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Résumé

L’auteur traite de ’estimation non-paramétrique de la densité invariante pour
une famille générale de systémes dynamiques en dimension un. Il démontre
diverses inégalités de mélange et montre que le probléme se raméne a celui de
I’estimation de la densité marginale d’un processus stochastique stationnaire.
I1 utilise ce résultat pour démontrer que I’estimateur de Parzen-Rosenblatt de
la densité marginale d’un processus dynamique peut converger en moyenne
quadratique avec la vitesse optimale du cas i.i.d. Il applique ce résultat
a l'estimation de la densité invariante pour des systémes dynamiques er-
godiques et donne une interprétation de l'erreur quadratique moyenne de
I’estimateur de Parzen-Rosenblatt dans ce contexte.

Abstract

The author deals with nonparametric invariant density estimation for a gen-
eral class of one-dimensional dynamical systems. He establishes various mix-
ing inequalities and shows that the problem is equivalent to the estimation
of the marginal density of a stationary dynamic process. He uses this equiva-
lence to prove that the Parzen-Rosenblatt estimator of the marginal density
of a dynamic process can converge in quadratic mean with the optimal rate
of the i.i.d. case. He applies this result to invariant density estimation for
ergodic dynamical systems and gives an interpretation of the mean quadratic
error of the Parzen-Rosenblatt estimator in this context.

MOTS-CLES : Estimation non-paramétrique de densité, Théorie ergodique,

Systémes dynamiques, transformations r-adiques, Processus dynamiques,
Chaos.
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1 Introduction

Dynamical systems are mathematical objects used to modelize complex de-
terministic dynamics. As such, they are encountered in physics, economy,
biology and meteorology. Formally, a dynamical system is a quadruple
(E,B,u,S) where (E, B, u) is a probability space and S is a transforma-
tion of E which leaves the probability measure p invariant, that is to say,
such that for all B € B, u(S™'B) = u(B). The space F is called the state or
phase space of the system. To each point x € E, one can associate a trajec-
tory (z¢)wen by setting zo = x and 21 = S(x;) for all t € N. zq is termed
the initial condition or initial state of the dynamical system. If £ C R, the
dynamical system (F, B, i1, S) is termed one-dimensional.

In the 1970’s, scientists with different backgrounds recognized the fact
that dynamical systems, although showing simple deterministic structures
(the map S), could have chaotic, i.e. random-looking, trajectories [5, 6, 7, 10].
In fact, nonlinearities in S can produce extreme sensitivity with respect to
the initial state of the dynamical system, so that the slightest error on z is
exponentially amplified as time goes on. As this instability makes predictions
impossible, it is necessary, in order to quantify appropriately the behaviour
of a chaotic dynamical system, to resort to the ergodicity property : the
dynamical system (E, B, i1, S) and the probability measure p are termed er-
godic if every set B € B such that u(BAS™!'B) = 0 has u - measure 0 or 1.
Birkhoff’s Ergodic Theorem [1] states that if (E, B, i, S) is ergodic, then for
all f € L'(E,B,u) and p-almost all zg € E :

n—1
lim —Zf o S*(zo) = / fdu.

An easy consequence of Birkhoff’s ergodic theorem is that, given a p - mea-
surable region A C F, the system has asymptotically the same probability
1(A) of showing a state belonging to A, for p-almost all initial condition x.
The trajectories of the system asymptotically “fill” the state space, weighting
various regions according to the frequency at which they cross them. Ergod-
icity means that p-almost all trajectories asymptotically “fill” or “weight” the
state space in the same way, namely, according to .

The ergodicity property is of particular importance when the probability
measure 4 is absolutely continuous with respect to some Lebesgue measure.
The asymptotic description provided by p is then valid for a set of initial con-
ditions with positive Lebesgue measure, that is to say, of physical significance.
In this case, the problem of computing an approximation of the density of
p from a sequence of observations is of practical relevance. This approxima-
tion is still usually obtained by computing a histogram, but in recent years,



there has been a growing research around the use of the Parzen-Rosenblatt
estimator for this purpose. An essential difficulty is to go beyond the mere
empirical point of view, which means simply plugging our data in the ex-
pression of a Parzen-Rosenblatt density estimator without any theoretical
result to back its use. A first step in this direction is taken by introducing
dynamic stochastic processes (see Bosq [2]). A stochastic process (Xi)ien
with base space (€2, A, P) and values in (£, B) is termed a dynamic process if
there exists a surjective measurable map S on (F, B) such that for all t € N,
Xir1 = S(X;). The map S is termed the dynamic transformation of (X;)ien.

