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Abstract

We extend the conditional logit approach used in panel data models of binary variables
with correlated fixed effects. In a two-period two-state model, we derive the necessary and
sufficient conditions on the joint distribution function of the individual-and-period specific
shocks such that the sum of individual binary variables across time is a sufficient statistic
for the individual effect. The conditional likelihood function, conditional on this statistic,
does not therefore depend on individual effects. It leads to /n—consistent and normally
distributed estimators. Conditions under which this property of sufficiency is true are a lot
less stringent than in the conditional logit approach (Rasch, Andersen, Chamberlain). In
applied work, it gives justifications to quasi-differencing the binary variables as if they were
continuous variables. Semiparametric approaches drawn from the cross-section literature can
then be readily applied. Finally, the extension of a result of Chamberlain (1992) shows that the
semi-parametric efficiency bound is not equal to zero if and only if the property of sufficiency
is satisfied. It gives a second motivation to the paper by characterizing all panel binary choice
models with individual effects where y/n—consistent and regular estimators can be constructed.

Résumé

Nous étendons la méthode de Logit conditionnel utilisée pour traiter des données longitu-
dinales dichotomiques avec effect fixes corrélés. Dans un modeéle & deux périodes et deux états,
nous présentons les conditions nécessaires et suffisantes qu’il faut imposer sur la fonction de ré-
partition jointe des chocs individuels spécifiques aux deux périodes pour que la somme des deux
variables binaires soit une statistique exhaustive pour 'effet fixe individuel. La fonction de
variasemblance conditionnelle & cette statistique ne dépend donc pas de l'effet individuel. Cela
permet de construire des estimateurs convergents en /n et qui sont asymptotiquement nor-
maux. Les conditions sous lesquelles la propriété d’exhaustivité est vraie sont beaucoup moins
fortes que pour I'approche par Logit conditionnel (Rasch, Andersen, Chamberlain). Dans le
travail appliqué, cela donne une justification eux procédures de quasi-différenciation des vari-
ables binaires comme dans le cas de variables continues. Des approches semi-paramétriques
utilisées en coupe transversale peuvent étre appliquées directement. Finalement, on étend un
résultat de Chamberlain (1992) en montrant que la borne d’efficacité semi-paramétrique n’est
pas égale a zéro si et seulement si la propriété d’exhaustivité est vérifiée. Cela donne une
seconde justification au papier puiqu’on y caractérise tous les modeéles de panel & choix binaire
avec effets individuels on des estimateurs convergents en \/n peuvent étre construits.



1. Introduction!

Using conditional likelihood methods when estimating panel binary choice models
with correlated fixed effects, is a well known semi-parametric technique since it avoids
specifying the distribution of individual effects conditional on covariates (Rasch, 1960,
Andersen, 1973, Chamberlain, 1984). Its properties are derived from the existence of
a sufficient statistic for the individual effect which is the number of times the binary
variable is equal to 1. By definition of sufficiency, the conditional likelihood function
depends on the parameters of interest only while the marginal likelihood function de-
pends on both parameters of interest and nuisance parameters, the individual effects
(Barndorff-Nielsen and Cox, 1993, Lancaster, 2000). The conditional likelihood method
is however seen to be restrictive because of the logistic assumption, the only applicable
case to my knowledge up to now.

In this paper, I extend conditional likelihood methods by relaxing the assumption
of independence between individual-and-period specific shocks. A standard two-period
two-state model is used. The pair of individual binary variables is described by a pair
of latent variables which are assumed to be the sum of a linear index of explanatory
variables, of the individual effect and of the individual-and-period specific shocks. The
properties of the conditional logit approach are derived from the proof that a sufficient
statistic exists. We generalize conditional logit by characterizing directly models where
the sufficient statistic for the individual effect is the number of times the binary variable
is equal to 1. Namely, the property of sufficiency provides conditions on the joint distri-
bution function of individual-and-period specific shocks. It also yields restrictions that
should be imposed on the conditional likelihood function. They are a lot less stringent
than in the conditional logit approach.

These results lead to the construction of an estimating equation relating the expecta-
tion of the difference between the pair of binary variables and the difference in the linear
index of covariates. The method of conditional likelihood therefore can be interpreted

as a method giving the conditions for quasi-differencing binary variables and allowing
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standard packages to be used to estimate binary panel data models.

Panel binary choice models have been the focus of interest in the literature for more
than 20 years (see Arellano and Honoré, 2001, for a recent survey). Most papers use
“random effect” models introduced by Heckman (1978), where the distribution function
of disturbances, including individual effects, is assumed to be independent of covariates.
Moreover, most authors parametrically specify this distribution function (where I include
cases where the individual effect is assumed to have a discrete and finite support). Very
few papers use non-parametric methods as Chen, Heckman and Vytlacil, 1999, does.

Turning to the so-called fixed effect models where the distribution function of indi-
vidual effects can depend in a unspecified way on covariates, we can distinguish four
different estimation approaches : maximum score (Manski, 1987), maximum rank corre-
lation (Lee, 1999, Abrevaya, 2000), Lewbel regressions (Honoré and Lewbel, 2002) and
likelihood methods such as conditional logit. We can first notice that the first three
approaches are all based on methods that were first applicable to estimating models
of binary variables in a cross section. The maximum score approach is based on the
weakest assumptions since individual-and-period specific shocks are only assumed sta-
tionary, conditional on covariates. This assumption is implied by strict exogeneity but
is far weaker. For a cross-section, Horowitz (1992) extended this approach by propos-
ing smooth maximum score and a panel data application was performed by Charlier,
Melenberg and Van Soest (1995). For maximum rank correlation methods, a strict ex-
ogeneity assumption and stronger assumptions are maintained (Lee, 1999). In contrast,
the adaptation of Lewbel (2000) estimation method to binary variables panel data do
not require strict exogeneity but requires that a “continuous” regressor should be inde-
pendent of the individual effect. Likelihood approaches require strict exogeneity. Besides
the weak or strong exogeneity assumptions, these approaches also differ in terms of their
asymptotic properties. Maximum score estimation is not root-n consistent and asymp-
totic distributions of estimates are not normal but smooth maximum score is “almost”
root-n consistent and asymptotically normal (Horowitz, 1992). We do not know much
yet, to my knowledge, about the efficiency of maximum rank correlation and Lewbel’s

regressions though we know they are consistent.



Conditional likelihood approaches are firmly rooted in likelihood theory as are, in a
different spirit, approaches based on Cox and Reid (1987) and the Bayesian methods us-
ing orthogonal parameters (Lancaster, 2002, Woutersen, 2002). Two important results
related to conditional logit were shown by Chamberlain (1992). Under the assumption
of independence between individual-and-period specific shocks across time, 1) if covari-
ates are bounded, identification is possible only in the logistic case, 2) if covariates are
unbounded, consistent estimation at a y/n rate is possible if and only if the distribution
of specific shocks is logistic because the semi-parametric efficiency bound is equal to zero
in all other cases. We generalize the latter result of Chamberlain (1992). If covariates
are unbounded, then consistent estimation at a y/n rate is possible if and only if the sum
of the binary variables is a sufficient statistic for the individual effect. It gives another
motivation to the paper since it characterizes all models (where variables are strictly
exogenous) for which it is possible to construct \/n—consistent estimators. Therefore,
the absence of “links” between the parametric part and covariates on the one hand, and
the non-parametric individual effect on the other hand, in a random effect setting, not
only leads to an efficiency gain as usual but also to a gain in the convergence rate.?
Finally, we can reconcile these results with Chamberlain’s. The only joint distribution
function such that 1) the individual-and-period random shocks are independent 2) the
sum of the binary variables is a sufficient statistic for the individual effect, is the logistic
distribution.

Because of the simplicity of the conditional likelihood approach, we believe that it
could be the first step to attempt when fitting models to the data before considering
random effect approaches. An empirical illustration is performed on a labor market
participation example and shows the interest of the method. Section 2 illustrates and
defines the principle of sufficiency in the conditional logit case. Section 3 is the main
theoretical section. We there derive a characterization of the joint distribution function
when a sufficient statistic is the sum of binary variables and we derive the conditions on
the primitives of the problem. We study estimation and give examples in section 4 and

we report the results of the empirical illustration in section 5. Section 6 is devoted to

2In a random effect setting, results on the speed of convergence are given by Chen, Heckman and
Vytlacil (1999)



/n—consistency and tests of the property of sufficiency. Section 7 concludes.

2. The Conditional Logit Method

We first concentrate on how the conditional logit approach works and we set up the
model we will be talking about in the rest of the paper. Consider y;1, ;2 two binary
variables, in an identically and independently distributed sample ¢ = 1, ., n given by the
following model:

yir = 1 if and only if z;;8 + ¢; + uy > 0

where random shocks (u;1,u;2) are independent of the covariates at the two periods and
of the individual effect, (z;1, zi,£:):

The method of Conditional Logit described by Chamberlain (1984) for instance,
consists in specifying that u;; and u;s are independent across periods and have logistic
marginal distribution functions.

