, t € N.

6The restriction on functional parameters h and , implied by stationarity, is considered
later on in this section.



Proposition 2 i. Let F be a c.d.f. on Ry with strictly positive density. Sta-
tionary Markov processes X;,t € N, with proportional hazard and unique
marginal distribution F' can be written as:

X, =F YU, teN, (6)

where process Uy, t € N, s a stationary Markov process with proportional
hazard and uniform marginal distribution on [0,1].

1. The conditional survivor function of process Uy, t € N, with uniform mar-
gins s given by:

P [Ut > Uy ‘ Ui_1 = ut,l] = exp (—A(ut,l)Ho(ut, A)), te N, (7)

where A is a positive function on [0,1], and :
1
Hy'(z,A) =1 f/ exp (—A(v)z) dv, z € [0,00). (8)
0

iit. The parameters (a, Ag) of process X;,t € N, in (6) are obtained from the
corresponding ones (A, Hy) of process Uy, t € N, by compounding with F':

a=AoF, Ay=HyoF. 9)

Let X;,t € N, be a stationary Markov process defined by (6), with trans-
formed process Uy, t € N. The copula of (X;, X;_1) is defined as the c.d.f. of the
joint distribution of (Uy, Ui—1) (see Joe [1997], and Nelsen [1999]). It is given
by:

Calu,v) =v— /: exp (—A(y)Ho(u, A)) dy, u,v € [0,1], (10)

where Hy(., A) is defined by (8). The copula summarizes all serial dependence
between X; and X; 1, which is invariant to increasing transformations. Thus,
in the proportional hazard model, the copula is characterized completely by a
univariate functional parameter A on [0,1]. Copula Cy4 is called proportional
hazard copula.

From (8) and (9) the two sets of parameters (a, Ag) and (A, F)) are in a one
to one relationship. Thus stationary Markov processes with proportional hazard
and strictly positive marginal density can be uniquely characterized by the two
functional parameters F' and A. F is the marginal distribution, and can be any
c.d.f. on Ry with strictly positive density. A is any positive function on [0, 1],
and characterizes the copula of (X, X;_1), and hence the serial dependence of
the process which is invariant to monotonous transformations’. This justifies the
interpretation of A as a functional dependence parameter. It is identified up to a

"Equations (9) give in explicit form the restrictions on the parameters a and A implied
by the stationarity.



multiplicative constant. Indeed, from (8) and (10) two functions A which differ
by a multiplicative constant define the same copula. The representation in terms
of functional parameters (F, A) is called copula representation. It separates
marginal characteristics from serial dependence properties of the process.

Finally we can relate the parameterizations (F, A) involving the copula and
(¢, h) corresponding to the nonlinear autoregressive representation with additive
noise. From (4), (5), (8) and (9) we get:

oly) = —logA [1 —/0 exp (—A(v)expy)dv|, y € (—o0,00), (11)
h(z) = logHy[F(z)], ze[0,00). (12)

Note that ¢ depends on A only. This is not surprising, since the copula of
(X, Xi—1) is the same as that of (Y,Y;_1), and the latter depends on the au-
toregression function ¢ only. Thus Cy4 is the copula of a nonlinear autoregressive
Markov process with Gompertz innovations, where the autoregressive function
is restricted by (11) to ensure stationarity.

2.4 Equivalent parameterizations of the copula.

When the functional dependence parameter A is monotonous, equivalent pa-
rameterizations of the copula C'4 are available. We consider explicitly the case
where A is decreasing®. Then copula C4 can also be characterized by 1 — A~1,
which is the c.d.f. of the variable A(U;—1), that is the transformation of the
past transformed duration U; 1 having a proportional hazard effect on U; ?. In
addition, restriction (8) can be written as:

1-Hy'(2) = /S;exp (—wz)d (1 — Ail) (w), z €0, 00), (13)

where Q denotes the range of A. Thus function 1 — H ! is the real Laplace
transform (also called moment generating function) of the distribution with
c.df. 1 — A~1, and satisfies the property of complete monotonicity [see Feller
(1971)]. In this case it is equivalent to know A or Hy, and thus copula Cj4 is
also characterized by the Laplace transform 1 — Hy 1 or the cumulated hazard
Hy.

Proposition 3 The copula of a proportional hazard process with monotonically
decreasing functional dependence parameter A can be equivalently defined in

8This corresponds to the case where process X, t € N, features positive serial dependence,
as will be shown in the next section. The case where A is increasing is similar.

C - . - . - - - —

9The copula is invariant to scale transformations of the distribution 1 — A—1.



terms of:
i) either the functional dependence parameter A itself, or
i)  the c.d.f. 1 — A~Y, with support  C Ry, or
iii)  its Laplace transform 1 — Hgl, or
i)  the baseline cumulated hazard Hy, or
v)  the baseline survivor function Sy = exp (—Ho).

2.5 An example.

In this section we consider an example of stationary Markov process with pro-
portional hazard, and we plot simulated trajectories, copula’s p.d.f. and au-
tocorrelograms. This allows us to have a first qualitative idea of the serial
dependence properties of these processes, which will be discussed extensively in
the next section.

Let us assume that 1 — A=! is a gamma distribution with parameter 1/8,
5 > 0. Thus, 1 — A~ is given by the incomplete gamma function P (1/6,.) (see
Abramowitz, Stegun [1965]):

1- A (w) = P(1/8,w) = ﬁ /Ow exp (—u) u%_ldu, w € [0,+00), (14)

which has no closed form expression, but can be efficiently computed numeri-
cally. Then:

A(v) = A(v;6) = P71 (1/6,1 —v), v €[0,1],

where inversion is with respect to the second argument. An analytic expression
is available for Hy. Indeed:

1

Hy'(z2) =1— ———=, z€[0,4),
(1+2)?
and the baseline cumulated hazard is:
1
Ho(u):—é—l, ue0,1].

(1-w)

Let us first consider the case 6 = %. A simulated trajectory of 500 observa-
tions of process Uy, t € N, (figure 1),

[insert figure 1: simulated path for U, § = 1/10)

features modest positive serial dependence, with a tendency to clustering effects,
which are stronger at the upper boundary (large durations). The associated
copula p.d.f. (figure 2)

[insert figure 2: copula p.d.f., § = 1/10]



confirms the presence of positive dependence. The copula p.d.f. diverges at
points u = v = 0 and v = v = 1. Intuitively, the rate of divergence is related
to the strength of serial dependence in the tails, and thus to clustering. The
asymmetry of the density reveals that the process is not time reversible. The
autocorrelogram of duration process X; = F~1(U;), t € N, with Pareto marginal
distribution F(z) = 1— (14+2)”", 7 = 1.05, based on a simulation of length
S = 35000 is reported in figure 3.

[insert figure 3: autocorrelogram for X, § = 1/10]

Let us increase the parameter 6 to 6 = 1. A simulated trajectory of the
process (see figure 4)

[insert figure 4: simulated path for U, § = 1]

features an increased positive serial dependence, with strong clustering effects,
especially at upper boundary. The copula p.d.f. (see figure 5)

[insert figure 5: copula p.d.f., § = 1]

is more concentrated in a region close to the line u = v, and diverges more
strongly at the corner points. Note the different limiting behaviour of the copula
at the points u = v = 0 and © = v = 1. The autocorrelogram of corresponding
process X; = F~Y(U;), t € N, with the same marginal distribution as before, is
reported in figure 6.

[insert figure 6: autocorrelogram for X, § = 1]

In the next two sections we introduce statistical tools that are useful to under-
stand the observed qualitative features.

3 Positive Dependence.

The aim of this section is to discuss serial dependence for stationary Markov
processes with proportional hazard. Several approaches have been proposed in
the literature to analyse serial dependence in nonlinear time series'’. We focus
on notions of dependence, which are invariant by increasing transformations and
thus involve only the copula.

We first recall two standard notions of positive dependence based on the con-
ditional survivor function and conditional hazard function, respectively. They
coincide for stationary processes with proportional hazard, and the condition is

10Beyond traditional methods based on autocorrelograms, considerable attention has been
devoted in recent years to nonlinear autocorrelograms (see e.g. Gourieroux and Jasiak
[2001]b), conditional Laplace transforms (see e.g. Darolles, Gourieroux and Jasiak [2000])
and copulas (see e.g. Bouy¢, Gaussel and Salmon [2000], Rockinger and Jondeau [2001] and
reference therein; see also chapter 8 in Joe [1997], and section 6.3 of Nelsen [1999]) .



easily written in terms of either functional dependence parameter A, or autore-
gressive function ¢. The notions of positive dependence are used to construct
dependence orderings and introduce functional measures of dependence. Then,
we discuss tail dependence properties, and report a sufficient condition which
ensures that the process features positive dependence in the tails. Finally we
discuss how the dependence between X; and X; j varies with lag h, as an
introduction to ergodicity properties of the process.

3.1 Notions of positive dependence.

Different notions of positive bivariate dependence can be defined, which are
invariant by increasing transformations of X; and X; ;1. We describe below two
standard definitions and discuss their interpretation.

Definition 1 (Lehmann [1966], Barlow and Proschan [1975]): X is stochas-
tically increasing (SI) in X1 iff

S(z|y)=P[X: > x| X¢—1 =vy] is increasing in y, for any x € R;.

Definition 2 (Shaked [1977]): Xy is hazard increasing (HI) in Xy iff
Mz | y) is decreasing in y, for any v € Ry,

where X(. | y) denotes the conditional hazard rate of X; given Xi—1 = y.

Since S(z | y) = exp (— [y A(z* | y) dz*), the condition of increasing hazard
(HI) is stronger than condition (SI)11 Moreover both dependence conditions are
invariant by increasing transformation of process (X;,t € N). In particular they
can be written in terms of the copula.

Proposition 4 Let X;, t € N, be a stationary Markov process with proportional
hazard and dependence parameter A. Then X; is hazard increasing in X; 1 if
and only if it is stochastically increasing in Xy_1. This condition is equivalent
to the decrease of A (or a).

Proof. It is a direct consequence of the relations:

) = —A(v)Ho(u),
A(v)ho(u),

for u,v € [0,1], where S(ulv) [resp. A(u|v)] denotes the conditional survivor
function (resp. conditional hazard function) of (U, Us_1).

< <
=
|

Q.E.D.