The link between dynamic processes and dynamical systems stems from
the fact that each trajectory (X;(w));en of the dynamic process (X;)ien with
dynamic transformation S is such that X;;;(w) = S(X¢(w)) for all ¢t € N. In
other words, each trajectory of the stochastic process (X;):en is a trajectory
of the dynamical system (E, B, i, S) where p is the marginal distribution of
(X¢)ien (p is S-invariant by construction).

Now, assume that we have at our disposal n observations z1, ..., x, from
a trajectory of a stochastic dynamic process (X;)ien with marginal density f
and that we use a Parzen-Rosenblatt estimator to estimate f(x). Bosq (2, 3|
obtained conditions under which this estimator is consistent in quadratic
mean, with a convergence rate of O((logn/n)*/").

In this paper, we show that it is possible, for a particular class of dynamic
processes, to reach the optimal rate of the i.i.d. case, namely O(n=%/%), and
we apply this result to invariant density estimation for a general class of
ergodic dynamical systems.

2 Preliminary results

Let us consider the class S of transformations

S 0,1 — [0,1]

T — rx modl

with r € N*\{1}. S is the class of r-adic transformations of the unit interval.
Let us define the intervals I; = [0,1], I, = [=1,1] and I, = [=1 5[ for
k= 2,...,7r —1. On each interval I, S is given by S(z) = ro — k + 1.
Let us denote by B([0, 1]) the borelian o-algebra on [0, 1]. A straightforward
calculation shows that the Lebesgue measure A on ([0, 1], B([0, 1])) is invariant
for any S € S and hence that ([0, 1], B([0, 1]), A, S) is a dynamical system for
any S € S.

Now, denote by C the class of transformations T of an interval [a,b] C R

for which there exists a transformation S € S and an increasing differentiable




diffeomorphism ¢ : (a,b) — (0, 1), extended by continuity on [a, b], such that
Sop =¢oT. Then, T = ¢ toSo¢, Sand T are conjugate, and for
every transformation 7' € C, S is necessarily unique, since any two distinct
r-adic transformations are not conjugate. Aditionally, let us note that the
probability measure )\, associated to ¢ is the unique probability measure
with support [a,b] which is invariant by 7" and such that the dynamical
system ([a, b], B([a,b]), 1y, T') is ergodic. To see this, recall that since 7" and
S are conjugate, A = A4 is invariant for 7. Now, since ¢ is one-to-one,
d(A A B) = ¢(A) A ¢(B) for any measurable A, B, and this gives for all
measurable B, \¢(BAT'B) = A(¢(B) A ¢poT~(B)). Using the ergodicity
of A for S, this quantity vanishes iff A\(¢(B)) € {0, 1}, which means that A is
ergodic for T'. Since A is ergodic with support [a, b], it is necessarily unique.
In particular, we obtain that if 7 € C, with T = ¢ 'oSo¢ and S € S, then
¢ is necessarily unique.

A well-known example of a chaotic tranformation belonging to the class C
is provided by the logistic map on [0, 1], which is given by T'(x) = 4z(1 — z).
One has T = ¢! 0 S o ¢, where S is the 2 - adic map on [0, 1] and

1 2
= —(1+4 — arcsin(2z — 1)).

* 1
¢(x):/0 my/u(l —u) o 2 m

¢ is the distribution function of the Beta(3, 3) distribution.

From a practical point of view, transformations belonging to C can be
iterated to simulate samples from given probability distributions and, as
such, they are encountered in some non standard Monte-Carlo simulation
procedures. This is based on the fact that any probability density function
f on an interval [a,b] C R, which is strictly positive on ]a, b, is the unique
ergodic invariant density of an infinity of transformations 7€ C, T : [a,b] —
a,b] [4]

3 Some inequalities

In this section, we derive some technical inequalities about the speed at which
the space is “mixed” by elements of & and C. We first prove the following
lemma.