The likelihood of an observation, dropping index ¢ for simplicity, thus is:
_exp(Ti w8 + €)

- TI (1 + exp(z6 +€)

and for K = 0,1, 2, the likelihood of the sufficient statistic, > y;, is given by:

Pr(yi,y2 | 21, 22, €)

- _ _ eXP(Zf:l yi(zf + €))
Pr(;yt =K | z1,29,€) = Z Ht2:1(1 +exp(zf + 6))

Z%:l yr=K

Conditioning on this statistic yields:

Pr(y, 1 | 21, 22, €) exp(Xr, vz + €))
Pr(Yr v = K | 21,20, ¢€) Y52 i OXD(imy ve(2 + €)

eXP((Z?:l Yyi2t)3)
Y52 ek (T vez) )

which is independent of € (and which is not equal to 1 only if K = 1). By definition, the

statistic Zle y; = K is a sufficient statistic for the individual effect (Barndorff-Nielsen,
1978).
This approach has been criticized because the assumption of specific shocks that

are independently and logistically distributed is seen as overly strong. The principle of



sufficiency might however be used for any distribution such that:

Pr(yi,y2 | 21, 22,€)
Pr(Z?ﬂ Yy =1 | 2172276)

(2.1)

is independent of e.
Consider z; = —z;f — € and assume as before that shocks (u1,us) are independent of

z1, 29 and . Then:
Pr(yl =Ly =0 | 2172276) = Pr(ul > x1,up < ZEQ)

Rewriting (2.1) for y; = 1, yo = 0, sufficiency is verified if the following expression is
independent of ¢:

Pr(u; > x1,us < o) (@, @)
Pr(uy > o1,us < 9) + Pr(uy <@ up > x9) 14 7(2q, 29)

where:
Pr(u; > x,us < )

rz1,22) = Pr(u; < x1,us > o)

The expression 7(z1,z2) is independent of ¢ if it depends on the only combination of
(x1,22) that does not depend on ¢, that is the difference x; — xo. If x; and z, are
sufficiently continuously varying (in a sense made precise below), it is indeed a necessary

and sufficient condition. Therefore, the variable Zle y: is sufficient for the individual

effect if:
Pr(u; > x1,us < x5)

= — 2.2
Pr(u; < x1,us > o) el = z) (2:2)

The aim of this paper is to find characterizations of function ¢ and of the joint

distribution function (d.f.) of (uq,us) such that this property holds.
3. Characterization

The estimating condition (2.2) can easily be used for estimation purposes (see section
4) either by maximizing the conditional likelihood function or by using the generalized
method of moments. It is however by no means obvious that the function ¢ is un-
constrained and can be set as we want. It is the object of this section to derive these
conditions. We shall first derive what are the general implications of the property of suf-
ficiency on the joint d.f. of (us, u2) and function ¢(.). We will then turn to the necessary

and sufficient conditions that shall be imposed on function ¢(.).
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3.1. The Joint Distribution Function

We first limit ourselves to the class of sufficiently smooth distribution functions in order
to use the usual tools of differential calculus. It should however be noted that the
statements below can be translated and adapted to the case where the different functions
are defined almost everywhere at the price of additional complexity. Second in contrast
to Manski (1987), idiosyncratic shocks are supposed to be independent of all variables
but we shall return to this point in the conclusion. Finally, we assume that the individual

effect is varying over the whole real line. These assumptions are gathered into:

Assumption Al : i./ Random shocks (uy,us) have a strictly positive and bounded
density function with respect to the Lebesque measure and are independent of zi, zo and
€.

ii./ The marginal distribution function of uy is denoted F\(.) and its density function,
f(). It is such that F(0) = 3.

iii./ The individual effect ¢ varies continuously over the whole real line R (condi-

tionnally on all other covariates)

Assumption ii./ on the median is the more common normalization assumption. It
suffices to include a constant among variables z;. Assumption iii/ makes indices
and xy vary over the whole real line but this property could be obtained by stating an
assumption on the variation of the covariates instead (see Assumption A3).

If we also include a period-specific variable in z; and not in z;, we will see than we

need the following normalization concerning function ¢(.) defined by (2.2):
Assumption A2: ¢(0) =1

Finally identification restrictions related to covariates in this type of model are de-
rived from Manski (1987). A sufficient identification condition is for instance (see Man-

ski, 1987, Assumption 2, p.358):

Assumption A3: i./ The difference between the first covariates across periods,

zg)— zél), varies continuously over the whole real line R (conditionnally on all other

covariates) and its coefficient BV = 1.



ii./ The support of 251)— zél) is not contained in any proper linear subspace of RX

where K is the dimension of z.

Under these assumptions, the following theorem characterizes some necessary condi-

tions for (2.2) to hold.

Theorem 3.1. Assume AI1-A3 and :

Pr(u; > x1,us < 5)

V(xq,x9); = c(r; — 1) (S)

Pr(u; < xp,us > x5)
Then :

1. ¢(h) is a decreasing function from +oo to 0 and is twice differentiable.

2. The marginal d.f. of uy is equal to the marginal d.f. of u,:
Pr(uy < x9) = F(x9)

3. The joint d.f. of (u1,us) is given by:
F(z9) — e(x1 — zo) F(x1)
1 —c(x) — )

f(x1)
2(0) (b)

Pr(u; < zy,up <) = when x1 # x5 (a) (3.1)

Pru; < zy,up <) = F(z1) +

4. (0) <0

5. F(.) is differentiable three times and f” is bounded.

Proof. It is easy to prove point 1, by using monotonicity properties of probability func-
tions, limit conditions and assumption Al. For points 2 and 3, see appendix A. The second
expression in point 3 is derived by noting that expression (3.1a) is technically undefined
when 1 — 25 = 0. We consider the limit of equation (3.1a) when x5 — z;. Expanding
F(zg) >~ F(z1) + (22 — 1) f(z1) and ¢(z1 — z2) >~ 1 4+ ¢ (21 — z3) (21 — 22), and taking
limits, we get (3.1b). It is only defined when ¢/(0) # 0 and therefore ¢/(0) < 0 (point 4).
As the joint density function is bounded by assumption (A1), we can differentiate (3.1b) two
times and the result is bounded. Therefore, F'(.) necessarily is three-times differentiable and
/7 is bounded (point 5). B

The fact that u; and us have identical distribution functions is interesting. It should
be reminiscent of the property of exchangeability of variables in a sequence which are

at the heart of the method of conditional logit and also of the score method developed



by Manski (1987). This property is here shown to be the consequence of the sufficiency
property.

Theorem 3.1 gives also a characterization of the joint probability function in terms of
the two functions F'(.) and ¢(.) only. The sufficiency property reduces the dimension of
the problem from a function with two arguments to two functions of one argument. At
this stage of the paper, theorem 3.1 gives, however, a necessary condition only and this
characterization might lead to an improper joint distribution function. The aim of this
section is therefore to look for necessary and sufficient conditions on the two primitives
F(.) and ¢(.) that lead to a proper d.f. Before that, we begin with an interesting (and

known) application of this theorem when u; and uy are independent.

Corollary 3.2. Assume A1-A3, condition (S) and that u; and uy are independent.

Then, vy and uy are logistically distributed. Formally, there exists p > 0 such that:

1

Pl =17 exp(—ux)

¢ (h) = exp(—ph)

Proof. Condition (3.1b) and the independence assumption imply that :

(F(x))? = F(z) + L&) (3.2)

(3.2) implies that :
f(z)
N(z) = =—d(0)=p
F(x)(1 - F(z))
Integrating this equation and imposing F(0) = 3, we get the expression of F(z). Using
(3.1) we get the expression of ¢(h). B

In the present paper, we do not impose that individual-and-period specific random
variables are independent and a broader class of distribution functions will be shown to
lead to the property of sufficiency. What we can infer from this corollary is that the
intersection of the set of joint distribution functions satisfying the property of sufficiency
and the set of independent joint distribution functions is reduced to one point, the logistic

distribution function.



We return now to studying whether equations (3.1) define a proper joint distribution
function and whether the class of joint distribution functions defined by Theorem 3.1 is
not reduced to the logistic case. A necessary and sufficient condition is that the joint
density function be strictly positive and bounded and therefore satisfies condition Al.

To define the joint density function from equation (3.1a), let :

d(xy — x2)
(1 —c(xy — 29))?

