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1. INTRODUCTION

AN IMPORTANT TOPIC in the analysis of principal-agent relationships is the compari-
son of information systems that imperfectly correlate some common observables with the
agent’s hidden actions. Any classification should first lead to identify and discard infor-
mation systems under which the principal achieves a relatively lower expected payoff. A
“practical” (i.e. robust) ranking criterion, however, would also rely as little as possible
on specific features of the current relationship, such as the agent’s utility function.

Starting with the seminal contribution of Holmstrém (1979), some orderings have suc-
cessively been studied by Gjesdal (1982), Grossman and Hart (1983), Kim (1995), Jewitt
(1997), and Demougin and Fluet (2000). One shortcoming of the suggested rankings is
that they hardly convey the actual costs of gathering and communicating the prescribed
observables (see Baker (1992)). A second weakness, which most of the literature primar-
ily addresses, is that they are incomplete and may not allow to decide in some contexts
between relevant information systems.

Among the available orderings, the “MPS criterion” introduced by Kim (1995) - which
classifies information systems according to the mean-preserving spread relation between
their respective likelihood ratio distributions - is now the one that best deals with the latter

criticism.! This criterion embodies those that were proposed earlier and has constituted

!The MPS criterion says that (assuming the first-order approach to the considered principal-agent
problem is valid) an information system A yields a higher expected payoff to the principal than an
information system B if the likelihood ratio distribution associated with A is a mean-preserving spread of

the one associated with B, or in other words if the latter dominates the former in the sense of second-order



indeed a radical improvement, for it allows comparisons between information systems that
are not necessarily nested.

While studying the information systems induced by auditing policies, however, we
found out that this significant group largely eluded the MPS criterion. An intuitive
explanation of this fact would be the following. Previous work by Baiman and Demski
(1980), Dye (1986), Sinclair-Desgagné (1999) and others have revealed that optimal (and
economically plausible) audits are often either upper-tailed or lower-tailed, i.e. they are
triggered by the observation of respectively good or bad signals.? In selecting an auditing
policy to bring about a given action by the agent, a rational principal will thus typically

be lead to discriminate between compound information systems of the form

A (upper-tailed policy): use Lx + Ly if signal X > 2/, and Lx otherwise;
Versus

B (lower-tailed policy): use Lx + Ly if signal X < z”, and Lx otherwise;

where Prob{X > 2’} = Prob{X < 2"}, i.e. the two policies entail the same frequency of

audits (hence the same cost), and Ly , Ly are two independent likelihood ratio distribu-

stochastic dominance. Alternative criteria were recently introduced and discussed by Jewitt (1997) and

Demougin and Fluet (2000), who show that these are actually equivalent to the MPS criterion.
?Baiman and Demski (1980) have studied auditing under the assumption that the agent’s utility

function belongs to the HARA (hyperbolic absolute risk aversion) family. In a more general setting
Dye (1986) has characterized the situations where optimal audits are deterministic and lower-tailed. In
a recent paper, finally, Sinclair-Desgagné (1999) has shown that upper-tailed contingent audits might

contribute to raise the power of incentives in a multitasking context.



tions. Yet, A and B clearly have the same mean zero (since both Lx and Ly have mean
zero) and the same variance, so neither is a mean-preserving spread of the other.

The objective of this paper is therefore to develop a ranking criterion which supple-
ments the MPS criterion and allows to make comparisons between information systems
that commonly occur in the analysis of auditing policies.

The upcoming section lays out the basic principal-agent model and its main assump-
tions, which are meant in particular to guarantee the validity of the first-order approach.?
Section 3 discusses optimal audits and formalizes the above intuitive explanation. Propo-
sition 1 first establishes that the frequency of optimal audits decreases with their cost, this
frequency being equal to 1 when the cost is 0. Proposition 2 shows next that, except for
peculiar instances of the agent’s utility function, optimal audits are not just characterized
by an appropriate frequency but they are also contingent upon observing the level of some
predefined signal.* When we compute the variance of the likelihood ratio distribution as-
sociated with an auditing policy, however, we find that it only depends on the frequency
of audits and on the Fisher information indices associated with the underlying likelihood

ratio distributions; hence, the MPS criterion cannot distinguish between two contingent

3The first-order approach could have been justified in the present context using the assumptions made
in Jewitt (1988). But since it is important here not to restrict a priori the range of possible agent’s utility

functions, our assumptions are finally adapted from Sinclair-Desgagné (1994).

4For instance, the principal would rather use upper-tailed audits when the agent’s coefficient of ab-
solute prudence (as defined in Kimball (1990)) is larger that three times his coefficient of absolute risk

aversion. This key result, and other related ones, will be discussed below.



auditing policies that bear the same frequency.