Lemma 3.1 For each transformation S € S, there exists p €]0, 1] such that,
for every closed interval B C [0,1] and every k € N, we have

INBNS™*B) - A(B)? <4 \B) p~.



Proof. Consider a transformation S € S and let a = {Ay,..., A} where
Ay =Int(fy) for k = 1,...7r. « is a measurable partition of [0, 1], that is
A([0,1]\ U, Ax) = 0 and A(A; N A;) =0 for i # j. Moreover, one can prove
by recurrence that « is independent, meaning that for all n > 1 and for all
Jiy--sdn € {1,...,7}, one has A(S™" T A4; n---NA;,) = [T, MA,) =
r~". The proof is based on the fact that A(S™'A N 4;) = r'A\(A) for any
measurable A and any ¢ € {1,...,r}, which stems from the very definition
of S.

Let ¢ and n be two measurable partitions of [0,1]. Their joint { V 7 is
defined to be the measurable partition (Vn={M NN : M € (,N € n}.

Set af = \/f:O S~a. Then, af is the collection of the interiors of the
intervals on which the r* bijective branches of S* are defined. Thus, af =
{(ir‘k, (14 1)7""“) ci=0,...,7" = 1}. Now, let B be a closed interval in
[0,1]. Then,

AMBNS™B)=A\B)* = M| J BnS™*BNA) - AB)

Aeoag
= > A(BnS*FBNA) - AB)
AEalg
Thus,
MBNS™*B) - \(B)?
=Y MSTFBNnA)+ > ANBNSFBNA)
AGaO Aea’g
ACB ANB#(),ANB#A
+ ) AMBNS*BNA) - \B)
Aeag
ANB=0
> AMBNS*BNA) - ANB).
AEaS AEozg
ACB ANB#0,ANB#A

But, since B is an interval, one can find at most two sets A; 5 € af such that
A1 5N B #( and Ay N B # A9, each of them covering an extremity of B.
Hence,

INBNS™B) - \B) A(B)

AEaO
ACB

Since )\( ) > ZAEak acpT = ZAEM acp MA), the above sum is less than
4N(B)r=", so we can set p = r~! to obtain the result. l

4



Using lemma 3.1, we can prove the following corollary.

Corollary 3.1 LetT € C, T : [a,b] — [a,b], such that T = ¢ 'oSog, S € S.
Then, there exists p €]0, 1] such that, for every closed interval B C [a,b] and
every k € N, we have

|u(BNT*B) — u(B)?*| < 4 u(B) p*
where 1 = Ao = g 18 the probability measure associated to the distribution

function ¢.

Proof. First note, that according to our preliminary results, the measure
e is T-invariant and ergodic. Now, consider a closed interval B C [a,b].
Since ¢ is bijective, we have, for every k € N

(u(BNT*B) = u(B)?| = [N¢BN¢T "6™'6B) — AN¢B)?|
= [N@BNS*¢B) — A(6B)?|.
The continuity of ¢ implies that the image under ¢ of every closed interval
is a closed interval. Hence, according to lemma 3.1, we obtain
W(BNT™B) — u(B)*| <4 XN¢B) r™* =4 u(B) p",

where 0 <p=r'<1. 1
We are now able to derive a bound on the rate at which the space is
“mixed” by transformations belonging to C.

Theorem 3.1 Let T € C, T : [a,b] — |a,b], such that T = ¢~1 o S o ¢,
S € 8. Then, for every closed interval B C [a,b] and every n € N*, we have

A Y BT B - pmy < M)

()

2) 0<jk<n—1
7k

where = Ap = iy is the probability measure associated to the distribution

function ¢.

Proof. Since p is invariant by S, we have
1 .
o S WS TBNS™EE) — u(B)

(g) 0<j,k<n—1
Jj#k

- n: > (- %) (BN S™B) — u(B)?|
1<k<n-—1
< 1?1/1(?) Z (1 N %) Lk
1<k<n-1
- 16 pu(B) 1 1—=rHn-1)—rty+rm < 16 PJ(B)‘ n
n r—1 (1-=r"1YHn-1) n



Now, consider T € C, T : [a,b] — [a,b], such that T = ¢ o S o ¢,
S € S. Define i = \¢, and let (X;)ien denote the sequence of transformations
(T")sen, where X = T° denotes the identity map on [a, b].