Va1 # x9;8(x1 — x9)

Proposition 3.3. Denote :

Yy # w2; 9(21, 12) = (w1 — x2)(f (21) + f(22)) + ' (21 — 22) (F(21) — F(22))

and by extension:

g(z1,71) = wligglug(%@)

Necessary and sufficient conditions for (3.1) to verify assumption A1(i./) is:

V(z1,29); 0< g(xy,29) < 400 (3.3)

Proof. As shown in appendix B, g(z1,x2) is the density function of (u;,us) that can be
derived from (3.1). Furthermore, if Pr(.,.) is defined by (3.1), it verifies:

lim  Pr(u; < z,us <x9) =0 lim  Pr(u; < x,us <o) =1
T1,T2——00 x1,x2—+00

and this function is a proper joint distribution function as defined in Assumption Al(i./) B

It is difficult to directly tackle this necessary and sufficient condition. We shall
proceed step by step. The first step shows that, under the conditions of Theorem 3.1,
there is a one-to-one relationship between function ¢(.) and the distribution function of
the difference, u; — us.

3.2. The Relationship between ¢(.) and the Distribution Function of the Dif-
ference, u; — uo

We first show how to derive the distribution function of the difference u; — uy from

function, ¢(.). It also yields additional necessary conditions that are imposed on ¢(.) by

the property of sufficiency (S).

Let ¢(.) be the marginal d.f. of u; —us which admits a bounded and positive density
function ¢(.) by assumption Al. Then :



Proposition 3.4. Under assumptions A1-A3 and condition (S) then :

whio< L im — h—0 (C(1))
PR R 7y S S ) S RS PR
Under these conditions :
d h
h) = —
o) = BT

Proof. See appendix C. R

We can also solve the inverse problem deriving ¢(.) from the d.f. ¢(h). When we
solve this inverse problem, we find additional conditions, some of those being related to

the necessary and sufficient condition (3.3).

Proposition 3.5. Let ¢(h) the distribution function of u; — uy. Under assumptions

A1-A3, and condition (S), we necessarily have:

/0 () = /0 T re(r)dr < 400 (P(1))

dim h(1-6(A) =0 lim_ho(h) =0 (P©)
36,5 0; lim — P g (P(3)

ho) e [ Tp(r)dr
Under these conditions:
h
ho(h) + [, Te(r)dr

is a decreasing function from +oco to 0, is twice differentiable, ¢(0) = 1,¢(0) < 0 and

ch)=1-

c(.) verifies condition C(1).

Proof. See appendix D. B

The first condition is related to the fact that u; and us are identically distributed
and implies that :
E(u1 - Ug) =0

even when Fu; does not exist. The other conditions are regularity conditions on the d.f.
at infinity. These regularity conditions are for instance verified if ¢(.) is the normal d.f.

and, as we will see in the next section, by many other popular distributions.
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The previous proposition gives a way to construct function ¢(.) for a given d.f. ¢(.).

It also gives additional conditions on ¢(.) that we now translate:

Corollary 3.6. If ¢(.) verifies the conditions of proposition 3.5 then :

) d h . d h
i hon(T—) = 0and lim k(1 =25 (3—

;min(— lim M im M
350 > Oa ( hLJroo S(h) 7thoo S(h) ) > ﬁO (0(3))

) =0 (C(2)

Proof. See appendix E. B

After showing the equivalence between stating the problem in terms of function ¢(.)
or in terms of d.f. ¢(.), we can now turn to the condition that we shall impose on the
other structural functional F'(.) to be able to solve the necessary and sufficient condition
(3.3). Before that, we show that it is necessary and sufficient to study only the case
where 1 > x5 (or h > 0) because the problem is symmetric. At first reading, this

subsection might be skipped.
3.3. A Technical Simplification: Exploiting the Symmetry of the Problem

It is helpful to note a fundamental symmetry in the problem in terms of disturbances
uy and uy. We will use symmetry to simplify the proofs given in the next subsection. If
we change u; into uy and wus into uy, we simply change ¢(h) into ¢(—h) and c(h) into
1/c(h). The marginal distributions F'(.) are not changed since they are identical. The
symmetry can be seen from the original equation (S) or directly from the expression of
c(.) because we get after some manipulations and because E(u; — uz) = 0:

1 h

c(h) h(1—¢(h) + [ ro(r)dr

Equation (3.3) is also affected in the same way since it can be equivalently written as

(setting 1 = = + h, xy = x):
V(h,z);0 < s(h)(f(z+h) + f(z)) + s (h)(F(z + h) — F(z)) < +o0 (3.4)
V(h,z);0 < s(=h)(f(z — h) + f(z)) + s'(=h)(F(z — h) — F(z)) < +00

11



which is equivalent to:
V(h,2);0 < s(=h)(f(z) + f(x + h)) — s'"(=h)(F(z + h) — F(z)) < 400 (3.5)
Equations (3.4) and (3.5) are therefore equivalent to, for any h > 0 and any z:

0 < s(h)(f(x+h)+ f(z)+5(h)(F(z+h)— F(x)) < +o0
0 < s(=h)(f(x+h)+ f(z)) —s(=h)(F(x+h)— F(z)) <400

We can therefore limit the developments above to the case of h > 0 provided that we
verify the conditions bearing on the straight representation ¢(h) (resp. ¢(h)) and on the
reverse representation 1 — ¢(h) (resp. 1/c(h)).

3.4. Conditions on the Marginal Distribution Function F(.)

Because of the simplification derived in the previous subsection, we shall assume from
now on that » > 0 and that ¢(h) can either be interpreted as the proper ¢(h) or 1—¢(h).
We are now in a position to prove that there exist distribution functions F(.) such that
condition (3.3) is satisfied. To prove the point more easily, we further restrict conditions

given in proposition 3.5. We write an additional condition on the d.f. ¢(.) :

h 2
Sap > 0 such that Wh > 0; 0@ 2 W}f& (P.3)
Ch(Oéoh,) -1 h fh T(,O(T)d’r

where sh(.) and ch(.) are the hyperbolic sine and cosine functions. 3

This condition is not as stringent as it may first appear. First, note that as the
function on the left hand side is increasing from 0 when h = 0 to og when h — 400,
condition P(3) on the limit behaviour of the term on the RHS, is a consequence of
condition P(3’). Second, we show after the main result* that under weak conditions,
condition P(3) implies condition P(3’). The following proposition gives the conditions

on the marginal distribution function F'(.).

Proposition 3.7. For any function ¢(.) satisfying conditions P(1, 2 and 3’), there exist

functions F(.) satistfying (3.3). They are necessarily such that :

. h —h h) — —h
SCh(h) — eXp( ) + eXp( ) bh(h) — eXp( ) eXp( )

4The order is commanded by the fact that this statement uses developments that are given in the
proof of proposition 3.7.
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aty o Te(r)dr
where «y is defined by condition P(3’).

Yz

Proof. See appendix F. B

It means that f should not be “too” convex. It is the consequence of condition
P(3’) when we solve for equation (3.3). The tails of the distribution are thick enough
and the normal distribution, say, would not qualify for this condition. There are many
distribution functions, however, that satisfy this condition, in particular, the double-
exponential or Laplace distribution as shown in appendix F.

We now weaken condition P(3’) which in most cases is difficult to verify, to condition

P(3) which is easy to verify.

Lemma 3.8. Let ¢(h) be a strictly positive density function such that :
i). It is continuous except possibly at a finite number of points.
ii). It verifies condition P(3)
Then, it satisfies condition P(3’).

Proof. : See appendix G. B

Therefore, for most density distributions that one is willing to consider , the impor-
tant condition to verify is condition P(3).
We can also write this result in terms of function ¢(.). Condition P(3’) can be

rewritten using the one to one relationship between ¢(.) and ¢(.) as :

apsh(agh) s'(h) ,
ch(aoh) —1 = s(h) (€3))

Jag > 0;Vh > 0;

An equivalent result to lemma 3.8 can then be written for function ¢(.). The continuity
assumption on ¢(.) translates into a continuous second derivative ¢”(.).

We can now prove that the set of distributions satisfying theorem 3.1 is not empty
because the distribution function that it defines is a proper joint distribution function.
We summarize all the results and state that, given a function ¢(.), theorem 3.1 defines

a proper joint distribution function.
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Theorem 3.9. Let C be the set of functions from R to R such that :

i. ¢(h) is a decreasing function from +oo to 0 and it is twice differentiable.

ii. ¢(0) =0;(0) < 0.

iii. c(.) verifies conditions C(1, 2 and 3’).

and F. is the non empty set of functions F' defined in proposition 3.7.

Let ¢(.) € C and F € F.. Equation (3.1) defines a joint distribution function that
verifies assumption A1(i./) and property (S).