Section 4 is then devoted to developing a finer ranking that would still be based on the
comparison of likelihood ratio distributions. A convenient criterion is presented through
proposition 3. According to it, a rational principal would again prefer an information
system which likelihood ratio distribution is dominated in the sense of second-order sto-
chastic dominance (corollary 1); this new criterion thus agrees with the MPS criterion.
Provided the sign of the third derivative of the agent’s inverse utility remains constant,
furthermore, the criterion yields a finer ordering of information systems based on third-
order stochastic dominance (corollary 2). This feature is used in section 5, where we
show that it allows a ranking of upper-tailed and lower-tailed audits which portrays the
principal’s choices (proposition 4). This section and section 6 finally contain some con-
cluding remarks: one practical message that is conveyed by the previous results is that
seeking an optimal auditing policy often amounts to considering successive mean and

variance-preserving transformations of the current information system.

2. THE MODEL

Consider a one-period relationship between a principal and an agent. An amount of
effort a € [0,00) is expected from the latter. This effort, however, is only imperfectly
observable through some random variables X and Y. We assume that X and Y are
conditionally independent, so for a given effort a the realizations x and y of the random
variables obey the conditional distributions F'(x, a) and G(y, a) respectively. Those distri-
butions have respective densities noted f(z,a) and ¢(y, a) that exhibit constant support
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(denoted by I'x and I'y) with respect to a and are twice continuously differentiable in a
for every x and y. Throughout this paper the subscript , refers to the partial derivative
with respect to a.

The likelihood ratios associated with X and Y will now be respectively denoted

_ fulwa) ) = ay:9)
Lx(wa) = T gy 2nd Ivlv.a) =0 0y

dom variables, and their respective distribution is called a “likelihood ratio distribution.”

Clearly, these ratios are themselves ran-

It is well known that all likelihood ratio distributions have the same mean FEx[Lx] =
Ey|Ly] = 0. The variance of, say, Ly is then given by Var(Lx) = E[(Lx)?]; it is often
denoted Iy and called the “Fisher information index” associated with X.°

The risk neutral principal routinely observes the value of X. Based on this, she may
either compensate the agent immediately according to a wage schedule w(X), or she may
audit the agent at a constant cost K - thereby also gathering signal Y - and pay him
according to a sharing rule s(X,Y). We suppose that the principal can commit to a
probability m(x) of making an audit upon observing X = z. Her expected cost when the
agent delivers effort a is therefore given by

£C = [ [ = m@)ule) + mia)s(o,1)}dF (w,0)dG(y,0) + K [ mia)dF(a,a). (1)

I'xT'y

The latter integral M(a) = |,

r, M(@)dF (z,a) yields the “frequency” (or the “intensity”)

5The Fisher information index is well-known to statisticians and econometricians (see Gouriéroux and
Monfort (1989), for example). Note that Ex[(Lx)?] = Ex[—2£X], so this index provides a measurement

of the sensitivity of the likelihood ratio with respect to a. For a recent account of the pervasiveness and

usefulness of the Fisher information index in principal-agent analysis, see Dewatripont et al. (1999).



of audits under a policy m(X), when the agent expends an effort level a.

The agent’s preferences are assumed to be additively separable in effort and wealth.
The cost of effort is scaled so that its first-order derivative is equal to 1. The agent’s
attitude with respect to uncertain variations of his wealth exhibits risk aversion and is
represented by a positive, strictly concave and three-times continuously differentiable Von
Neumann-Morgenstern utility index u(-). The agent’s expected utility after putting an
effort a under a contract [w, s, m] is then precisely

£ = [ {0 = m@)u(w(@) + m@)u(s(e. )}, 0G0 0. (@)

I'x I'y

In the upcoming sections, we let ¢ = u™' denote the inverse of u(-), and the follow-
ing transformations of the agent’s utility index, A(w,0) = u(w)ec — w and A*(o) =
Mazy,ew{A(w, o)}, will be quite useful.

A rational principal will select an auditing policy m(X) and wage schedules w(X) and
s(X,Y) that implement a given effort ¢ at a minimal cost, provided the agent thereby
achieves his reservation utility level U and is also willing to deliver the expected effort
level. This amounts formally to minimize (1), subject to participation and incentive
compatibility constraints given respectively by

EU - //{(1 — m)u(w) + mu(s)}dFdG —a > U, 3)

I'x Ty

a = arg max/ /{(1 —m)u(w) + mu(s) }dF (z,e)dG(y,e) — e. (4)
Tx Ty
The latter constraint involves a continuum of inequalities and is thus not generally

tractable. In what follows we replace it by a friendlier one which requires that the effort
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level a be an interior stationary point of the agent’s expected utility function, that is:

[ 1 adat.) + o0l (1 = mle)u(w(a) + m(a)u(s(e, p)}dody ~ 120,
I'x 'y

()
We want this so-called “first-order approach” to always yield a solution that constitutes
an incentive compatible allocation (so that solves the initial problem as well). It can be

shown that this will be the case if the following assumptions are met.