Corollary 3.1 (X;)ien is a stationary dynamic process with dynamic trans-
formation T and marginal probability measure p, and is such that, for every
closed interval B C [a,b] and every n € N*, we have

@ BB -y < A

0<j,k<n—1
Jj#k
where pjy is the joint probability measure of (X;, Xy) for all j,k € N such
that j # k.

Proof. The identity map of [0,1] and the maps {T" : t € N*} are all
B([a,b])/B([a,b]) - measurable by construction. Thus, the sequence (X;)ien
is a stochastic process with base space ([a, b], B(]a,b]), ) and is obviously a
dynamic process, with dynamic transformation 7. Moreover, for all s € N*,
ke N, t,...,ts € N such that t; < iy < --- < t,, and all borelian sets
By, ..., Bs € B([a,b]), one has

w(T™7*Bin- - NT "B = wW(THT"BNT2ByN---NT"By))
= /L(T_tlBl N T_t2B2 n---N T_tSBk).

Hence, the process (X;)en is stationary. Its marginal distribution is u since
for all B € B([0,1]), u(X, 'B) = u(B). Now, for all j,k € N such that j # k
on has 1, (B x B) = u(X;'BN X, 'B) = w(T7BNT*B). The result then
stems from theorem 3.1. W

Let us emphasize the specificity of the results obtained in this section. By
restricting B to be a closed interval, we have managed to obtain a bound on
IN(BNS~*B)—\(B)?| which is stronger than the bounds which are derived for
all measurable sets B in ergodic theory. These bounds, which are obtained
either by spectral or symbolic representation methods, have the form K - p*,
where p € (0,1) and K is a positive constant. Accordingly, they are not
sufficiently sharp to be used in the context of nonparametric statistics, as it
will appear in the sequel (see the bound on the term C,;(z) in the proof of
theorem 4.1).

Note that the bound obtained in corollary 3.1 obviously holds for ,
¢* and ¢ - mixing stochastic processes. However, this could not have led
us to the result since dynamic processes are not even strongly mixing (o -
mixing). To see this, denote by (X;)ien a dynamic process with dynamic
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transformation F. Then, for every s,t € N such that s < t, on has X; =
F'=5X, and hence, 0(X;) C 0(X;). Therefore,
alk) > a®@(k):=sup sup [P(ANB)—PAPB)| =1/4
teN  Aco(Xy)
Beo(Xitk)

for every k € N, where a(k) denotes the strong mixing coefficient of order
k, and a® (k) the 2-a mixing coefficient of order k [3]. Since a(k) < 1/4
by construction, we obtain that «(k) = 1/4 for every k € N. The above
calculation also shows that dynamic processes are not 2-o mixing, although
this property is less restrictive than strong mixing (see Bosq [3]).

4 Invariant density estimation

Consider T' € C, T : [a,b] — [a,b], such that T = ¢"1 o So¢, S € S.
Define = A, and let (X;);en be the dynamic stochastic process associated
to T. Denote by i the probability measure on (R, B(R)) given by u/(B) =
w(B N la,b]) for all B € B(R). Then, f :=dy'/d g = ¢ - L(4p), where \g is
the Lebesgue measure on R and I4 denotes the indicator function of a set
A. Denote by C(f) the set of continuity points of f and by Cs1(B) the set
of twice differentiable real valued functions on R, such that ||f||.c < B and
1 llee < B, with B € R*.

Now, assume that we observe n successive states: xg,...,T,_1 of the
dynamical system ([a,b], B([a,b]), 1, T) and that we want to estimate the
value f(x) with x € C(f). According to corollary 3.1, our observations are
realizations of the random variables Xy, ..., X,,_1, which are the first n terms
of the dynamic process (X;)ien, the marginal density of which is f.

Thus, the value f(z) can be estimated by the Parzen-Rosenblatt estimator
8, 9] :

n—1

1 r— X
fulx) = o ;HH/MM( " ),

where the bandwidths (h,,),en are strictly positive and decrease to 0.