Proof. The necessary and sufficient condition (3.3) is verified by using proposition 3.7.
|

In the next section, we will study different examples of specification for function
c(.) or its equivalent representation, the distribution function ¢(.). We can however

reconsider now the particular case of Conditional Logit.

3.5. Conditional Logit

In this case, ¢(h) = exp(—h). It is a decreasing function from +oc to 0, twice differen-
tiable, equal to 1 when h = 0 and such that ¢/(0) = —1 < 0. Its associated function s(h)

is given by:
d 2exp(—h)

) = T = = cxp(h))?

Using the general expression of the density function of the difference, u; — us :

) =L " gy + s (h)
P =21 = ~° 5

one gets:
_ exp(=h) (h(1 + exp(—h)) — 2(1 — exp(—h))
P = (1= ep(-h))

which can be shown to be symmetric and positive everywhere and such that ¢(0) = 1/6.

It also verifies (C(2)-C(3)). More interestingly, the last condition (C(3’)) can be written

as:
apsh(agh) s'(h) 1+ exp(—h)
Jan: VA . . _
00 =0 o) =1 = s(h) 1= exp(—h)
1 + exp(—agh 1+ exp(—h

) )
Jag; VA ;
& Jao;Vh > 0; . exp(—agph) S1o exp(—h)
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For ayp = 1, the equality is verified. As the expression on the RHS is increasing with ay,
this expression is verified for any ag < 1.
Equation (3.6) is verified if F(.) is a logistic distribution function:

f7(x)  exp(—2z) —4dexp(—z)+1

f(z)  exp(—2z) + 2exp(—z) + 1 <1

and the pair (c(.), F(.)) yields a proper joint distribution function as expected. It is

however far to be the only marginal distribution function which can be associated to
f7(x)
(=)

between shocks across time is however possible if F'(.) is logistic only (Corollary 3.2).

conditional logit. Any function such that < 1 would qualify. Independence

3.6. Bounds on the correlation

More generally, one may wonder whether the conditions on ¢(.) and F(.) bound the
correlation between the disturbances w; and us. The correlation is controled by the
relative magnitude of the variance of the individual effect and of the specific shocks.
Even if there are only two dates, this relative magnitude might be important as we are
not in a linear context.

For simplicity, we shall from now on assume that all moments of the distributions

exist and we write:

V(ug —ug) = 2(V(ug) — Cov(uy, uz))

since u; and uy have the same marginal d.f. F. The coefficient of correlation is therefore

bounded by:

where V' (u; —us) is given by the distribution function of the difference, u; —us, or equiv-
alently by ¢(.), and where Vu, is given by the other structural object, F'(.). Equation
(3.6) imposes a condition on the relationship between these two structural functionals.

We derive bounds on V' (u; —ug) and Vuy. The latter bound is the most straightforward

to derive. Assuming that the following integration by parts is legitimate, we have :

+00 +oo +oo
U= [ f@de=fof@) T [ ap@de== [ o

e} e}

2 p1 400 oo ‘CEQ 9 _ e x? 9
-~ [ Sr@i= [ Sr @

—00
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Using the inequality restriction (3.6) yields :

+oo .2 2
1< / %a%f(x)dw = %V(ul)

As parameter ay is given by condition P(3’), it also affects V' (u; — ug). This variance is

bounded by the following expression.

Lemma 3.10.

2 2 +oo
Vug —ug) < 37:0/0 To(T)dT

Proof. See appendix H. ®

The coefficient of correlation is therefore bounded by :
2 +0o0
p>1— T % / To(T)dT
6 Jo

by lemma F.1 (see appendix F), we have therefore that :

64(0)
f0+°° To(T)dT

p>1—7° (90(0) /0 - w(T)dT) "

In the examples that will be introduced in the next section, this bound is always less

Deriving that of <

than —1.
4. Estimation and Semi-Parametric or Parametric Specifications

We now use these results to derive the estimating equations and give some parametric
examples where we use the simple property of quasi-differencing the binary variables as

if they were continuous variables.
4.1. Estimation Principle

Since x1 — x9 = (21 — 22)0, an estimating condition is given by using (2.1) and (2.2):

c((21 — 22))

2
Pr(y1 =1,yo =0 21,2272% =1)=

= 4.1
— L+ c((21 — 22)) @)
On the restricted sample, such that Zle 1y = 1 we then also have that:
2
By —y2 | 21, 22, Zyt =1)=G((z21 — 2)B) (4.2)

t=1
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where G = % is a monotonic function taking values between —1 and +1, G(0) = 0.

Equation (4.1) gives a way to estimate parameters § by maximizing the likelihood
function or using equation (4.2) and the generalized method of moments. It should be
noted that we are back to the static case as the dependent variable can only take two
values 1 and —1. Standard binary methods therefore can be used provided that the
conditions developed in the previous section are satisfied.

As far as identification in the semiparametric case is concerned, the normalization
restriction ¢(0) = 1 implies that the distribution function given by (4.1) is such that its
median is equal to 1/2. The other identification conditions are given by Assumption A3
or in Manski, 1988 or Horowitz, 1998. There is at least one continuously distributed
regressor and by normalization its coefficient is set to 1. It means that function c(h) is
rescaled into c(Ah).

For estimation purposes, it is also easy to translate the different methods that have
been proposed in the literature and that we already quoted (maximum score, maximum
correlation, Lewbel’s method), other methods (average derivatives) but also an efficient
method under our assumptions, that is the estimator developed by Klein and Spady
(1993). It should be remarked that conditions (C(1-3)) imposed on ¢(.) do not affect
the results developed in that paper because these conditions relate to the tails of the
distribution functions that should not affect the estimator of Klein&Spady.

Finally, borrowing the idea of Manski (1987), we can extend this estimation principle

to T' periods with T" > 2, by using the principle of differencing across any two periods

in sequence and treating the result as a pseudo-likelihood function.

4.2. Parametric Examples

The simplest parametric example is the standard case of logistic distributions. In that
case function ¢(h) = exp(—h) and the distribution function given by (4.1) is the logistic
distribution. There are two routes to depart from this assumption. The first route is to
use popular distributions in (4.1), for instance the normal d.f. and we call the method
Conditional Normal (Example 1). The second route is to specify the distribution function

for the difference between u; and uy. We shall study logistic differences (Example 2)
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and normal differences (Example 3). In each case, we shall show that the conditions

presented in the previous section are satisfied.
4.2.1. Conditional Normal

Assume that in equation (4.1):

c(h)
1+ c(h)

Do(—h)
Do(h)

= ®y(—h) or c(h) =

where @ is the zero-mean unit-variance normal d.f. Function ¢(.) is a strictly decreasing

function which is twice differentiable and such that ¢(0) = 1. Its derivative is given by:

Cl(h) - _ @O(h) 4 <0

0

where ¢, (h) is the normal density. Condition C(1) first translates into:

. Wo(h)
lim 2o g
BBy =12

which is satisfied and into :

0% hdo(h)

0<elh) = 51233, = 1

< 400

where ¢, (h) is the density function of the difference between u; and uy. It is straight-

forward to show that :

) = et (G = 10(0ah) = 1/2) + (1)) (43)

We just consider the case of h > 0 as the d.f. is symmetric (see subsection 3.3). When

h tends to zero,
Do(h) = 1/2 ~ hipg(0) = (h*/6)epy(0)
©o(h) ~ ©9(0) = (h*/2)py(0)
the argument between brackets is equivalent to:

(1)) = 1/2) + hioh) ~ (1 /6)24(0)

and therefore is positive. Then, if h tends to zero :

WG0)/6 1
BH3(0) . 12o(0)

Pc(h) ~
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which is bounded and positive.

The derivative of the argument between brackets in (4.3) is :

(@ (h) — 1/2) - "2

As:
h
Bolh) = 1/2= [ olr)dr = hy(h)
0
the derivative is always positive. ¢.(h) is therefore positive and bounded because of the
exponential term in ¢,(h) appearing in (4.3).

Finally, condition P(3) can be written as:

. he,(h)
3B,; lim £ >
Bo h——+oo fh+°° ro,(7)dr Po

As shown in the appendix :

and therefore:

he h) 4k ( L

[ ro (rydr — ®o(h) —1/2\ "2

~ (@)~ 1/2) + (b))
which tends to 400 when h tends to +o0o. As ¢.(.) satisfies condition P(3) and is
continuous, we can apply lemma 3.8 to prove condition P(3’). All the conditions in
theorem 3.9 are therefore proven and Conditional Normal is a valid method.