ITA link with the literature on nonlinear autocorrelograms is provided by the fact that
condition (SI) implies that any monotonous transformation h(X¢), t € N, of the process has
positive correlation (if it exists):

corr [h(X¢), h(X¢—1)] > 0.

10



Thus both notions of positive dependence coincide for proportional hazard
models.

Finally, the condition can be written in terms of nonlinear autoregression
with additive noise (see Proposition 1): Y; = ¢(Y;_1)+n,. Indeed from equation
(11), the autoregressive function ¢ is increasing iff the functional dependence
parameter A is decreasing.

Corollary 5 For a stationary Markov process with proportional hazard, the
positive dependence (HI) or (SI) is satisfied iff the autoregressive function ¢ is
mcreasing.

3.2 Dependence Orderings.

Let (X;,t € N) and (X/,t € N) be two stationary processes with proportional
hazard and dependence parameter A and A*, respectively. The aim of this sec-
tion is to introduce dependence orderings in order to compare the strength of
dependence between X; and X;_; with that between X; and X} |, or equiva-
lently between transformed processes (Ug, Uy—1) and (U7, U; ).

Let us first recall two definitions proposed in the statistical literature (see
Yanagimoto and Okamoto [1969], Kimeldorf and Sampson [1987,1989], Capéraa
and Genest [1990]). For v < v', v,v" € [0,1], let us denote:

Sy (w) =8 [S’l(u | v) M ,uelo1],

where S(. | v) is the survivor function of U; conditionally to U;_1 = v, and
similarly for S* ,(u), u € [0,1]. Intuitively, S, , measures the effect on the

v,V

conditional distribution of an increase of the conditioning variable from v to v'.

Definition 3 : X, is more stochastically increasing in X;_;1 than X is in X} 4
if for any v,v' € [0,1], v <v':

S0 (1)

Sy (W)

v,V

> 1, for any u € [0, 1].

Definition 4 : X; is more hazard increasing in Xi—1 than X is in X 1 if for
any v,v € [0,1], v < v

v ()

5 ()

v,V

is decreasing in u € [0,1].

These pre-orderings are denoted by =(s5), =(#1)s respectively'?>. They
satisfy various axioms, desirable for dependence orderings (see Kimeldorf and

I2The orderings =(s1) and =gy are derived from the (SI) and (HI) concepts of dependence:
if X} and X} | are independent, then (X, X¢_1) =(s1) (X;‘,X;Ll) iff Xy is SI'in X;—1, and
similarly for =gy

11



Sampson [1987,1989], and Capéraa and Genest [1990] for a discussion). More-
over, since S, /(1)/S* (1) = 1, the ordering () is stronger than =(gp'?.

Intuitively, (X¢, Xi—1) =(sn) (X7, X 1) holds if the effect on the conditional
distribution of an increase in the conditioning value is stronger for (X, X; 1)
than for (X;, X7 ;). If in addition this is more and more true as we move
towards the tail of the distribution, then (X;, X;—1) =(up (X7, X[ 4).

For two stationary processes with proportional hazard, (X;,t € N) and (X}, € N),
the following proposition characterizes the orderings in terms of functional de-
pendence parameters A and A*.

Proposition 6 Let (X;,t € N) and (X;,t € N) be two stationary Markov pro-
cesses with proportional hazard and dependence parameters A and A*, respec-
tively. Then the conditions (X, X¢ 1) =(s1) (Xf,X{Ll), and (X¢, X¢1) =(an)
(Xt*,Xt"LI) are equivalent. They are also equivalent to the condition

AJA* decreasing.

Proof. See Appendix 1.

For the proportional hazard model, A (u | v) /A (u | v/) is independent of u

and is equal to A (v) /A (v/). This implies that the conditions (X¢, X¢—1) =(s1)
(X7, X;,) and (X¢, Xy—1) =up) (X7, X;_,) are also equivalent to:

A(u|v) /A" (u] v) is decreasing in v, for any u € [0,1].

Finally, when the dependence parameters A and A* are differentiable, the
ordering conditions involve the elasticity of the dependence parameter A, or
equivalently the elasticity of the hazard function with respect to the conditioning
variable.

Corollary 7 Let (X;,t € N) and (X;,t € N) be two stationary Markov pro-

cesses with proportional hazard and differentiable dependence parameters A and

A*, respectively. Then the conditions (X, X¢—1) =(s1) (Xt*,Xt*_l) and (X¢, Xe—1) = (a1
(Xf, X{Zl) are equivalent to:

d d
— < — *
- log A(v) < - log A*(v), Vv el0,1],

U3 (X, Xem1) = (ury (XF,X7_1) or (X, Xe—1) =(spy (X7, X{_,) implies that the Kendall’s
tau of (X¢, X¢—1) is larger than that of (X}, X} ,); moreover, if (X¢,¢ € N) and (X, t € N)
have the same margins, then:

corr[g(X¢),9 (Xi—1)] 2 corr [9(X7), 9 (Xi1)]

for any monotonous transformation g such that the correlations exist.
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or

0 0
_ < — * .
5 log A (u | v) < 5 log \* (u | v), Yu,v € [0,1]

As an illustration, the functions:

1

A(v;a) = exp(—av), A(v;a) = 1 +v)e’

and A(v;a) = (1—v)",

induce three families of distributions such that temporal dependence is increas-
ing with respect to parameter «, in both the SI and HI sense.

3.3 Measures of Dependence.

The previous discussion shows that, for the proportional hazard model, the
appropriate functional dependence measure is not A itself, but preferably:

Aa(v) = —diilogA(U), v e [0,1].

The properties above can be summarized as follows:
Au(v)
il. AA(’U)
Ax(v)
of

I. 0, Vv € [0,1] <= X; and X;_; are independent, t € N;

>0,Vve[0,1] <= X;is Sl and Hl in X;_4, t € N;
1il. > Au-(v), Yo € [0,1] <= (X, X4—1) = (X;‘,X;‘_l), where > is
any of the orderings = (sr) or = (gr).

3.4 Tail dependence

In this section we provide sufficient conditions on the functional dependence
parameter A that ensure that process X;, ¢t € N, features positive dependence
in the tails. The coefficient of upper tail dependence is defined by (see Joe
[1993], [1997]):

A= limlP[UtZU\Ut,l > ul.
u—
If A > 0, the process is said to have positive tail dependence. For a process with
proportional hazard, the coefficient of upper tail dependence is given by:
1

A=A4g = lim 1 exp [—A (v) Ho (u, 4)] dv.
u

U

If lim,—; A(v) > 0, then A4 = 0, and the process is independent in the tail.
Hence tail dependence is possible only if lim, 1 A(v) = 0, that is if the condi-
tional hazard function of U, given U; 1 = v converges to 0 as v — 1.

13



Proposition 8 Assume the functional dependence parameter A is such that:
Alv) ~C(1 - v)‘s, v~
for some § >0 and C > 0. Then:
A =A@ =P (1/5,r(1 + 1/5)5) ,

where P denotes the incomplete gamma function (see the example in section
2.5).
Proof. See Appendiz 2.

Function A($), 6 > 0, is increasing, and ranges from 0 to 1.

3.5 Dependence at larger lag

Let (X:,t € N) be a stationary Markov process with proportional hazard and
dependence parameter A. Generally the pair (X;, X;_) does not satisfy the
property of proportional hazard. However, the dependence between X; and
Xi—n, h € N, can still be summarized by its copula, C4 j, defined as the joint
c.d.f. of Uy, U;_p. By Chapman-Kolmogorov, the copula p.d.f. cy4 j, is given by:

1 1
ca,n(u,v) :/ / ca(u,wy)...ca(wi—1,w;)...ca(wp—1,v)dw;..dwp_1.
0 0

The analytic expression of c4j is not available in general. However, some
dependence properties can be deduced from a theorem by Fang, Hu and Joe
(1994). They show that, for a stationary Markov chain (X, ¢t € N), if X, is
stochastically increasing in X;_;, then X, is still stochastically increasing in
Xi—n, h € N, and corr [g(Xt), 9(Xi—n—1)] < corr[g(Xt),9(Xe—n)], h € N, for
any monotonous transformation g such that these correlations exist.

Proposition 9 Let (X;,t € N) be a stationary Markov process with propor-
tional hazard and dependence parameter A. If A is decreasing, then

X, is stochastically increasing in X;_p, h € N,
and
corr [9(Xy), 9(Xi—n—1)] < corr [g(X¢), 9(Xi—pn)], h €N,
for any monotonous transformation g such that the correlations exist.

Thus, when A is decreasing, dependence is positive at any lag, and decreases
with the horizon.

4 Ergodicity Properties.

The aim of this section is to study the ergodicity properties of stationary Markov
processes with proportional hazard.

14



4.1 Geometric ergodicity.

Let us first recall the definition of geometric ergodicity.

Definition 5 Let V' be a function on Ry, such that V- > 1. The Markov pro-
cess (X, t € N) is said to be V-geometrically ergodic if there exists p < 1, a
probability measure ™ and a finite function C' such that:

”Pt(:c, D) - 7r”v < p'C(z), z € Ry,

where HMHV = SUPy. ri1<v |f fdM|-

For a stationary Markov process with proportional hazard, geometric ergod-
icity can be equivalently discussed in any of the representations of the process
introduced in section 2. In particular, conditions for geometric ergodicity will
involve only either functional dependence parameter A, or functional autore-
gressive parameter . The NLAR representation with additive noise is the
most appropriate to discuss geometric ergodicity, since the required drift condi-
tions (see Meyn and Tweedie [1993]) are easy to derive, and have been already
extensively investigated in the literature. Equivalent conditions can then be
derived for the other representations.

Proposition 10 Let X;,t € N, be a stationary Markov process with propor-
tional hazard, with dependence parameter A. Assume A is continuous on (0,1).
Denote by v the expectation of a Gompertz distributed variable. Then the fol-
lowing conditions are equivalent and any of them implies geometric ergodicity
of process Xy, t € N :

i. the autoregressive function p is such that there exists constants
e >0, R < 0o, satisfying:

[o(y) +9 <yl =&, for [yl > R;

1. the functional dependence parameter A is such that there exists constants
0 < Ry < Ry < 00, and ¢ < exp (—v) < C, satisfying:

1

Cy <
A [1 - f01 exp (—A(v)y) dv}

1
<c—, forO0<y <Ry,
Y

1
< <cy, fory > Ry.