Theorem 4.1 With the above notations, the conditions

h, — 0, nh, — 00

n—oo n—oo

ensure that E[(f.(x) — f(x))*] — 0.
If there exists B € R such that f € Co1(B), then for any bandwidths given
by hy, = c-n~ Y% with c € R, we have

E[(fu(2) = f(2))*] = O(n™"").



Proof. Set K =1I|_1/2,1/2). We have
E[(fa(x) = f(2))?] = Bi(x) + Va(2) = B2(x) + V" (2) + Cu(x),

where B, (z) = Ef,(z) — f(z), Vo(x) = Var(f.(z)),

Loy 1 1. =X 2 & ot
Vi (x)—nVar(hnK( - ) Cn(w)—nh%;(l n)Cn,t(l‘),

with C4(z) = COU(K(%),K(%)).

The bias term B, (x) is the same as in the i.i.d. case and thus converges to
0 [8, 9]. V.:(x) is the variance of the estimator in the i.i.d. case and thus,
nhiVi(z) ~ f(z) [8, 9. Now, let W,(z) = [x — h,/2,7 + h,/2]. From

corollary 3.1, we can write

Gl £ Gl S STW@ NS W) — a0
S
o8 W)
~ h2 n

Thus |Cy,(z)| = O(1/nh,), Varf,(z) = O(1/nh,) and hence E(f,(z) —
f(x)? = O(hy) + O(5-). Thus, if h, — 0, nh, — oo, our estima-
tor is consistent in quadratic mean. If there exists B € R} such that
f € Co1(B), set h, = c¢-n"'/°. Then, a straightforward calculation gives
n*PE(fu(z) — f(2))* = O(1). &

Theorem 4.1 states that the Parzen-Rosenblatt estimator of the marginal
density of the dynamic process associated to any map 7' € C by the construc-
tion of section 3 converges in quadratic mean for the same bandwidths as in
the i.i.d. case and that the optimal rate of the i.i.d. case can be achieved.

Let us translate this result in deterministic terms. Let xg, ..., z,_1 denote
the observed states of the dynamical system ([a,b], B([a,b]),u,T). Let f
denote the density of i, and x a continuity point of f. The Parzen-Rosenblatt
estimator of f(z) writes

n—1 n—1
1 T — T 1 x — Stxg
folz) = e ;H[I/Z,l/Q]( I ) = e ;H[I/Z,lﬂ](—hn )
= fn(.To, LU)

The notation f, (o, x) is introduced to emphasize the fact that the estimated
value of f(z) at time n depends only on the first observed state .



Now, theorem 4.1 states that if h,, — 0, nh,, — co , then

| Unlro.s) = @) dutan) = 0
ab n—00

If there exists B € R’ such that f € Cy;1(B), theorem 4.1 states that for
sequences of bandwidths given by h, = c¢-n~1/° with ¢ € R%, we have :

/[ ) (falzo, ) — f(2))? dp(zo) = O(n~4/5).

The importance of these results stems from the fact that the mean qua-
dratic error f[a’b] (fulzo, ) — f(2))?du(xg) is the quadratic error one makes
on the average when using repeatedly various sequences of observations of
length n from a typical trajectory. To see this, remember that in the ergodic
case, the frequency at which values in the range [xg — €,z + €] appear in a
typical trajectory is given by u([zg — €, ¢ + €]) (¢ &= 0 denotes the precision
of our observations).

Accordingly, the frequency at which our first observation takes the value z,
when repeatedly using sequences of n observations from the same trajectory,
is approximately equal to p([zo — €, 2o+ €]), and roughly speaking, to du(zo).

Now, in most practical cases, one can watch only the “real-world” tra-
jectory of a dynamical system and has no control over its initial condition.
The mean quadratic error then reflects the dispersion of the estimated values
obtained by practitians who observe the same phenomenon at various stages
of its evolution and for the same duration.

Accordingly, convergence in quadratic error means that the highest the
number of observations each practitian records, the less the dispersion of the
estimated values, that is to say, the less important the moments at which
practicians start recording their observations.
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