To finish, one can wonder if the correlation is restricted in that case. As ¢.(0) =

1 .
T250(0) and :

oo a1
| edrar = i @0o(h) — 17 ~ 4o (0)

the correlation is bounded by :

2 1 12 i 1/2
>1 -7 —— =1———=27 = —2.57
r21-7 (g2 13

which is not limiting.
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4.2.2. Normal Differences

Assume now that u; —u, is normally distributed of variance equal to 1. Then |, }joo T, (T)dT =

W exp(—h’;) and the corresponding function ¢(.) is :

h
o (h) + exp(—15)/V2r

ch)=1

Conditions are easier to verify in particular P(1-2). Condition P(3) is satisfied since:

hoo(h)
f};roo T@o(T)dT

and as ¢y(.) is continuous, we can apply lemma 3.8 to get condition P(3’).

=h

Concerning the correlation, we get:

12 3/2

>1 -7 (p3(0 =1—-—=-293
p = ( 0( )) \/5
and the bound is not limiting.

4.2.3. Logistic Differences

Assume finally that u; — us is logistically distributed of variance equal to 1. Then:

/h - T¢o(T)dT = /h+oo 1 :Le;f}f(_—TT)))QdT
_poe(=h)
"~ 1 +exp(—h)

+ log(1 + exp(—h))
and the corresponding function ¢(.) is :

h h
)= g+ ()~ Tog(1 + exp()

Concerning the correlation, we get:

1 2 1/2
p> 1—w2<°g4( )> — ~3.10

and the bound is not limiting.
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5. An Empirical Illustration

We now present an illustration of this estimation method on the prototypical binary
model of female participation in the labor market. We chose to use real data instead of
a Monte Carlo analysis since conditional likelihood estimation is far from being a new
estimation method (Andersen, 1973). It is the way models are specified that is original
here. For the empirical application, we use data from the French Labour Force Survey in
1998 and 1999. The LFS is a rolling panel. Our working sample gathers married women
present in 1998 and 1999 and aged from 25 to 55. Partners are employed and partners’
income is reported in both years. The sample size is equal to 11296. Participation
patterns are presented in table 1 where participation is defined as employment or the
search for a job. Only 5.8% of women in the sample change participation status between
1998 and 1999 of whom 54% move from non participation into participation. Therefore
the sample size of movers, that we use for conditional likelihood estimation, is reduced
to 651. Explanatory variables are the number of children in different age ranges (0-3,
4-6, 7-18), spouse income and a quadratic polynomial in age. All variables are supposed
to be strictly exogenous.

Results of conditional likelihood estimation for various specifications are reported in
table 2. In order to facilitate the comparison across specifications, we normalized to 1
the coefficient of the number of children in the 0-3 age range. It was the most precisely
estimated coefficient in all specifications. Variables are centered, by subtracting to them
their average values, and the coefficient of the intercept can be interpreted as the macro
effect of year 99 with respect to year 98 — a period of decreasing unemployment.

Those specifications lead to very similar estimates. Whether it be Conditional Logit
or Normal, or Normal Differences — the distribution function of u; — us is normal —
estimates of all coefficients are almost equal and likelihood values are not different by
any reasonable criterium. In this sense, Conditional Logit estimates are robust in this
sample.

We also tried the method of estimation of Klein and Spady (1993). Because of results
appearing in table 2, we chose Age (in months) as the (approximately) continuously

distributed variable — because the effect of Spouse income was never significant. The
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method did not converge and a detailed investigation of this problem showed that the
model was not semi-parametrically identified. The effect of the continuous variable,
Age, is much smaller, in terms of range and strength, than the effect of the children
variables. The latter are therefore not identified (see Horowitz, 1998 for an example).
Some parametric assumption is needed in the present sample and we therefore stick to
the results presented in table 2.

It is also of some interest to compare conditional likelihood results to the results
of standard random effect models (Logit and Probit) where individual effects are sup-
posed to be normally distributed. We also report estimation results of models where
time-averages of the explanatory variables are included as explanatory variables in or-
der to control for the possible dependence between individual effects and explanatory
variables (Arellano and Honoré, 2001). Overall, Logit and Probit estimates are very
close as they were in the conditional estimation. The correlation across time between
random terms is very large (.98 using Logit, .94 using Probit) because persistence is
high and changes between states are few. Differences between results when controling
or not for time averages of variables are noticeable and the estimated coefficients of time
averages are very significant. The control procedure has no impact on the estimates of
the correlation coefficients, a moderate impact for children variables and spouse income
and a large impact for the age variable. In particular, it does not seem to be possible to
reconcile the estimated coefficient of age, using fixed effects, table 2, with the estimated
coefficient of the Age squared, using random effects, table 3. Age and individual effects
are unsurprisingly very much related on such a short panel.

The random effect estimation performs quite well with respect to the children vari-
ables when we compare estimates with the fixed effect results. We can test, by an
Hausman procedure, that the estimated relative effects of children (4-6, 7-18) are equal
in the random effects Logit case — the efficient one under the null hypothesis — and the
conditional Logit case — the robust one against dependence between individual effects
and covariates and non-normality of individual effects. The test statistic is equal to 5.22
with two degrees of freedom. At a level of 5%, we cannot reject that coefficients are

equal.

22



6. Convergence Rates and Specification Tests

The first motivation of this paper was to present generalizations of Conditional Logit
because it was felt that the assumption of logistic distributions was too strong. This
type of distribution functions is however very peculiar in the panel binary choice model
as it was proved in a unpublished paper of Chamberlain (1992). We restate his main
result that applies to the same setting as ours except that specific shocks are assumed

to be independent.

Theorem 6.1 (Theorem 2, page 7, Chamberlain (1992)). Suppose that u; and
ug are independent. The semi-parametric efficiency bound (of the parametric vector

B3), In =0 for all B in © unless the distribution function of random shocks F' is logistic.

In this section, we extend this result to our setting by showing that a non-zero semi
parametric efficiency bound and the property of sufficiency (S) are equivalent. This
result says that y/n consistent estimators can only be constructed under the property of
sufficiency (S). At the end of this section, we show how the implied specification for the

joint distribution function can be tested.
6.1. /n— Consistency

We generalize Chamberlain (1992) by showing that the semiparametric efficiency bound
of the parametric part, (3, of the model is zero unless the sum of the binary variables is
a sufficient statistic. First, we use the following theorem adapted from the one stated at

page 7, Chamberlain (1992). Define first the vector of probabilities:

Pr(u; < —(218 +¢),u2 < —(228 +¢))
| Pr(w > —(zB8+¢8),us < —(228+¢))
a(z,e,fB) = Pr(u; < —(z18+¢),us > —(220 +¢))
Pr(u; > —(z18 4+ ¢€),us > — (228 + ¢))

to be able to write:

Lemma 6.2. The semi-parametric efficiency bound Iy = 0 for all # in © unless the

distribution function of random shocks is such that:

vzl; 22, EI¢ = (¢17¢27¢37¢4) S ]R4 such that: (61)
Ve € R,¢'a(z,e,8)=0
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Proof: See Chamberlain (1992) adapting the proof to the case where u; and uy are
not independent.

Second, it remains to be proven that this condition is equivalent to the existence of
the sufficient statistic. Fix z; and z;. Note first that if € — +o00 then necessarily ¥, = 0
and that if € — —oo then necessarily ¢, = 0 (Chamberlain, 1992). Therefore condition

(6.1) is equivalent to:
Yy Pr(ug > —(z104¢),us < —(2204¢)) + 3 Pr(ug < —(z218+¢€),us > —(228+¢)) =0

which is equivalent to:

Pr(u; > —(z16+¢),us < —(226+¢) _ ¥s
Pr(u; < —(z18 +¢),u2 > —(220 +¢)) Yy

where this ratio is independent of £ (but depends on z; and z3). This condition is a
slightly stronger version of condition (S) where the assumption of independence w.r.t.

the covariates has been abandoned:

Pr(u; > x1,us < x9)

g J— . S?
Pr(u; < my,uy > x3) c(@1 = 22 21, 20) (57

We can therefore summarize this development as:

Theorem 6.3. The semi-parametric efficiency bound is equal to zero unless the sum of

binary variables is a sufficient statistic for the individual effect.

We will see in the conclusion how our results could be extended using property (S’).
It is immediate to note that property (S) is equivalent to (S’) and independence of the
covariates.

In Chamberlain (1992) there is another result about identification when regressors
are bounded. It is a conjecture that the proof of this result can also be derived in the
current framework.