C-<
A [1 — fol exp (—A(v)y) dv}

| =

Proof. See Appendiz 4.
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Let us briefly discuss the ergodicity conditions'*. Condition i. restricts the
absolute value of the autoregressive function (including the expectation of the
innovation), |p(y) + 7|, to be strictly bounded by |y|, as |y| — 4o00. This er-
godicity condition is intuitive. Note that it is less stringent than the condition
which is usually reported in the literature (see e.g. Doukhan [1994] and refer-
ences therein): |p(y) +v| < ply|, as |y| — +oo, for some p < 1. The weakening
of the restriction on ¢ is possible since the innovation 7, in the additive NLAR
representation has a distribution with sufficiently thin tails (see Proposition A.1
in Appendix 3).

Let us now consider the conditions given in ii.!®. They define restrictions on
the dependence parameter A, and specifically on the behaviour of A(v) as v — 0
and v — 1, respectively. They are not immediately satisfied only if lim,_,g A(v)
or lim,_,; A(v) are either 0 or +oco. The intuition beyond this condition is
that when A(v) approaches 0 (resp. +o0), the distribution of duration Uy,
conditionally on U;_; = v, concentrates the mass close to the upper (lower)
boundary. Thus geometric ergodicity imposes restrictions on the functional
dependence parameter A in a neighborhood of v = 0 and v = 1 in order to
prevent the process to diverge to infinity or to be absorbed by 0. Let us now
investigate these restrictions more precisely and focus on the restriction at v =

1%6 when lim,_; A(v) = 0. For simplicity, let us consider functions A which are
continuous on (0, 1), decreasing near v = 1, and such that ¥é > 0 : lim,_; OA—%)%

exists (in [0, +00]). Any such function belongs to one of the following categories:

1 36 > 0: limy_q %Z) €]0, +o0;

(1-v)®
I V6>0:lim,_ % = +00;

I V6> 0:lim, (%L = 0.

v)?®

A function A in class I converges to 0 as (1 —v)°, for some § > 0, when
v — 1, that is the elasticity § of A(1 — v) with respect to v at v = 1 is strictly

MA geometric ergodicity condition for the functional parameters (a,Ao) in the transition
density representation is immediately derived from condition ii. by noting that:
1 1
1 - 1 ¥ 20
Al1= [y exp(A@y) @] a[A7" )]

15Note that:

1 1
= >0,

A[1_f01exp(_A(v)y)du} A[Ho—l(y)]’ -

is the conditional expectation of the transformed process Zy = Ho(Ut), t € N, with constant
conditional hazard.
16The symmetric case v = 0 is analogous.
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positive and finite!”. Functions in class II (resp. III) dominate (resp. are
dominated by) any function in class I, when v — 1.

Proposition 11 When function A is either in class I, or in class II such that
for some C > 0: A(v) > ﬁ, for v close to 1, then the second restriction
in condition ii. of Proposition 10 is satisfied.

Proof. See Appendiz 5.

4.2 Mixing properties

By discussing mixing properties of a stochastic process we are concerned by the
decay rate of the dependence between the o-fields up to time s, o (Xt < s),
and from time s + h onward, o (Xy;¢ > s+ h), as the horizon h goes to infinity
(see e.g. Bosq [1990]). Let us recall the definition of S-mixing with geometric
decay for a Markov process.

Definition 6 A Markov process Xi,t € N, is f-mixing with geometric decay if
the mizing coefficients (), defined by:
B,=E| swp  IP(C)-P(C|Xo)l|, heN,
Ceo(Xi;t>h)
decay geometrically:
ﬁh < Cph7 h € N;

for some constants p < 1, C < oo.

The next proposition provides sufficient conditions for G-mixing with ge-
ometric decay of a stationary Markov process X;,t € N, with proportional
hazard.

Proposition 12 Under the ergodicity conditions of Proposition 10, a stationary
Markov process X¢,t € N, with proportional hazard is (-mizing with geometric
decay.

Proof. See Proposition A.2 in Appendix 3.

I7In appendix 5 it is shown that functions A in class I imply autoregressive functions ¢ such
that ﬂyﬁ — 1 asy — +oo.
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5 Examples.

In this section we discuss various examples of stationary Markov processes with
proportional hazard. The associated dynamic models can be parametric or non-
parametric. It is important to note that i) sufficient ergodicity conditions are
easily written, ii) the invariant distribution (that is the uniform distribution)
is known. This is an important advantage of these models compared to the
dynamic duration models previously introduced in the literature (such as ACD
models) for which neither the ergodicity conditions, nor the stationary distri-
bution are known.

5.1 Constant measure of dependence.

When the measure of dependence A 4 is constant, we get:

Ay(v) = fd(i log A(v) = o, Vv € [0,1] = A(v) = exp(—av+¢), v € [0,1],

and without loss of generality, we can set ¢ = 0, to obtain:
A(v) =exp(—av), v € [0,1], aeR.

The distribution features (SI) and (HI) positive dependence when o > 0, whereas
the independence case corresponds to aw = 0. Moreover, since A(0) and A(1)
are finite and nonzero, the process is geometrically ergodic.

When a > 0, the c.d.f. 1 — A~! is given by:

1 - A Y(w) zl—l—llogw, we Q= [e 1],
a

and admits the density ﬁ, w € §). The inverse of the baseline cumulated
hazard Hj is obtained by computing the Laplace transform of 1 — A~!:

1 J—
Hyl(z) = 1—1/ oxp(=zw) )
& Jexp(—a) w
1 [* —
_ 1.1 / P (=),
«Q zexp(—a«) Y

5.2 Analytic examples.

Simple examples can be derived by considering standard distributions for which
the Laplace transform admits an analytic expression (see Abramowitz, Stegun
[1965] or Joe [1997], Appendix A.1, for an extensive list). In this section we
consider only continuous distributions.
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i) Exponential distribution.

Let us assume an exponential distribution with parameter \: A=!(w) = exp (—Aw),
w € Ry, A > 0. Without loss of generality, we can set A = 1, and get:

A(v) = —log(v), v e0,1]. (15)
Then:
400
Hi'(z) = 1- / exp (—zw) exp (—w) dw
0
1 z
= 1- 27152 z € [0, 400),

and the baseline cumulated hazard is:

u
H(](U) = m, u e [0, ].] .

The corresponding copula is:
Ca(u,v)=v—(1 —u)vﬁ, u,v € [0,1],

with density:

1 —u
ca(u,v) = e (logv)vT—=, wu,v € [0,1].

The associated proportional hazard process is geometrically ergodic. Indeed:
A(v) = —logv = —log[l — (1 —v)] ~ 1 — v, for v ~ 1,

(see Proposition 11),

_ Y
A[Hy'(y)] = —log <m> ~ —logy, as y — 0,

and limy_oyA [Hy ' (y)] =0, (see Proposition 10).
ii) Gamma distribution

The exponential distribution is a special case of gamma distribution. In the
general gamma case, the functional dependence parameter A and the baseline
cumulated hazard Hy were derived in section 2:

A(v) = A(v;6) = P71 (1/6,1 —v), v €[0,1],

Ho(u)_(lilu)él, wel01].

19



Various qualitative features featured by the simulations provided in section
2.5 are consequences of the results derived in sections 3 and 4. These processes
feature positive dependence since A is decreasing. The functional dependence
measure 1S given by:

Aav) = Av;6) = m

It is U-shaped and diverges at the boundaries v = 0 and v = 1 [see figure 7
where A(.; ) is plotted for § =1 (dashed line) and § = 0.1 (solid line)].

, velo,1].

[insert figure 7: functional dependence parameter]

Since A(.;1) > A(.;0.1), the process corresponding to parameter § = 1 is more
dependent.
For w ~ 0, we have:

P(1/6,w) = ﬁ/(;wexp(u)u%ldu

1 /w 1
~ = us " du
I'(1/6) Jo

wl/?
T(1+1/5)
and thus:
Aw) =P 1 (1/6,1—v) ~T(1+1/8)° (1-0)°, v~ 1
It follows from Proposition 8 that the process features positive tail dependence.

iii) Power distributions.

When:
1— A Yw) =w?, wel0,1],
with § > 0, we get:
Av) = (1-2)", veo,1]. (16)

Note that the Cox model (Cox [1955], [1972]) with a(y) = exp (—ay), y > 0,
and an exponential marginal distribution F(z) = 1 —exp(—Az), z > 0, is in
this class, with 6 = <.

The Laplace transform is:

i1

1
17H071(z) = /Oexp(—wz)wiS

1 * 1_
= l/ exp (—y) y® 'dy
625 Jo

L(/s+1),

26

dw

(1/6,2z), z>0,
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and Hy is derived by inversion. In the special case 6 = 1, which corresponds to
the uniform distribution U 1}, we get:

1— _
Ho_l(z):l—exfp(z), 2>0.

The functional measure of dependence is given by:

Aa(v) = A (038) = Tév vel1].

It is increasing, and diverges at v = 1. Moreover, positive dependence is in-
creasing in 0.

Since A(0) = 1, it follows from Propositions 10 and 11 that processes in this
class are geometrically ergodic.

iv) a-stable distributions.

For some distributions neither the density, nor the c.d.f. are known explicitly,
but an analytical expression for the Laplace transform can be available. As an
example, let us assume a positive a-stable distribution. Then:

1-— Ho_l(z) = exp (—z%) , z22>0,
with @ > 1, and
Ho(u) =[—log (1 —w)]*, we|0,1].

This type of serial dependence is compatible with Weibull marginal and condi-
tional distributions for process Xy, t € N. More precisely, let us assume:

Alz) = —log (1l — F(x)) = 2%, Ag(xz) =2%, x>0,
where a,, < a., then:
Ho(u) = Ao [F~H(u)] = [~log (1 —w)]™m , we[0,1],

and 1 — A~' corresponds to a positive a-stable distribution with parameter
& = a¢/0y,. In particular, the larger is parameter « (that is the larger the mass
of the distribution 1 — A~! in a neighbourhood of 0), the larger is the duration
dependence in the marginal distribution with respect to that in the conditional
distribution.