MONOTONE LIKELIHOOD RATIO PROPERTY (MLRP): For all a, the likelihood ratios

Lx(z,a) = Julw, a) and Ly (y, a)

(z,a)

_ 9a(y, a)

are nondecreasing in x and y.
9(y, a)

CONVEXITY OF THE DISTRIBUTION FUNCTION CONDITION (CDFC): For all z, y,

and a, Fau(x) >0 and Gua(y) > 0.

The first assumption is quite common in statistics and principal-agent analysis. It
implies (for univariate distributions only) that F,(z) < 0 and G,(y) < 0 for all z, y
and a, so larger realizations of X and Y make it more likely that the agent’s effort was
higher. The second assumption is often invoked in principal-agent analyses that use the
first-order approach and it corresponds in turn to some (stochastic) decreasing returns
to effort. Conditional distributions that satisfy those two assumptions can easily be
constructed. For instance, take a pair of different continuous distribution functions P(z)
and Q)(z) with similar support such that P(z) < Q(z) for all z, and a pair of functions
a:[0,00) — [0,1] and (3 : [0,00) — [0, 1] increasing and concave such that «(0) = 3(0) =
0 and lim «o(a) =lim fB(a) = 1. One may then let F(z,a) = a(a)P(z) + (1 — a(a))Q(z)

a—0o0 a—0o0

and G(y,a) = B(a)P(y) + (1 — B(a))Q(y).



3. OPTIMAL AUDITING POLICIES

Let A denote the Lagrangian function associated with the current principal-agent
problem. Using the notation of section 2, we have that

A = —K/mdF+/(1—m)A(w,)\+uLx)dF
I'x

I'x

+ //mA(s, A+ u(Lx + Ly))dFdG — Ma+U) — p,

I'x Ty

where A\ and p are the multipliers corresponding to the participation and the incentive
constraints respectively. If [w(X), s(X,Y"), m(X)] solves the principal-agent problem and
constitutes thereby an optimal contract, then the following conditions have to be satisfied

for some A > 0 and pu > 0:
1. if m(z) < 1, then w(z) = Argmaz,, A(w, A+ uLx(z,a)),
2. if m(x) > 0, then s(z,y) = Argmaz, A(w, X+ pLx(z,a) + pLy(y,a)), and

m(z) = arg max m{/[u(s)()\—l—,uLX—i—,uLy)—s]dG—[u(w)()\—l—,uLX)—w]—K}. (6)

And when the decision to audit is randomized, i.e. when 1 > m(x) > 0 at some z, the

first and second conditions can also be written respectively as
w(wi{A+plx} =1, (7)

u'(s){\+ puLx +pLy} =1. (8)

If m(x) = 0 or 1 at some signal z, however, there is a multiplicity of optimal contracts,
since s(z,Y’) can be set arbitrarily at m(z) = 0 and any w(z) is also a possible solution
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at m(z) = 1. In what follows, we shall suppose without losing generality that in this
case s(z,Y) and w(x) still satisfy conditions 1 and 2, and so equations (7) and (8). As a
consequence, for all z, m(z) maximizes m(x)-G(Lx(z,a)) on [0, 1], where G(.) is defined
as

G(z) = Ey[A"( A+ pz + ply)] — A"(A + pz) — K. (9)

Together with the Monotone Likelihood Ratio Property, the latter two equations entail
that the optimal wages w(z) and s(x,y) are nondecreasing in x and y. Let us now turn
to auditing policies. The next statement first establishes that the frequency of audits is

naturally related to their unit cost K.

PROPOSITION 1:  An optimal auditing policy is such that, for any given a, M(a) is

decreasing with respect to K and M(a) =1 when K =0 .

The proof can be found in the Appendix. Note that the second part of this proposition
extends somewhat Holmstrom (1979)’s celebrated “sufficient statistic” result: it says that
any informative signal about the agent’s effort has positive value for the principal, even
when gathering such a signal could be a strategic decision. The following example now
brings up a situation which highlights further the relationship between audit cost and

audit intensity.