The previous theorem can also be used to assert that:

Corollary 6.4. The sum of the binary variables across time is the only statistic to
which can be applied the principle of sufficiency, with respect to individual effects, in

the panel binary choice model.
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Proof: Suppose there exists a statistic such that the principle of sufficiency, with
respect to individual effects, could be applied to. Then, using conditional likelihood
methods, it would be possible to construct a 1/n consistent estimator by conditioning
on this statistic. By the previous theorem, we know that the sufficient statistic is the

sum of binary variables across time. B
6.2. Specification Tests

The set of models verifying the property of sufficiency (S) is a restricted set. Restrictions
might therefore be tested and that is what we briefly investigate now. Given (A1-A3)
we know that [ is identified and we will treat this parameter as known. As y; and y»
are binary variables, its joint distribution function conditional to z; and z, is completely
defined by the three following functions:

Pr{y1 =0,y2 =0 21,20} = E.Pr{y; =0,yo =0 21, 29,¢}
Pr{yl =0 ‘ 21,22} = EE Pr{yl =0 ‘ 21,22,6}
Pr{yQ =0 ‘ 21,22} = EE Pr{yQ =0 ‘ 21,22,6}

where, in the RHS, ¢ is integrated out with respect to the conditional distribution
function of individual effects, dG(e | z1,22) say. Using equation (3.1) and using that
the marginal distribution functions of u; and uy are equal to F(.), we can rewrite this
system as (where Az = 2o — z1):

B.(F(z8+¢) | 21,2) = o(=D2.8). E(F(z18+ ) | 21, 20)

Pr{y; = 0,92 =0 | 21,20} =

1 —c¢(—Az.p)
Pr{y; =0z, 2} = E.(F(z1f+¢) | z1,22)
Pri{y, =0z, 2} = E.(F(z2f+¢) | z1,2)

(6.2)
The last two equations express the marginal distribution functions which are directly

identifiable from the data, as convolutions of function F(.) and function G(e | 21, 22):

/F®ﬁ+fMG@\awﬂ

the integral being taken over the support of . These equations are convolution equations
which properties relative to identification, remain to be sought. It implies that some
constraints on the observable marginal distribution functions are satisfied. For instance,

that for any 21, 2o such that:

218 = »f
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we have:

Pr{y1 =0 21,20} = Pr{ya = 0 | 21, 2}
Another possible way of testing the property of sufficiency is to reconsider the first
equation of system (6.2) and replace the expressions in the first equation by their value
given by the two last equations to obtain:

Pri{y, = 0| 21,20} — c(=Az.8). Pr{yn = 0| 21, 25}
1 —c¢(—Az.p)

Pr{y; = 0,92 = 0| 21, 22} =

As all these expressions can be non parametrically identified, this condition yields a

moment condition that can be tested.

7. Conclusion

In this paper, we used the principle of sufficiency and conditioning to derive a
generalization of the Conditional Logit method. We presented the conditions under
which we can quasi-difference binary data as if they were continuous. Standard sta-
tistical packages, such as Probit, or more general semi-parametric procedures, such as
Klein&Spady’s, can then be used to estimate these models with unrestricted individual
effects and compare these results with those that are obtained using random effect spec-
ifications. By extending a result by Chamberlain, we also showed that it is under the
property of sufficiency only that we can construct /n consistent estimators in the panel
binary choice model.

There are some straightforward extensions. The first extension is that the index
property, writing latent variables as z;(3, is far from necessary and we only used it for
its simplicity. Deterministic parts of latent variables in each period could be written as
fi(z¢, B;) and the conditional model would become a function of the difference between
these non-linear indices provided that the latent models remains additive in the individ-
ual effect. Functions f; could even be partially unknown if the conditions of Matzkin
(1992) are fulfilled. It is one of the advantages of our approach to return from panel
binary choices to the better known world of cross-section binary choice models.

A more involved extension is to allow the distribution function of specific shocks

(u1,us) to depend on (21, 29) as the last section and derived property (S’) would suggest.
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We could therefore get closer to the flexible framework of Manski (1987). Even under
an assumption on conditional medians, it does not seem to be possible to let this d.f.
depend on covariates in a completely unspecified way. The reason is that in our proofs,
we have to use the continuous variation of 1+ x2 and z; — 2 (see Al and A3). The
closer we can get to a general framework is to make (uj,us) depend on all covariates

except the continuous and varying covariates (zgl), zél)) (assumption A3). Function ¢(.)

Yl), Zéfl)) where z(fl), 2V include

could thus be supposed to be of the form ¢(—Az.3; z
all covariates except the first. It might be reminiscent of the assumption used by Lewbel
under a quite general setting.

A third extension would be related to data observed over a longer time period
(T" > 2). As already said, our results can be applied to the pseudo-likelihood set-
ting where periods are chained two-by-two as suggested by Manski (1987) in another
context (maximum score). Applying the property of sufficiency in the " = 3 case is
not very interesting. Some tedious investigation revealed that the only possible distri-
bution function that verifies (S) in that case, is the logistic d.f. The idea of the proof
is based on the fact that with three periods, the relative probabilities depicted by (S)
of exchangeable choices between any two periods should not depend on the level of the
latent variables in the third period because this variable contains the individual effect.
It is where the Independence of Irrelevant Alternatives property comes in and drives us
back to the logistic distribution.

Other lines of research seems more difficult to follow. It remains to be seen how such
an approach would be applied to other non-linear models. It might be easier to extend
this approach in models where we know that the principle of sufficiency can be applied
(Weibull, Poisson,...). It seems to be a lot more difficult in dynamic models (Honoré

and Kyriazidou, 2000, Hahn, 2001) and even more difficult with other models (Tobit,

non-linear continuous etc) but it might be worth trying.
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A. Proof of theorem 3.1

The proof proceeds by reparametrizing the problem as:

A+ h A—h

Ty = y Ly = — 3 —

2 2
Let: Adh A_n
K(hA) = Pluy > = uy < S22)
Ath A_h
G(h,A) = Pu; < ; > =)
M(h,A) = Pl < 2 0y < B0

K(h,A) = P(uy < T_) — M(h,A)

Therefore :

L(h,A) = G(h,A)— K(h,A)

= Pl < 2N p, < 21

= (1=¢(h)G(h,A)

By normalization, ¢(0) = 1, and thus :

VA; P(ug < %) = P(u; < %) = F(%)
and : F(T“L)—F(%)
G(h,A) = 1—c(h
Using (A.1) :

F(25%) — c(h)F(537)

1 —ec(h)

which gives (3.1). As c(h) is a decreasing function from +oo to 0, it is straightforward

M(h,A) =

to verify the limit conditions when either x; or 5 tend to +/ — cc.l

30



B. Proof of proposition 3.3

The joint density function must be defined everywhere, be positive and bounded, hence-
forth :

V(z1,12);0 < 0:[?2:1:2 Pr(u; < z1,us < 9) < 00
Using (3.1):
0 f(@2) c'(h)
A Pr(u; < z1,us < 29) = 1= c(h)) + i c(h))Q(F(xl) — F(x9))

where h = 21 — 29 and ¢(h) = %. Therefore :

(9x?8x2 Pr(u; < zp,up < x9) =
_dn) x " o[ di) e
(1- c(h))Q(f( o) + f(z1)) + oh {(1 — c(h))g} (F(x1) — F(z2)) (B.1)

Letting s(h) <'(h) 2 yields the expression.l

— (c(h)
C. Proof of proposition 3.4

As the function s(h) is not defined at h = 0, we have to distinguish the cases of h < 0
and h > 0.
Write for any h < 0:

2
Pr(ul—u2§h):/ 0

21 —22<h 8:616952

Pr(u; < xy,us < xg)dzidey

Using (B.1), the argument under the integral sign is :

s(h)(f(z2) + f(21)) + 5" () (F (1) — F(2))

Letting 7 = 1 — 29, we get :

Pr(uy—us < h) = / ) / s @2) + Flaa+ 1) + 5 () (Plaa £ 7) = Faw))] deadr

Consider :

/T<h s(r)dr = - _1C(h) /T<h s'(r)dr = s(h)

because limy,, oo #(h) = 0 and if lim;_,_ s(h) = 0 (Condition T). If not the integral

diverges. Also:
/ s (@4 7) + S (7)Flaz )] dr = s(W)Flaz + )

31



we get:

Prlus—a 1) = [ [T ) + (P4 1) = Pl

oo |1 —c(h)
Then:
Pr(u; —us < h) = - _1C(h) + s(h)/_ h [F(z 4+ h) — F(z)]dx

As f” exists and is bounded (see theorem 3.1) then :
I\ > 0 such that F'(z + h) — F(x) < M(f(x + h) + f(z))

And therefore :

Vh; < +o00

/+OO[F(Q:+h)—F(:1:)]dx

—00

We can therefore differentiate the integral expression with respect to h and derivation

and integral can be permuted to get :
d [+

an | [F(z 4+ h) — F(x)]dx =1

As the integral takes value 0 when h = 0, we obtain :

/joo (F(z + h) — F(z)]dz = h

Hence replacing s(h) = (lflc((hh)))Qz
1 4
P — <h)= h
r(u; —uy < h) 1_C+(1—c)2
_d h
dhl—c¢

As this probability is bounded by 1 = limy,_, l%c, we necessarily have that:

Cl

e T

and condition T above is therefore also satisfied.