5.3 Endogenous switching regimes.

Let us consider a stepwise functional dependence parameter:

J
A) = a5l ;0 (0), vE0,1], (17)
j=0
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where 0 = ug < w1 < ... <wu; < ... <ujgp1 =1,a; 20,5 =0,..J,
and J € NU {+oo}. Then the conditional distribution is characterized by the
survivor function:

S(uglug—1) = PlU >y | U1 = w1
J
= Zexp [7ajH0 (ut)} H(uj:uj+l] (utfl)'
=0

Thus the proportional hazard process Uy, t € N, features endogenous regimes,
induced by qualitative thresholds in lagged duration U;_1, and characterized by
hazard functions which differ by a scale factor.

The stationarity condition with uniform g} margins is:

1—u=">exp[—a;Ho(u)] (ujs1 —u;), Yuel0,1]. (18)

Jj=0

When a; > 0, for at least one j € {0, ..., J}, condition (18) characterizes the
baseline cumulated hazard Hy, whose inverse is given by:

J
Hy'(z) = 1-) exp(—a;2) (ujr1 —uy)
j=0
J
= 1- Zﬂ'j exp (—a;z), z>0, (19)
=0

where 7; = ujy1 —uj, j = 0,...,J. Equation (19) is a discrete analogue of
equation (8), and it represents 1 — Hy ! as the Laplace transform of a discrete
distribution on R, weighting a;, 7 = 0, ..., J, with probabilities 7;, j =0, ..., J.

i) Uniform series.

Assume J =N — 1 < +00, and

1
aj=N—j, mj=—=, j=01,..,N—1

N7

Thus the function A is regularly decreasing and:

z>0.

ii) Power Series.

When:

=

1-Hi'(2)=1—[1—exp(—2)]?, 2>0,
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with 6 > 1, the corresponding baseline cumulated hazard is:
Ho(u) = —log (1 —ue) , u€e(0,1].

By using the binomial series expansion, we get (see Joe [1997], Appendix A.1):
I—HO ijexp —a;z), z>0,

with
J

a;j=7+1, m= k0—1), j=0,1,...
J J 9]+1]+ 'kl:Il

This defines an increasing step function (17), with thresholds at:

J
Uj41 = Zﬂ'l, j = 0,1,....

A decreasing step function, with the same baseline cumulated hazard, is
obtained by considering v — A(1 — v).
iii) Logarithmic Series.
When:
1
1—Hy'(2) = ~3 log [1— (1—e?)exp(—2)], >0, (20)
with 6 > 0, the corresponding baseline cumulated hazard and survivor function
are:
1— 670(17u)
Ho(u) = —log (W) , uwel0,1],
and:

1— 670(17u)

Solw) = o

€[0,1],

respectively. The corresponding discrete distribution is found by expanding the
logarithmic series in (20) to get (see Joe [1997], Appendix A.1):

I—HO Z’ITJ exp (—a;z), z >0,
with
. 1 _ond+l .
a; =j+1, Wj:m(lf e)j , 5=0,1,..

Again, a decreasing step function, with the same baseline cumulated hazard,
is obtained by considering v — A(1 — v).
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5.4 Proportional hazard in reversed time.

In this section we consider stationary Markov processes whose distribution fea-
tures proportional hazard both in the initial and reversed time. The joint density
of U; and U;_1 will satisfy:

A(u)ho(v; A) exp [—Hp (v; A) A(u)] = A*(v)ho(u; A™) exp [—Hop (u; A*) A*(v)],

u,v € [0, 1], for some functions A and A*.

In Appendix 6 it is shown that the functional dependence parameter of a
stationary Markov process with proportional hazard in both time directions is
characterized by:

U (v +9)

Alw) = TI@) v

€[0,1], (21)
where ¥ is a primitive on R of the function y — exp (—y) /y, and v and § are
constants such that:

vy = 0,
y+6 = U(+o00).

In particular, these processes are either independent process (y = 0), or pro-
cesses with negative dependence (v > 0). There exist no Markov process which
features jointly proportional hazard in both time directions and positive serial
dependence.

Since function A* associated with functional dependence parameter A in (21)
is A* = A (see Appendix 6), these processes satisfy the stronger condition of
time reversibility: the density of the process is the same in both time directions,
that is the copula is symmetric, c4(u,v) = ca(v,u), u,v € [0,1]. There exists
no reversible process with proportional hazard and positive serial dependence.

6 Statistical Inference

In this section we assume available observations X7, ..., X7, and discuss efficient
estimation of the dependence functional, when the marginal distribution F' is
unconstrained. The functional parameter A can be parametrically specified, or
let unconstrained.

In practice it is generally proceeded in two steps. First the marginal c.d.f.
can be estimated by its empirical counterpart F, say and Ut = F(X,), t =1,

, T provide approximations of the uniform variables Uy. Ut, t=1, .., T, are
sunply the ranks of the variables X;, ¢ = 1, ..., T. In a second step we can
look for an estimator of the dependence functlonal A from the observed Ut and
study the asymptotic properties of the estimator as if Uy = Ut, t=1,.. T, were
observed. Clearly this approach neglects the information on the copula, which is
contained in the level of the initial variables X;. Firstly a joint estimation of F'
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and A can improve the accuracy of a copula estimator. Secondly the asymptotic
properties of the estimated copula can be influenced by the replacement of U;
by Uy, at least when the functional dependence parameter is let unconstrained!'®
[see Genest, Werker (2001), and Gagliardini, Gourieroux (2002) for more precise
discussion].

However, since the aim of this section is just to give a flavour of estimation
on copula, we will assume that the transformed variables U;, t =1, ..., T', are ob-
served. We first consider the parametric framework, derive the expression of the
score and of the efficiency bound. Then we consider the nonparametric estima-
tion of functional parameter A. In section 6.2 we describe two nonparametric
estimation methods, that are the minimum chi-square method and the Sieve
method. These methods are nonparametrically efficient. We essentially provide
the main ideas, which underlie the estimation approaches and the derivation
of their asymptotic properties. Detailed proofs can be found in Gagliardini,
Gourieroux (2002).

6.1 Parametric framework.

i) General results

When the dependence functional is parameterized, the conditional pdf is:

c(ug,up—1; A(9)) A(ug—1;0)ho(ug; 0) exp|—Ho(ug; 0) A(ug—1;0)]

Ap-1(0)ho,1(0) exp[—Ho,¢(0) A¢—1(6)].

The parameter 6§ can be estimated by maximum likelihood, that is by:

T T
Op = argmnglog c(ug, ug—1;6) = th(e)» say.
=

t=1
The score % and the Cramer-Rao bound can be expressed in terms of backward
conditional expectations. The results below are proved in Appendix 7.

Proposition 13 :

1. The score is given by:

ol

0 0
0 - (1—A; 1Hoy) (— logA; 1 — E [— log Ay 1 | Ut])

00 00

0 0
-E {(1 — Ay 1Hoy) <% logA; 1 — E [% log A¢—1 | Ut:|> \ Ut};

where Ay_1 = A(U—1;0), and Ho, = Ho (Uy; 0).

18 More precisely, the replacement of Uy by U does not influence the pointwise asymptotic
distribution of a nonparametric estimator of A, but it influences the asymptotic distribution
of estimators of linear functionals of A.
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7i. The Cramer-Rao bound 1s:

o = v (8) <ol (%10

0 0
EV |:(]. - At—lHO,t) <— IOg At—l - F |:— IOg At—l ‘ Ut:|> ‘ Ut:| .

00 00

It is interesting to note that the process (Uy) is also a Markov process in
reverse time. The expression of the score given in Proposition 13 has the form
of an expectation error (martingale difference sequence) in reverse time.

The log-derivatives of functions A and Hy are related by:

0 0]
%IOgHO(UﬁQ) =K [% log A(Ut—1;0) | Ut] . (22)

ii) Stepwise functional parameter.

Let us consider the endogenous switching regime model (see section 5.3), with
a regular grid. The dependence parameter is:

N
Av;0) = aliis 4(v), (23)
j=1
where 0 = (al,ag,...,aN)/. Let us introduce a vector of indicators Z; =
(Z1t, ..., Znt) such that Zj = Iiizt 3)(Ui—1), j = 1,..;N. Then the score
is given by:
ol . —1
% = dzag (a) {(1 — AtleO,t) (Zt,1 —F [Zt,1 | Ut])

—E[(1—Ai1Hot) (Ze—1 — E[Zi—1 | Ud]) | Udl},

where diag (a) is a diagonal matrix with the elements ay,as, ...,an on the diag-
onal. In addition, from equation (22), we deduce that:

0 ) _
— log Ho(Uy; 0) = —diag(a) g [Zeo1 | Uy,

00
that is:
0 1 7j—1 J .
— log H, 1) =——P |—— _ = =1,..,N.
8aj og O(Uta ) a; N < Ut 1 < N | Ut 5 J ) )

Thus the score and the derivatives of the log baseline cumulated hazard are
directly related to the backward predictions of the state variables.
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In order to identify the model, we impose the following identification con-
straint on parameter § '9:

1 N
~ > a=1. (24)
j=1

Then the information matrix is given by:

!

I1(0) = [idy— % diag (a)"" EV[(1 - Ay 1Hoy) (Zi1 — EZi1 | Uy]) | Uy

where e = (1, ..., 1)/. In Appendix 10 it is shown that:

1

1(60) = xdiag (a0)* + Ox(55).

Thus, under regularity conditions, the maximum likelihood estimator gT =

(@1, a9r, ... ZL\NT)/ under identification constraint (24) is asymptotically normal
when T converges to infinity, with asymptotic variance-covariance matrix such
that 20:

Covgs [\/T (&kYT — aky(]) s \/T(aj,T — ajjo)} =N [aio&k,j + ON(l/N)] . (25)

6.2 Nonparametric estimation methods.

We consider below two estimation methods for the functional A. The first
approach considers the constrained nonparametric copula which is the closest
to a kernel estimator of the copula for the chi-square proximity measure. The
second one is based on a stepwise approximation of function A with the number
of terms in the grid tending to infinity.

C . . . . . . . .
19Tt is necessary to impose an identification constraint since functions A and kA, where k
is a constant, define the same copula (see section 2.3).

20In order to get intuition on these results, assume that function Ho(.) = Ho(.; Ag) is
known. Define the transformed variables: Wy = Ho(Uz), t = 1,...,T. Then the likelihood of
W, t =1,...,T, is the sum of N independent exponential models:
T N T
Z f(Wi|We1) = Z Z (loga; —a;Wi)lz;, 1|,
t=1 j=1 Lt=1

and I (0o) = (1/N) diag(ag)~2 follows.
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6.2.1 Minimum chi-square method.

i) Definition of the estimator.

Let us introduce a kernel estimator of the copula density ¢r(u,v) (say), defined
by:

T
N 1
er(u,v) = T ZKhT (u—Up) Kpp (v —Ug1),
t=2
where K is a kernel, Kj,. (.) = (1/h7) K (./hr), and hr is a bandwidth tending

to 0. Under standard regularity conditions, including strict stationarity of (Uy):

1. this estimator converges to the true copula p.d.f. ¢(u,v) = ¢(u,v; Ap),
and is \/Th3--asymptotically normal:

Th2. (ep(u,v) — ¢ (u,v)) — N <O,c(u,v) (/ KQ(w)dw)Q) .

ii. The integrals of the type [ g(u,v)er(u,v)du and [ [ g(u,v)er(u,v)dudv
are also asymptotically normal, but at higher nonparametric rate, and
parametric rate, respectively:

Vs {\/m / g(u,v)ET(u,v)du] - E [g(Ut,Ut_l)Q | Ut_lzv} / K2(w)dw,
(26)

Vs {ﬁ//g(u,v)@ﬂu,v)dudv} = i Cov g (Us,Up_1), g (Up—p, Up_p_1)] -

h=—o0

(27)

The minimum chi-square estimator is defined by:

Ay = min / / [ET(“’“%T( C(U’U;A)}Qdudv, (28)

u, )

where the optimization is performed under the identifying constraint:

/A(v)dv =1. (29)

ii) Asymptotic properties of the estimator

The asymptotic properties of the minimum chi-square estimator A\T defined in
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(28) and (29) are reported in Proposition 14 below. In order to formulate this
proposition we need some preliminary concepts [see Gagliardini, Gourieroux
(2002)]. The derivation of the asymptotic properties of minimum chi-square
estimators is based on the possibility to (Hadamard) differentiate the copula
density with respect to the functional parameter. The differential of logc(.,.; A)
with respect to A in direction h is given by (see Appendix 7):

<D10gC(Ut, Ui—1; A) 7h> = (1 - At—lHOt) (ht—1/At—1 —-F [ht—1/At—1 | Ut])

—E{(1 = Ay 1Hot) (he-1/Ar1 — Elhe1 /A1 | Uy]) | Uy

= U Ui (Uima) + / vy (Us, Us_r, ) h(w)duw,
where:

Yo(u,v) = [1 = A(v) Ho(u)] /A(v),

and 7, is given in Appendix 7, formula (a.13). Let v be a measure on [0, 1] such
that Dloge(.,.; A) is a bounded linear operator from L2(v) to L? (Pga). Let us
denote by H the tangent space of {A € L*(v): [A(v)dv = 1} at Aop:

H= {h € L*(v): /h(:r)dx = o}.

The asymptotic distribution of the minimum chi-square estimator is character-
ized by the information operator Iz, which is the bounded linear operator from
H into itself defined by:

(g7IHh)L2(u) = Eo KD logC(Utv Ut—l; AO) 7g> <D logC(Utv Ut—l; AO) 7h>} )

for g,h € H. For the proportional hazard copula the information operator I
satisfies:

(9:Iuh) 2y = ECovo{(1—Ar1Ho) (9-1/Ar1 = Elge-1/Ar1 | U),
(1—Ai1Hot) (him1/Aim1 — E[heer JAa | U)) }

_ /Olg( Jao dw+/ / w)au (w, v)h(v)dwdy,

where:

and «q is defined in Appendix 8. The two components of the information opera-
tor Iy have different interpretations. The ”local” component ag(w) comes from
differentiation of those parts of the density which depend from the value of A at
point w, w € [0,1]. The ”functional” component «; derives from differentiation
of those parts of the density which depend from continuous functionals of A.
We are now able to formulate the following Proposition (see Appendix 9).
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Proposition 14 Under standard regularity conditions:

1. The estimator A\T is consistent in L%(v)-norm.

1. We have the following asymptotic equivalence:
ag (v) &ZX\T (v) + /Oq (v, w) 6A\T (w) dw
= /6ET(U, v)7yo (u,v) du + / / der(u, w)y, (u, w,v) dudw + rr,

where 6;11« = XT — Ag, 6cr = er — ¢, and the residual term v is such
that (h,rT)Lz(V) ~ 0 for any h € H.

ii1. The estimator A\T s pointwise asymptotically normal:

Vi (Ar (0) ~ Ao (0)) -5 N <o, Ao (v)? / K2(w)dw> . Aeas. inve0,1].

w. Continuous linear functionals of ET are asymptotically normal:

VT (Q, Ap — AO)L2

AN [0, (9, IEIPHg)Lz(U)} , for any g € L*(v),

v)
where Py is the orthogonal projection on H.

Let us now consider the nonparametric efficiency of the minimum chi-square
estimator. The nonparametric efficiency bound for functional A is defined by the
semiparametric efficiency bounds B4(g) for linear functional [ g(v)A(v)v(dv),
g varying, which can be consistently estimated at rate 1/y/T (see e.g. Severini,
Tripathi [2001]). The nonparametric efficiency bound Ba(g) is given by (see
Gagliardini, Gourieroux [2002]):

Ba(g) = (9.1 Pr9) 1,y 9 € L*(v).

From Proposition 14 the minimum chi-square estimator reaches the efficiency
bound, and is nonparametrically efficient.

iii) Estimation of H,'.

Finally note that Hy ' (z,4) =1 — fol exp [—A(v)z] dv is a differentiable func-
tional of A. More precisely we have:

HO_1 (z, A+ 6A) = HO_1 (2, A) — /0 zexp [—A(v)z] 8A(v)dv + 0 (64) .
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Therefore:
Hy* (z, ET) ~ Hy'(z,A) - /01 zexp [—A(v)2] (A\T(v) - Ao(v)) dv.

Asymptotically the estimator Hy ' (z) = Hy* (z, ET) is equivalent to a contin-

uous linear functional of A7, and thus converges at rate 1 /V/T [see Proposition
14]:

Corollary 15 Under regularity conditions:

Niy (f?g\l (2) = Hy' (2, 40) ) = N [0,22 (740, 1 Pre =) 1, ], 2 € (0,1).

In Appendix 7 it is shown that Hg and hg are both differentiable functionals
of A. Therefore the corresponding pointwise estimators converge at parametric
rate 1/ VT 2L, The higher convergence rate of Hy and hg sheds light on the
pointwise asymptotic distribution of the minimum chi-square estimator given
in Proposition 14, iii. Indeed for pointwise estimation of A, functions Hg and
ho can be assumed to be known, in which case the information operator Ig
only consists in the local component oy . The asymptotic variance of A (v) is
(essentially) its inverse.

6.2.2 Sieve method.

Other nonparametric estimation methods can be considered. For instance it
is possible to approximate the function A by a stepwise function: A(v;6) =
Z;‘V:1 ajlii 4 (v), where 6 = (aq,...,an), and to estimate the parameter under
the identifiability constraint:

which is the analog of (29). For any given N, we get maximum likelihood
estimators @; y, j = 1, ..., N, with properties described in section 6.1. This
approach can be extended to a nonparametric framework, if we allow for a
number Nrp of intervals depending on the number T' of observations. If Np
tends to infinity with T at an appropriate rate, this sieve method is expected
to provide another nonparametrically efficient estimator of A, rather easy to
implement??.

21 The fact that the pointwise estimator for the baseline hazard function hg converges at a
parametric rate may seem unusual. This result is due to the restriction on uniform margins
of the copula, which implies that hg can be expressed as an integral of function A.

22Rewrite equation (25) with N = N as:

Covgs [\/T/NT (akyT — akyo) RV T/NT (aj’T — aj)())} = a?)oékyj —+ ON(l/NT),

and compare with Proposition 14 iii. See also Appendix 10, ii).
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7 Conclusion.

In this paper we have introduced duration time series models with proportional
hazard. These models allow to separate the marginal characteristics from the
serial dependence properties. The latter are described by a copula with pro-
portional hazard, characterized by a functional parameter A. This has two
important consequences from a modelling point of view. On the one hand, the
marginal distribution of the process can be chosen freely, and we can then fo-
cus on serial dependence by considering function A. On the other hand, since
parameter A is functional, this class of models is flexible enough for allowing
various nonlinear and nongaussian dependence features, such as dependence
in the extremes, serial persistence, nonreversibility, as confirmed in simulated
examples.

We have related the pattern and strength of serial dependence to the shape
of functional parameter A by using well-known concepts from copulas’ theory.
More precisely various characteristics of functional parameter A give rise to
different forms of dependence, influence dependence in the tails, and imply
ergodicity conditions.

Finally we have discussed the estimation of the dependence parameter A,
both in parametric and nonparametric frameworks. A nonparametric estimator
of A can be obtained by minimizing a chi-square distance between the nonpara-
metric constrained copula and an unconstrained kernel estimator of the copula
density. This minimum chi-square estimator is consistent and asymptotically
normal. In addition it reaches the nonparametric efficiency bound computed
under the assumption that the uniform variables U; are observed.
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Appendix 1
Dependence Ordering

For u,v,v" € [0,1] we have:

S(u | v) = exp (=A(v)Ho(u)),

Sy (1) = S5 (u | 0) [ 0] = wACH/A®),

and:

Do\ AW/ Aw) - A% (v) /A" (v)
S* (u)

v,V

Thus, for any v < v" € [0, 1]:

S o S
S:v,(u) > ) ue[,}@w ecreasing in u € [0, 1]
AW  A*(W)
< <
A(v) — A*(v)
o AG) AW

Appendix 2
Coefficient of upper tail dependence

Without loss of generality we can set C' = 1. It will be proved in Appendix
5 [equation (a.3)] that:

1 5
A [1 - / exp [-yA(v)] dv| ~ M, as y — +oo.
0 Y
Using A (v) ~ (1 — v)6, v — 1, it follows:

! ra+1/é
/ exp [—~yA(v)] dv ~ %, as y — +oo.
0

Thus:

r'(1+1/6
HJI(Z,A)zlf%,ZHJrOO,
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and

Ho(u, A) ~ F((%i/)g)&, u— 1.
It follows:
1 1
Aa = i:rnl 1w s exp [—A (v) Ho (u, A)] dv

. ! sT(1+1/6)°
= ilinll—u/u exp [(17}) W dv
= ! /F(1+1/6)6 exp (—w) w*tdw

L(1/6) Jo

- P(1/5,r(1+1/5)5).