For any h > 0, we can use the same argument using:

Pr(uy—us > h) — / o / S + flaat 7))+ () (Flaa 4 7) = F(ra))] drad

and:
1

/T>h s(r)dr =1—— ) /Dh s'(t)dr = —s(h)
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under the condition that limj_., o s(h) = 0. We end up with:

d h
PI‘(Ul—U2>h):1—E1_C
and: .
lim ————h =0
h—+oo (1 — ¢)?
Summarizing, for any h # 0 :
1 c d h
P —uy < h) = h=—
Hu —us S h) 1—c+(1—c)2 dhl—c
/
lim ——h=0

h—+/—c0 (1 — ¢)?
By extension, using 1 — c¢(h) ~ —c(0)h — ¢’ (0)h?/2 and ¢ (h) ~ ¢ (0) + ¢”(0)h when
h — 0:

C” (O)
Pr(u — 2 < 0) = 5505
which implies that 0 < ¢”(0) < 2¢/(0)? and that ¢”(.) is continuous at zero (condition

).

As limy,, oo 7 = 0 and limp_ 1=

1—c

above defines a proper cumulative d.f. which admits a positive and bounded density

=1, by point 1 of Theorem 3.1, the expression

function iff :
0<—d2 —h < li 76/ h=0
%) im =
dh?1—c h—+/—c0 (1 — ¢)?

because condition T’ is implied by these conditions.l

D. Proof of proposition 3.5

We shall verify the conditions that ¢(.) is a positive function that is decreasing and such
that ¢(0) < 0. Let ¢(h) be the cumulative distribution function of u; — us, then:

h h
1_02/0 o(r)dr + A

As l%c is a function taking value equal to _Tlo) > 0 when h =0, A =
h

Given that functions "~ and are positive functions then:

1

_m>0.

he
1-c

h h
Vh;/ ¢(r)dr+ A >0 / ¢(r)dr+ A—h>0
0 0

The second condition can be written as :

/h(¢(7') —1)dr+A>0
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Taking the maximum over h yields:

0 %]
/ o(r)dr < A / (1— ¢(r))dr < A (D.1)
—0o0 0
which are also necessary and sufficient conditions for ¢(.) to be positive as shown by:
h
clh)y=1-
fo T)dr + A

To determine A, we have to use condition (3.3). To determine function s(h), take the

derivative of ¢(h):
T)dT + A — ho(h)

fo T)dT + A)?

d(h) = fo
which is negative under condition (D.1).

/Oh ¢(7)dr = ho(h) — /Oh To(T)dT

where (7) is the density of u; — uy, yields:

A foh To(T
fo T)dT + A)

Using:

d(h) =

Note that (D.1) implies that fo T(7)dr is bounded by A and therefore that:

lim hyp(h) =0 D.2
p i hep(h) = (D-2)

We have also : / .
s(h) = s = (| retrar =4

and equation (3.3) can be written as:
V(h,z); s(h)(f(x+h)+ f(z))+ s (h)(F(z+h)— F(z)) >0

By the primitive assumptions, s(h) is a negative function and s'(h) is a negative function

for h < 0 and a positive function for A > 0. Equation (3.3) implies that:

o fla+h)+ fz) s'(h)
T O e TR = Fle) ~  s(h)

and:
o fle+h)+f) o SR
Vh <0, V; F(x+h) — F(x) ~ _S(h)
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Thus, it implies that:

- f(z) ()
Y 0< TR T A Smy
and: /
Vr; 0> —M > — lim s(h)

F(l’) h——o0 S(h)

In order for F() to be positive, it is therefore necessary that:

"(h "(h

> [y (D.3)

Using :
S 2 el L helh)

lim — = lim —-— =
h—+/—c0  S(h)  h—t/-cc h foh To(T)dr — A h=t/—< A — foh To(T)dT

it is therefore necessary because of (D.2) that:

A /0 () = /0 T ro(r)dr (D.4)

and that : ho(h)
. ¥
3By > 0; lim —— S D.5
fo h—+/—00 f: To(T)dT P (D-5)
Reconsidering (D.1), they are now equivalent to :
hlim h¢(h) = 0 and hhrf h(1 —¢(h)) =0 (D.6)

which gives the conditions of the proposition
Replacing A by its expression, we get:
h
ho(h) + [, rp(r)dr

ch)=1-

E. Proof of corollary 3.6

Continuing the previous proof, we get:

1 too
) =~ [ retr)an)
h

Condition (F.1) can be translated into:

lim h*s(h) = lim h*s(h

A
and is always satisfied because these limits are equal to 1/¢(0). Condition (F.2) is
translated into condition (D.3) and condition (F.3) into:

d h d h

Jm hop (i) =0and  lim Al = —0(i—

) =0
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F. Proof of proposition 3.7

Given that s(h) is negative, equation (3.3) is equivalent to :

Vh > 0,V f(z + h) + f(z) < _Z((s)) (F(z + h) — F(z)) (F.1)

We must show that there exist d.f. F(.) satisfying (F.1). As shown in appendix D,

we use that : "h 5 rolh
S(h) _ 2 helh .

s(h) h h+°° To(7)dT

We proceed in four steps using the following lemmas that are proven in the following

Lemma F.1. When h tends to zero, (F.1) implies that :

R C) ©(0) (F.3)

" f(x) = 6f0+°° Tp(7)dT

This condition suggests that we should be interested by the properties of d.f. which
satisfy (F.3).

Lemma F.2. When Vz; J}(—(Im)) < o?, then :

ch(ah) —1

Fle+h) - Fz) 2 a.sh(ah)

(f(z+h) + [f(z))
where sh(.) and ch(.) are the hyperbolic sine and cosine functions

The proof is based on convexity inequalities. It is now obvious that this lemma

permits to bound the functions in equation (F.1).

Lemma F.3. Suppose condition P(3’) which we here rewrite:

h 2
Sao > 03wk > 0, 2oshloah) 2 heh)
Ch(Oéoh,) -1 h fh TgO(T)dT

Then if ff”((f)) < o3, it satisfies equation (F.1).

By making h tend to zero, we can also prove that lemma F.3 implies lemma F.1. It is
because the function on the RHS is equivalent to % when h tends to zero, is increasing
and tends to oy when A tends to +o0o. Remark therefore that o is bounded by the
bound given in lemma F'.1.

It remains to be proven that there exist d.f. F(.).
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Lemma F.4. There exist distribution functions such that :

fla)
) =0

The proof of proposition 3.7 terminates by considering a d.f. F(.) satisfying lemma
F.4. Tt satisfies the condition of lemma F.2. Imposing condition P(3’), this d.f. satisfies
equation (F.1) by lemma F.3. Equation (F.1) is properly defined when h = 0 by lemma
F.1.8

F.1. Proof of lemma F.1

We can rewrite (F.1) as :

(Flz+h) = F(z)) _ he(h) (Flz+h) - Fz)

fhﬂo Tp(T)dr h

(f(z+h)+ f(z)) =2

When h tends to zero, we can expand the LHS to the third order as F(.) is supposed

to be differentiable three times :

Flz+h)— F(z h . R
IR ZTE) o fa) 4 p@)h o+ (@)
h 2 6
h2
fla+h) + f(z) = 2f (@) + f(@)h+ [ (2) 7
Therefore the LHS is equivalent when A — 0 to :
7 h2
S (fﬂ)g
Using first order expansions, the RHS is equivalent when h — 0 to :
0)
h2 gp( T
€)™
As f(x) > 0, (F.1) therefore implies that :
[ () _ 6p(0)
Vx; <
flz) — £(0)

F.2. Proof of lemma F.2

For any A € [0, 1] let :

fA) =fAMxz+h)+(1=XNz)>0
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and therefore f(0) = f(z) and f(1) = f(z + h). The condition L% < o2 implies that:

f(z)

f~ ()\) S Oé2h2
f)

Define function y(\) such that:

Then:
9(0) = f(x),9(1) = f(z +h)
g’ (N _ 272 i A)
g(N) ey

As the degree convexity of g(.) is ”larger” than the degree of convexity of f(.), it can
be shown that:

Lemma F.5. f()\) > g(\) for any A € [0, 1]
Proof : Let ¥(\) = f()\) — g(\). We also have:

PR TN OO0V

Because f()\) > 0 and the inequalities above:

T(A) <0=>T (\) <0

Assume, by contradiction, IAg; U(Ng) < 0. We know that ¥(0) = 0, ¥(1) = 0 and
that W(A) is twice differentiable. Therefore, as W(.) is continuous, 3(A;, Ag) such that
A1 < Ao < A2 and such that ¥(A;) = (X)) = 0. Then VA €]A1, Ao, ¥(A) < 0 and
U”(A) < 0. It is a contradiction since it is not possible to construct a concave function
in a interval where it takes value 0 at the end points and is negative in between.ll

We therefore have :

Fle+h) - / flu du_/f (4 h) + (1 — A)a)hd

_h/f d)\>h/ (A)dA_h(/O YONAN)(f(z) + f(z + k)

using the definition of g(.) and ~(.). To prove lemma F.2, we shall therefore prove that :
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ch(ah) —1

Lemma F.6. (fo1 Y(A)dA) = ah.sh(ah)

f(x) ,
f@)+ f(z+h)

7" (A) — a*h*y(X) = a®h*(1 — 2)) A

Proof : We integrate equation (F.4) letting A =

As a particular solution is y(A) = —(1 — 2X) A and a general solution is :
7(A) = Kj exp(ah)) + Kqexp(—ah))
the solution is :
v(A) = Kj exp(ah)) + Kpexp(—ah)) — (1 —2))A

Imposing conditions v(0) = 0 and (1) = 1 implies that :

1= A(1 + exp(—ah))
K= 2sh(ah)

A(1 + exp(ah)) — 1
2sh(ah)

Then integrating v(\) between 0 and 1 yields the result.l

Ky =

F.3. Proof of lemma F.3

/(@)
It 75
(F.1).

< o, we can use lemma F.2, condition P(3’) and equation (F.2) to get equation

F.4. Proof of lemma F.4
Let o > 0. Consider a d.f. such that its density function is :
f(z) x a’exp(—a? |z |)ifz > Borz < —B

and where anywhere else the density function is concave. Overall we shall impose that
f is twice differentiable by smooth pasting at B and —B (f” have discontinuities at
B and —B however). Then everywhere f satisfies the condition of the lemma. It is a

conjecture that if f(x) is a Laplace density (hence B = 0), the whole setting applies.l
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G. Proof of lemma 3.8
We first prove the following useful lemma.

Lemma G.1. Let for any y > 0

Then for any y > 0, ¥(y) <1/6

Proof : We prove first that, by extension, ¥(0) = 1/6, second that ¥'(y) < 0.

i). When y — 0, we can replace hyperbolic functions by their expansions:

shy ~y+y°/6 chy ~ 1+ y*/2+y*/24

Then : 5 ) .
() ~ YUFY/O) Z 224y /24 ]
y*y?/2 6
and therefore : )
U(0)=Im¥(y) ==
(0) = lim W(y) =
d  shy 1
ii). We h ing — =— :
ii). We have, using dy (chy — 1) chy — 1
shy 1 4
V'(y) = — - +—
W= Py -1 way -1
_ —(shy+y) 4

Ay —1) P
We use that for any y > 0:

shy > y
chy —1> 4?/2
—Ghy+y) s =2y gy 4y 4
R e e e e R
y2(chy — 1) = Yy y*(chy — 1) Yy
and therefore ¥'(y) < OM
Returning to the proof of lemma 3.8, we consider a density function ¢ which verifies

condition P(3) that is :

ho(h
38, > 0,3A > 0 such that Vh > A; #

L To(T)dT > Po
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Condition P(3’) is written as:

h(aph 2 ho(h
Sao > 03wk > 0, 2oshleah) 2 heh)
Ch(Oéoh,) -1 h fh, TgO(T)dT
Consider first the case of h > A. We use two results: i). the limit when h — 0 of

apsh(agh) 2
ch(aogh)—1 h

is equal to ag and ii):
0 (cohlagh) 2, g 2,
Oh “ch(aph) —1 h ch(agh) =1 = h?

because ch(aph) — 1 > (aph)?/2. Therefore consider oy < 3, and condition P(3’) is
verified for any h > A.

Consider now h < A. Condition P(3’) can be rewritten as :

5 sh(agh) 2 he(h)
%h(aoh(ch(ozoh)—l) (aph)? < [F=re(r)dr
o2 shlaoh) 2 p(h)

& A (et =) (@oh® = [ re(rdr

The expression between brackets on the RHS is W(agh) defined in lemma G.1 is less
than 1/6. Consider a; defined by :

o p(h)
= min ——
0shsA [T 7p(T)dr

As ¢(h) is positive, continuous except possibly at a finite number of points, the min-
imum is taken over a compact set and therefore a; > 0. Therefore, choose oy <
(6a1)1/? and condition P(3) is satisfied for h < A. In conclusion, provided that o <
min(3,, (6a;)"/?), condition P(3’) is satisfied. It proves also that if condition P(3’) is

verified for o than it is verified for any o < .l

H. Proof of lemma 3.10

We start from rewriting condition P(3’) as :

3 (log(ch(aph) — 1) — 2log(h)) < —210 &(h)
Bp, OB & an e

where

and therefore :




As the argument within the logarithm is positive, this condition implies that this argu-

ment is always less than its value at 0:

(ch(aoh) = 1)E(h) _ £(0)

0 <
and therefore for any A > 0:
§0)ag 1
0<¢(h) < H.1
§(h) 2 ch(agh) —1 (1)

Consider now :

V(uy —ug) = / 0 o(1)dT + /0 " o(1)dT

—00

" / () = (< 4 / e yar

Because of (H.1), the first term in the RHS is equal to zero and the second term is

bounded by :
oundae Y 0 +oo 2h2 0 +00 2
2 Jo ch(ah)—1 209 Jo ch(y)—1

Using ch(y) —1=(eV + e ¥ —2)/2 = ¥(1 —e¥)?/2:
oy o [ _yPexp(y)
/0 iy -1~ 2/0 T —exp(y)? "

o[l 2 )

:_4/0_10g(2)(_%):4/1 10g(z)dZ:27r2
L 1=1/z" =z o z—1 3

where we change variables (z = exp(—y)) and where we used Gradshteyn and Ryzhik
(1995, p564). Summarizing:

/0+°° P2o(r)dr = @W_Q

(&%) 3
Repeating the argument for h < 0 by reverting the u; — uy axis , we get :

2
V(Ul — UQ) < 2%%2)
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Non participant (1999) Participant
Non participant (1998) | 2201 351
Participant 300 8444

Table 1: Participation flows.

Variables @ Conditional Conditional Normal ¢
Logit Normal ° Differences

Child03 -1.00 -1.00 -1.00

(-) -) (-)
Child46 -0.673 -0.681 -0.675

(.093) (.089) (.092)
Child718 -0.464 -0.470 -0.466

(.094) (.091) (.093)
Spouse Income -0.0025 -0.0025 -0.0025
(Monthly; kF)  (.016) (.016) (.016)
Age -1.523 -1.563 -1.532
(in decades) (.458) (.458) (.457)
Intercept 0.032 0.033 0.032

(0.034) (0.033) (0.034)
LogLikelihood -381.07 -380.85 -381.01

Notes: a. Estimation method: Conditional Likelihood. The number of observations is
equal to 651. Variables are in first differences except age.

b. The probability ¢/(1 + ¢) is the standard normal.

c. The difference u; — uy is normally distributed.

Table 2: Conditional Likelihood estimation
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Variables ¢ RE Logit ° RE Logit RE Probit RE Probit
Child03 -1 -1 -1 -1
) ) ) )
Child46 -0.752 -0.643 -0.769 -0.642
(0.056) (.140) (.054) (.138)
Child718 -0.368 -0.383 -0.363 -.369
(.029) (.098) (.027) (.093)
Spouse Income -0.002 0.001 -0.0023 0.001
(.003) (.014) (.003) (.013)
Age -2.562 -5.00 -2.84 -9.60
(.330) (.665) (.331) (.683)
Age? (© -0.074 -0.215 -0.066 -0.204
(.055) (.086) (.052) (.083)
Mean(Child03) -0.839 -0.907
(.108) (.107)
Mean(Child46) -0.637 -0.702
(.095) (.096)
Mean(Child718) -0.203 -0.217
(.080) (.078)
Mean(SpIncome) -0.0018 -0.0027
(.014) (.014)
o?/(0? +02) @ 0.983 0.983 0.945 0.944
(.00083) (.00083) (.0023) (.0022)
LogLikelihood -7764.255 -7735.902 -7769.715  -7737.959

Notes: a. The dependent variable is participation status in 1998 and 1999. Explanatory
variables such as Mean(Child03) are constructed as the half sum of the values of these variables

in 98 and 99.

b. Estimation method: Random effects Logit and Probit. Individual effects are normally
distributed. The number of observations is equal to 11296.
c. This variable is constructed in such a way that its first difference is equal to the variable
Age. Its coefficient is therefore directly comparable to the estimates of this coefficient reported
in Table 2 and the specification remains quadratic in age.
d. It is the ratio of the variance of the individual effect to the total variance of the

disturbances.

Table 3: Random effects estimation

44