Appendix 3
Nonlinear Autoregressions

In this Appendix we report some probabilistic properties of nonlinear au-
toregressions with additive noise:

Ve =@(Ye1) +my

where the innovation 7, is a white noise, independent of Y;_q, with strictly
positive density g on R, and E [n,] = 0.
The conditional density of Y; given Y; 1 = y is given by:

fl@ly)=g(@—¢W), v,y €R,

and is strictly positive. Thus Yz, ¢t € N, is A-irreducible, A-Harris recurrent (see
Feigin and Tweedie [1993]) and aperiodic (see Proposition A1.2 of Tong [1990]).

We assume the autoregression function ¢ is continuous. Then Y, t € N,
is a Feller chain (see Feigin and Tweedie [1993]). Indeed, if V is a bounded,
continuous function defined on R, by applying Lebesgue theorem it follows that:

Y E[V (%) | Yiy =) = / V(@ + o)) g(x)dz,
is continuous.

The following proposition provides a sufficient condition for geometric er-
godicity.
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Proposition A.1 Assume that the real Laplace Transform (LT) of the inno-
vation n, is defined in an open meighbourhood of 0. Assume further that the
autoregression function ¢ satisfies:

le@)| <lyl—e, |yl >R,

for some constants € >0, R < oo. Then (Y;,t € N) is geometrically ergodic.
Proof. Let ro > 0 be such that the LT of n,:

U (k) = E[exp (—kn,)],
is defined for k € (—rg,ro). For k € (0,r9) define the functions:
Ve(y) =1+exp(klyl), yeR

We now show that for some k sufficiently small, the function Vi satisfies the
following drift condition:

Iy <1: E[Vi(Y2) | Y1 = y] <~vVi(y), for |y| large enough. (a.1)

Since Y, t € N, is an irreducible, aperiodic Feller chain, and Vi is continuous,
condition (a.1) implies geometric ergodicity (see Theorem 1 of Feigin, Tweedie
[1993]). Let us now prove the inequality (a.1). We have:

EVi(Y) |Yiei =yl = 1+ Elexp(kle(y) +n.l)]

—¢(y)
- / exp [~k (@(y) +m)] g(n)dn

— 00

+oo
+/ exp [k (p(y) +n)] g(n)dn
—¢(y)
—¢(y)

= 1+exp(—keo(y)) / exp [—kn] g(n)dn

— 00

“+o0

+exp (ko (1)) /  esp () gl

It is sufficient to consider the case where |p(y)| — +00 as |y| — +oo. Then we
have:

EVi(Yy) [ Yier =yl =1+ 0o(1) + (14 0(1)) ¥ [k - sign (¢(y))] exp [k o (y)]],

where o(1) — 0 as |y| — +oo. It follows:

E[Vi(Yy) | Yiea =y] <O(1) + (1 + o(1)) exp {k ly| — k <5 _ Y[k -sign (w(y))}ﬂ ’
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where (k) =In U (k). Since:

(e - HEFm eI g (o) B ) = < > 0

i
there exists 6 > 0, such that for k small enough:

E[Vi(Y2) | Yier = y] < O(1) + (1 + o(1)) exp [k [y| — 4.
Therefore there exists v < 1 such that for k small enough:

EVe(Y1) | Yier =y] <Vi(y), |yl large enough,

and the result follows. Q.E.D.
Finally, let us consider mixing properties. Using the results of Davydov
(1973), it is seen that geometric ergodicity?® implies 3-mixing with geometric

decay (see e.g. chapter 2.4 in Doukhan [1994]).

Proposition A.2 Under assumptions of Proposition A.1, (Yi,t € N) is (-
mizing with geometric decay.

Appendix 4
Proof of Proposition 10

Condition i. implies geometric ergodicity

Let us consider the transformed process Y; = h(X;), ¢ € N, which follows
the nonlinear autoregression with additive noise in (3), where innovations are
Gompertz distributed, with density:

g(n) = exp(n)exp(—e”), n€R.

This density is strictly positive on R. From Appendix 3, it follows that Y;, t € N,
(and hence X3, t € N) is irreducible, Harris recurrent and aperiodic. Moreover,
since the continuity of A on (0,1) implies the continuity of the autoregressive
function ¢, Yz, t € N, (and hence Xy, t € N) is a Feller chain. Finally, note that
the density g of the innovation admits a real LT:

1
U (k) = [exp (—kn,)] = /(; = exp (—e¢) de,

defined for k € (—o0,1). From Proposition A.1 in Appendix 3, geometric er-
godicity of Y;, t € N, and hence of X;, t € N, follows.

23 with integrable function C
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Conditions i. and ii. are equivalent

By using relation (11), condition i. can be written as:

log <e—m [1 - /Olexp(A(v) expy) dvm <lyl—e |y>R (a2

Let us first consider the case y — 400, and discuss the inequality (a.2) depend-
ing on the behaviour of the functional dependence parameter at v = 1.

Case I: lim,_,1 A(v) < exp[7]

Condition (a.2) becomes:

1
—log <e"'A [1 - / exp (—A(v) expy) dvD <y—e, y>ry,
0

for some 79 < 00, that is:
1
A [1 - f01 exp (—A(v) expy) dv}

<e T Vexp(y), y>ro,

which is equivalent to:
1
A [1 — fol exp (—A(v)y) dv}

< cy, Y > RQ;

for c < e77, and Ry = exp (r2).

Case IL lim,_,; A(v) > exp [7]

Condition (a.2) becomes:

1
o (i [ picarsomal) sv-e vz
0

for some 7y < 00, that is:

1
A [1 —/ exp (—A(v) expy) dv] <eMexp(y), y=>ra,
0

which is equivalent to:
1
A [1 — fol exp (—A(v)y) dv} Y

for C' > e 7, Ry = exp (r2).
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Case III: lim,_.1 A(v) = exp [7]

In this case the inequality (a.2) implies no restrictions on the functional depen-
dence parameter.

Case I and II give the second restriction in condition ii. The case y — —oc is
similar, and provides the first restriction.

Appendix 5
Proof of Proposition 11.

i) Let us first assume that A is in class I. The following lemma will be used
in the proof.

Lemma A.3 Let us assume that function A is strictly positive, continuous on
(0,1), decreasing at v =1, and satisfies lim,_1 A (v) = 0. Then for any € >0
small enough:

- fllfeexp[—yA(v)]dv
v T o [pA(w)] do

Proof. For any € > 0 small enough, and 0 < v < A(1 —¢), there exists § < ¢
such that:

A(l—¢), on [0,1—¢],
A(l—¢e)—7, on [1-6,1].

S
s
NIV

Thus:

fol_EGXP[—yA(v)]dv < _op[-yA( —¢)]
Ji expl-yA@)dv [ jexp[-yA(v)] dv
exp [~y A(l — )]

<

Ji_sexp [~y (A(l —¢) —v)]dv
<
— bexp(yy) ’

as y — +o0o.  Q.E.D.

Without loss of generality, we can assume that for some 6 > 0

im
v—1 (1 — 0)6
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Let us now consider the function involved in the second restriction of ii. For
any € > 0 we have:

lim yA [1 - /0 ' exp (—yAW)) dv}

y—+oo
A= Jyen (—yA) v] ! s
R i e

1
= lim ex
i (e conar)

= (ot [ ewvawya)

1 [t 1 6
= <y£rfoog/0 L.cooyexp [—yA (1— <§> )] z%ldz> .

Let us now check that the limit and integral can be commuted by using Lebesgue
theorem. Since:

lim yA< (5)3)_ lim zm—z,

y—+4oo
1
AN 11 11
—yA[l1—- (- 237" =exp(—z) 23, for all z> 0.
Yy

Moreover, let » < 1 be such that:

)

we get:

lim 1,<.s,€xp
y—+o0

, for any v > 7,

1
yA (1 - (5) ) > %z, for any z < (1 —r)‘sy.

Therefore by choosing ¢ < 1—r, we show that the integrand admits an integrable
upper bound:
3
—yA <1 - <§> >] 2l < exp <%z> 2%71, for any z,y > 0.
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Thus, Lebesgue theorem applies:

. Hoo z 3 19 Hoo 19
lim l.cooyexp |[—yA[1— (- 287 dz = exp(—z) 27 dz
vyt Jo - y 0
= T'(1/6).
Therefore:

y——+oo

lim yA [1/0 exp(yA(v))dv] =[(1/6)T(1/8)° =T (1+1/6)°. (a.3)

In particular, we deduce from (11) that the autoregressive function ¢ corre-
sponding to A is such that:

e(y) ~y—6logT' (14 1/6), y — +oo.

From (a.3), it follows that the second restriction in condition ii. is satisfied
iff:

T(1+1/8)" >exp(y), for any § > 0,

where ~ is the expectation of a Gompertz distributed variable:

v = /000 (Ine)exp (—¢) de.
The conclusion follows by using the following lemma.
Lemma A.4 The function
§—T(1+1/6)°, §>0,
is decreasing, with:
6Er+rloof (1+1/8)" =exp(y).
Proof. Define
P(z) =log(1 + z), z > 0.

Then 6 — T'(1+ 1/6)5, 6 >0, is decreasing iff x© +— ﬂmﬂ 18 increasing, that is
iff: x) (x) > ¥(x), x > 0. Since

“+o0
Nl+2z)= / exp (—z) exp (xlog 2) dz
0
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is the real LT of the negative of a Gompertz variable, ¢ is convex and such that

¥(0) = 0 2. It follows:

v = [0 @< [0 @z =o' o),

and the first part of the Lemma is proved. Finally, we show the second part:

lim T(1+1/6)° = i
JHm T(A+1/6)7 = lim

)

1+%/000 oxp (—2) 1nzdz>
~ exp (/Ooo (In 2) exp (—2) dz> —exp(y).

Q.E.D.

ii) Let us assume now that A is in class II, and that there exists C' < oo
with:

C
Alv) 2 log(1 —v)

Since lim,_,; A (v) = 0, for any A € (0, +00) there exists K = K(\) such that
A(w) < Xforv>1— K. Then:

, for v close to 1.

[ el

Y

[ ewlvawia

Kexp(=\y), y > 0.

V

Since A is decreasing near 1,

A [1 - /: exp (—yA(v)) dv} > A[l — Kexp(—Ay)], for y large.
Then:
yA [1 - /0 " exp (~yA(r) dv} > yA[l - Kexp(-\y)

= o (R - e ()

- % +o(1) > exp (v), for y large enough,

if we choose A < C'exp (—7).

24We use that if ¢(z) = log E [exp (—zZ)], then 1/)” (z) = Vg, [Z], where distribution Q is
defined by dQz(z) = {exp (—zz) /E [exp (—xZ)]} dFz(z).
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Appendix 6
Proportional hazard in reversed time.

The condition for proportional hazard in both time directions is:
JA*, H§ such that:

A(u)ho(v) exp [—A (u) Ho(v)] = A" (v)hg(u) exp [- A" (v) Hg(u)],  (a4)

for u,v € [0,1]. By taking the logarithm of both sides, and deriving with respect
to uw and v we get:

0A(u) OHp(v) _ 0A*(v) OHG (u)

ou ov v ou
If Uy is not the independent process, we have:
O0Hj(u) ,0A(u)  O0Hg(v) ,0A*(v)
ou / ou v / v v, v. (a.5)

Thus these ratios are constant, equal to « (say). It follows, by using Hy(0) =
H{(0) = 0, and the normalizations A(0) = A*(0) = 12°:

Ho(v) = «a[A*(v)-1], ve][0,1],
Hi(uw) = alA(w)—1], uwel0,1].

Note in particular that A and A* are monotonous. By replacing in equation
(a.4), we get:

aA(u)a™(v) exp [—aA (u) A*(v)] exp [aA (u)]
= ad™(v)a(u)exp [-aA” (v) A(u)] exp [a A" (v)],

where a(u) = dA(u)/du and a*(v) = dA*(v)/dv. Thus:

Z((Z)) exp [—aA (u)] = ai(v) exp[—ad* (v)], Yu,v.

In particular, function A is such that:

a(u)
A(u)

exp [—aA (u)] = v, where 7 is a constant.

Let us denote y(u) = A (u), u € [0, 1]. Then function y satisfies the separable
differential equation:

exp (—y) dy _

y  du L

OHF(u) o 9A(u)
2] - ou

25 s . - : : .
“?These normalizations are admissible, since implies that OA/Qu is inte-

grable, and thus A(0) < +oo , and similarly for A*%O) < 4o0.
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Let ¥ be a primitive of the function y — exp(—y)/y on Ry. ¥ is continuous,
strictly increasing such that ¥ (4-00) < 400, and the solution is:

y(u) = v (yu+6), uwel0,1],

where 6 is such that:

6 < (+00), if 4 <0, (.6)
and
v+ 6 < W (+00), ify>0. (a.7)
Therefore function A is such that:
UL (yu 4 6)
A(u) = IO €[0,1],

and o = ¥~! (§). Since A* satisfies the same differential equation as A, we have
by symmetry:
AT = A

We now use restriction (8) of uniform margins. The function Hy and its inverse
are given by:

U (yu +6)

U=t(9)

U (yu+8) — T (6), uel0,1],

Ho(u) = afA"(u)-1=« -1

and:
1
Hy'(2) = S {O [ (6)+z] -6}, z>0.
Thus the restriction is:

% {(Uw o) +z]-6}=1- /01 exp [—2%12;)—6)} dv, z>0. (a.8)
After the change of variable:
¢ = U= (yv +6)

Ute)
the integral in the RHS becomes:

vl (v+8)

[l = 1T e

1 CTO) e (=¢)
Y Jatw-(5) f

- %{q, [%7(;6) (2+ 071 () \Il[er\I/_l(é)]}.
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Thus restriction (a.8) becomes:

Ut (v +6)

_ —1
YHS= U (y+68) + =10

z|,Vz > 0.

This equation cannot be satisfied with values of § and v such that =1 (y + §) <
+oo and U1 (§) < 400, but is satisfied if either W1 (y 4+ §) = +ooor U1 (§) =
+00 holds. The case ¥~! (§) = +o0 is not admissible. When U~ (y + §) =
+o00, condition (a.6) cannot be satisfied, whereas (a.7) is trivially satisfied. Thus,
any pair of constants § and ~ such that:

¥>0,7y+6=V(+o0),

satisfies the restriction.

Appendix 7
Computation of the differential of ¢ (u,v; A) with respect to A

The aim of this appendix is to derive different expressions of the differential
of the copula with respect to the functional parameter. In a first step we derive
the differential with respect to A, by taking into account that Hy is a functional
of A, due to the relationship implied by the condition of uniform marginal
distribution. In a second step we provide interpretations in terms of backward
expectations. Finally the results are particularized to the parametric framework.

i) The general expression.

Let us derive the first order expansion of the copula log density:
log ¢ (u, v; A) = log A (v) + log ho (u, A) — A (v) Ho (u, 4),
with respect to functional parameter A. We get:

loge(u,v; A+ 6A) = log[A(v)+ 6A (v)] + logho (u, A+ 6A)
—[A(v) + 6A (v)] Ho (u, A+ 6A)

8A (v)

A(v)

—Hg (u, A) §A (v) — A(v) (DHp (u, A),6A)

1—A(v)Hg (u, A)
A(v)

+(Dlogho (u, A) ,6A) — A (v) (DHo (u, A) ,64),
(a.9)

12

log e (u,v; A) +

+ <D IOg ho (ua A) 76A>

= loge(u,v; A) + 8A(v)
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where the expansions are in terms of Hadamard derivatives and the sign ~ means
that the residual terms are negligible. We have now to get the expressions of
the derivative of Hy and hg with respect to A.

Expression of DHy * (2, A)

We have:
Hyt(z, A+64) = 1 —/0 exp[—A (v) z — 6A (v) z] dv
~ 1o /0 (1= 6A (v) 2] exp [ A (v) 2] dv
= Hgl (2, A) + /(; 26 A (v) exp [—A (v) z] dv,
hence:

<DH61 (2, A) ,(5A> = /0 zexp [—A (v) z] 6A(v)dv.

Expression of DHg(u; A)

By applying the implicit function theorem we get:

(DHo (u, A),6A) = —ho(u, A)(DHy" (Ho (u,A),A),54)

o (u, A) /0 Ho (1, A) exp [~ A (v) Ho (u, A)] §A(v)dv
(a.10)

Expression of D log hg(u; A)

We get:

d

ho (u, A) = (51%‘1 (2,4)

—1
z_Ho(u,A)>

_ ( /0 " Aw) exp [ A(0) Ho (. A) dv)

-1

Let us introduce the functional:

q(u,A) = L ] :/0 A(v)exp [-A(v)Hg (u, A)] dv,

h(] (u, A
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and derive its

q(u, A+ 6A)

It follows:

first order expansion. We get:

= /0 [A(v) + 6A(v)]exp {— [A(v) + 6A(v)] Ho (u, A+ 6A)} dv

1

q(u, A) + /(; 8A(v)exp[—A(v)Ho (u, A)] dv

12

~ Ho (u, A) /0 §A(v) A(v) exp [~ A(v) Ho (u, A)] dv

—(DHy(u),6A) /0 A(v)? exp [~ A(v)Hy (u, A)] dv

12

q(u, A) + /0 8A(v)[1 — A(v)Hg (u, A)] exp [—A(v)Hg (u, A)] dv

~ (DHo(u), 6A) /0 A(v)2 exp [—A(v) Ho (u, A)] do.

(Dloghg (u, A) ,6A) = —hg (u, A) (Dq (u, A) ,6A)

= —ho(u,A) / 8A(v)[1 — A(v)Hg (u, A)] exp [-A(v)Hg (u, A)] dv

0

A(v)? exp [~A(v)Hy (u, A)] dU) (DHyp(u),6A)

Hy (u, A) exp [—A (v) Ho (u, A)] §A(v)dv.

(a.11)

Explicit expression of the copula’s derivative

By inserting (a.10) and (a.11) into (a.9), we see that the expansion of log c(u, v; A)

is of the form:

log e (u,v; A+ 8A) ~ log c(u, v; A) + vo(u,v, A)6A(v) + /71 (u, v, w; A)dA(w)dw,

where:

1— A(v)Hp(u, A)
A(v)

VO(U’ U, A) = (a.12)
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and:

71 (u, v, w; A)
= —ho(u, A) exp [~ A(w)Ho(u, A)]

. {1 — Ho(u, A) [A(v) + A(w) — /01 A(2)%ho(u, A) exp [~A (2) Ho (u, A)] dz] } :
(a.13)

The expression of the differential of log c(u, v; A) follows:

(Dlogc(u,v; A),8A) = vyo(u,v, A)6A(v) + /yl(u,v,w;A)éA(w)dw. (a.14)

ii) Conditional expectations in reverse time.

Various functional derivatives with respect to A can be written as expectations
in reverse time. From (a.10) we get:

(DHy (u, A),6A) = —Hg (u, A) E[§A(U;_1) JA(U; 1) | Uy = ),
or equivalently:
(Dlog Hot, 6A) = —E [§A;_1/Ai_1 | Uy],
where Ho, = Ho (U, A) and A;—1 = A(U;_1). Similarly, from (a.11) we get:
(Dloghgi, 64) = —FE[(1— A 1Ho) 6As-1/Ar1 | U]
—E[Ar 1 Ho | U E[6Ar1/Av1 | U]

Then from (a.9) the score of the model can be written as an expectation error
in reverse time:

(Dlogec (Ui, Up—1; A), 6A)
= (1-Ai—1Ho) (6Ai—1/Ai—1 — E[6Ai—1/Ai—1 | Uy))
—E{(1— A 1Hot) (6As1/Ar1 — E[6Ar 1/Ar 1 | Ud]) | Ui}
(a.15)

iii) The parametric case.

When function A is parameterized:
A(v) = A(v, 0),
the score of the model is obtained from (a.15) with:

0A

6A(v) = S5 (

v,6)60.
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We get:

ol 0
=5 = 5logc(UnUp1: A(6))
0 0
= (]. — At—lHOt) <% IOg At—l (6) - F |:% IOg At—l (6) | Ut:|>

—E {(1 — Ay_1Hor) (% log A1 (0) — E [% log Ae_1 (6) | UtD | Ut} .

Similarly, the derivatives of log Hy (u, A (6)) and log hqg (u, A (9)) with respect to
0 are given by:

0 0
% log H(]t (9) =—-F |:% IOg At—l (9) | Ut:| 5

and:

0 0
% IOg h(]t (9) = —-F |:(1 — At—lHOt) % log At—l (9) ‘ U{l

0
—E[HypAi 1 | U E [% log A;—1 (6) | Ut:| :

Appendix 8
The information operator

i) The expression of the information operator
Let us derive the information operator Iy. From (a.14) in Appendix 7, the

differential Dlogec(.,.; Ag) admits a measure decomposition with both a discrete
and a continuous part [see Gagliardini and Gourieroux (2002)]. Therefore:

(9, Ieh) L2 1) :/g(v)ao(v;Ao)h(v)dv+/g(w)al(w,v;Ao)h(v)dwdv, (a.16)

for g, h € H, where:

1
: Ag) = E, Uy, Ui 1) | Upq = v| = ,
a0v; Ao) = B [0 (U Ue-1)? | Uiy = o] =
and:
aq(w,v; Ag) = Yolw, w; Ag)yy (u, w, v; Ag)du
1
+§ /Wl(uayaw; AO)’Yl(uayﬂ); AO)dudy + (w — U) .
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Let us now derive an expression for Igh, h € H. From (a.16) we get:

/ (w ){IHh( )ji( )—ao(w;Ao)h(w)—/al(w,v;Ao)h(v)dv dw =0, Vg € H.

Thus there exists a constant k& such that:

dv

Tgh(w )d)\

(1) = ag(w; Ag)h(w) + / o (w, v; Ag)h(v)do + k.

Constant & is determined by the condition Iyh € H, that is: [ Igh(w)dw = 0.
We get:

Inh(w) = %h(w)+ / %h(v)dv
- </1 winw) L (i )]
dv/d\(w)’

(a.17)

Thus Iy admits the representation:

Igh(w) = %h(w) —I—/%h(w)dv, say,

with Qo,H = Q.
ii) Boundedness and invertibility of Iy

We assume that, for any A, there exists a positive definite matrix ag(.; A) such

that:
aq,g(w,v; A)
dwd .
//anAaHUA) wav < o0

Fur(her le( us int roduce [he measure v SuCh that:
VA : 3 0: v max ag(v; A Vv
A A l)\ - 1(1})2 s XH ) I

Then, from Proposition 22 in Gagliardini, Gourieroux (2002), I is a bounded
operator from H in itself. Let us now consider the invertibility of Ir. We first
show that the differential Dlogec(.,.; Ag) has a zero null space. Indeed let us
consider a function h € H such that:

(Dlogc (U, Us—1;a0) ,h) =0 as.
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Then by using the differential of the proportional hazard copula [see section 3.2
iv)], we deduce that:

(1 —aop—1Hot) (he—1/aot—1 — E [hy—1/aoi—1 | Uy))
= [1—ao (Ue—1) Ho (U)| {h (Ui-1) /a0 (Ui—1) — E[h (Ui-1) /a0 (Us—1) | U]}

is a function of U; only.

This implies that h/ag is a constant. Since fol h(v)dv = 0, it follows that h = 0.
Thus Iy has zero null space and it is positive.
Let us assume that v is such that:

dv 1
— < — .
™ (w) < Yw

VA:3C04>0:C ,
A A A(w)2

Then Proposition 22 in Gagliardini, Gourieroux (2002) implies that I is in-
vertible.

Appendix 9
Asymptotic distributions

In this appendix we derive the asymptotic distribution of the minimum chi-
square estimator reported in Proposition 14. To prove the result we use Propo-
sition 23 in Gagliardini, Gourieroux (2002).

i) The efficient score ;.

The efficient score 1, € L? (v) is defined by:

(o) = [ [ 56000,0) (D1og . Ao) ) e, € 12(0),

From Gagliardini, Gourieroux (2002) we get:

Swyirw) = [ rtw. o w.0ydo+ [ [ 6 0w dud

(a.18)

ii) The first order condition.

From Gagliardini, Gourieroux (2002) the first order condition is given by:

I48Ar ~ Py,
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where Py is the orthogonal projection on the tangent space H, which is given

by:

From (a.17) and (a.18) we get:

o (w) A7 (w) —&—/al(w,v)é//l\T(U)dv

_(/%>1/(%62T(w)+/%5/ﬂ(v)dv> dw

~ /66}(10,1))70 (w,v) dv + //6’0}@,1})71 (u, v, w) dudv

B ( /%)* /m ( / 52 (1, v)vg (w0, v) du+

//6ET(u, v)7y; (u, v, w) dud@) dw,
(a.19)

which is the asymptotic expansion reported in Proposition 14 ii.
iii) Pointwise asymptotic distribution

Let us consider the pointwise asymptotic distribution of the minimum chi-square
estimator Ap. Intuitively it can be derived from the asymptotic expansion

(a.19), by noting that the second and third terms in the RHS are O, (1/\/T)

[see (27)], and similar orders are expected for the second and third terms in the
LHS, leading to:

VThrsAr (v) ~ ag (v) " /65T(w, 0)7Yg (w,v) dv.
From (26) it follows:
VThréAr (v) -5 N (O,ao ()" /Kz(w)dw) , A-as. inve0,1].

The complete proof of this result is given in Proposition 23 of Gagliardini,
Gourieroux (2002).

iv) Asymptotic distribution of linear functionals of A

The asymptotic distribution of linear functionals [ g(v)A(v)v (dv), g € L? (v)
is derived from Proposition 23 of Gagliardini, Gourieroux (2002).
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Appendix 10
The efficiency bounds for the stepwise model

i) Determination of the parametric efficiency bound

We have:

I(8) = (idN - %) diag (ao) ™' EoVo [€, (Zio1 — E [Zy1 | UY) | UY]

-diag (ag) ™" (idN - %) )

where §, =1 — Ap—1Ho, ~ itd(0,1), &, independent of U;_; [see equation (2)].
Let us transform the terms in the conditional variance. We have:

EoVo [§; (Zi—1 — Eo[Zi—1 | Ud]) | U]
= Eoko [5% (Zior — Eo[Zies | L) (Zeer — Bo[Zi—1 | U)) | Ut}
—Eq {Eo (€t (Ze—1 = Eo [Ze—1 | Ud]) | U] Eo €, (Ze—1 — Eo [Zi—1 | Ud]) | Ut}/}
= By [ Ey [diag(Z, 1) — Eo {EO (€22, 1 | U] Eo[Z 4 | Ut]'}
-1 Idy /N
—Fo { FolZi1 | U Bo [70 1 Ut]/}
+Eo [Eo € | Ui] Eo[Zi—1 | Uy Eo [Zi-1 | Utﬂ
—Eo {(Eo[§:Z1—1 | Ut] — Eo (&, | U] Eo [Ze—1 | Uy)
(o€ Zi 1| Ul ~ Bo ¢, | Ul Bo [Ze 1 | U) }-
An expression for the parametric efficiency bound B (6g) = I (6g) " follows.

Let us investigate its expansion for large N, and develop it in powers of 1/N.
By using:

&2 = [Idy — diag(ao)Hot) Zi—1,

€71 = [Idy — diag(ag)Ho]” Zi-1,
Eol¢, | U] = S [Idy — diag(ao)Hol Eo[Ze1 | UL,
Eo [ U] = S [Idy — diag(ao)Hol” Eo[Ze—1 | Uy,

and the fact that:
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for any vector x which is not a constant vector, we get:

1 . - 1 1
1(90) = Ndzag (CL(]) 2 + m]\/[ +o <W) 5

where M is a N x N matrix. Thus the parametric efficiency bound for the
stepwise model is such that:

B(0) = N [diag (a0)? + 0 (1/N)} .

The asymptotic distribution for the maximum likelihood estimator @T = (ai,7,....anT)
follows:

Covgs [\/T (akyT — aky()) s \/T(ajjT — ajj())} = N [aioékjj -+ ON(l/N)] .
(a.20)

ii) Pointwise asymptotic distribution.

A pointwise estimator of A can be defined by:
i,

N
AT(U) = ZajjTﬂ(u "1%] (U) .
Jj=1

We deduce from (a.20) the asymptotic variance of the estimator Ar(v), where
T tends to infinity and N = N7 tends to infinity at a much smaller rate:

[ 0. 400

B ZZH(ZE%#) () Lzt 4y (W) [a78i5 + 0 (1/N1)]
~ { AO(U)Qa v =w
~ 40 v

This result can be directly compared with the pointwise asymptotic distribution
of the minimum chi-square estimator given in Proposition 14 iii.
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Figure 1: Simulated path for process Uy, t € N, with proportional hazard and
functional dependence parameter A such that 1 — A~! is a gamma distribution
with parameter 6 = 0.1.
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Figure 2: Copula p.d.f. for process Uy, t € N, with proportional hazard and

functional dependence parameter A such that 1 — A~! is a gamma distribution

with parameter 6 = 0.1.
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Figure 3: Autocorrelogram for process X;, t € N, with functional dependence
parameter A such that 1 — A~! ~ ~(8), § = 0.1, and marginal distribution
F(z)=1-(1+42)", 7=1.05.
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Figure 4: Simulated path for process Uy, t € N, with proportional hazard and
functional dependence parameter A such that 1 — A~! is a gamma distribution
with parameter § = 1.
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Figure 5: Copula p.d.f. for process Uy, t € N, with proportional hazard and
functional dependence parameter A such that 1 — A~! is a gamma distribution
with parameter § = 1.
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Figure 6: Autocorrelogram for process X;, t € N, with functional dependence
parameter A such that 1 — A=Y ~ ~4(§), § = 1, and marginal distribution
F(z)=1-(1+42)", 7 =1.05.
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Figure 7: Functional dependence measure for process Uy, t € N, with 1 — A~ ~
v (6): § =0.1 (solid line), § = 1 (dashed line).
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