EXAMPLE: Let the agent’s preferences exhibit constant relative risk aversion (CRRA)

equal to 1/2, so they can be represented by a utility index of the form u(t) = t'/2. By

10



equations (7) and (8), the wage schedules in this case are given by

)\+,LLLX
2

A+ uLx + ply
2

w(X) = ( )2 and s(X,Y) = ( )2,

Making substitutions in the participation constraint (3) and the incentive constraint (5)

then yields the following relationships:

EU=—-—-a=U

DO | >

and
EU, = g{/(LX)QdF + M/(Ly)QdG)} — 1= g{lx + My} —1=0.
Fx I‘Y
The principal’s expected cost can thus be written as

1

. A
ECT =135 Tt Ml

)2+ (%)2{1;( Y MLy + KM = (a+U)? + KM.  (10)

It appears therefore that this cost depends exclusively on the unit cost of an audit K and

on the intensity M (a) of the chosen auditing policy. The latter would actually be set so

that
M(a) = 1 when K < _ ,
(Ix + Iy)?
M(a) = 0  when K > (IITY)Q , and
M(a) = %{(%)1/2 — Ix} when ﬁ <K< (II;)Q .

Observe also that this policy exhibits the intuitive property that the agent would be

audited less often under a signal X which is more informative (in the sense of Fisher).

In this example the principal is indifferent between auditing policies that would be
contingent on the observed value of X, as long as such policies have the same intensity.

11



This outcome is obviously rather peculiar. In their seminal article, for instance, Baiman
and Demski (1981) have identified a significant range of situations where an optimal
auditing policy would either be lower-tailed or upper-tailed. The next proposition is a

generalization of their main theorem.

PROPOSITION 2:  When ¢"(-) = 0, optimal auditing is a matter of setting the ap-
propriate auditing intensity. When ¢"'(-) < 0 (resp. ¢"(-) > 0), however, an optimal
auditing policy prescribes that audits be also triggered - with probability equal to 1 - by the

higher (resp. the lower) values of X.9

The proof is also presented in the Appendix. A heuristic derivation of this statement

might run as follows. First, define

un(@) = u(w(z)),
ua(z) = Eylu(s(z,Y))] = u(wa(z)),
u(s(z,y)) = wua(z)+w(z,y) with Ey[w(z,Y)] =0,

and p(z) = Ey[s(z,Y)] —wa(z),

so w(z,Y’) represents the contingent “lottery” (with prizes expressed in the units of the
agent’s utility function) associated with an audit that comes after an appraisal =, and
wa(x), p(x) denote respectively the “certainty equivalent” and the “risk premium” asso-

ciated with such a lottery. A new formulation of the current optimization problem is now

®Note that contingent - albeit two-tailed - audits are also optimal when either both ¢"/(-) < 0 and
¢"(-) = 0 are untrue (Young (1986) gives some examples) or the observables X and Y are correlated

(Lambert (1985)).
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available, that is:
EC = /{(1 —m)p(uy) + me(ua) + p|}dF + K/mdF
I'x I'x

EU = /{(1—m)uN+muA}dF—a2Q
I'x

EU, = / {(1 —m)uy + mun}dF, +/ mwdFdG, —1 > 0.
I'x

I'x JTy

Note that the risk premium p can in turn be written as

p(x) = Bylp(ua(z) + w(z,Y))] = p(ua(z)).

(11)

(12)

(13)

(14)

REMARK 1: The principal’s problem is thereby equivalent to that of a Von-Neumann-

Morgenstern decision-maker with utility index —(-) who must select feasible contribu-

tions un (X) and uy(X) together with fair lotteries of the form w(z,Y’) and their contin-

gent probabilities of occurrence m(z).

If ¢"'(-) = 0, then p is invariant with respect to u4. In this case the decision-maker

prefers to set uy(z) = ua(x) whenever 0 < m(z) < 1, because ¢ is a convex function. By

equations (7) and (8), moreover,

ply = ¢ (ua(z) + w(z,Y)) — ¢'(un(2)),

(15)

so the contingent lotteries w(z,Y) must be identical since ¢’ is a linear function. The

decision-maker’s problem amounts therefore to minimize

EC = /gp(uN(m))dF+Mp+KM

I'x

13



subject to

EU = / uny(z)dF —a>U
I'x

EU, = / un(z)dF, + M wdG, —1>0.
I'x

I'y
Clearly, the only feature of audits that matters here is their intensity M.

" be negative (the treatment of ¢” > 0 is symmetric).” This time the

Now, let ¢
decision-maker exhibits prudence (resp is non-prudent). When having to face a mean-
preserving additional risk, a prudent decision-maker prefers to see it attached to the best
rather than the worst outcomes (see Eeckhoudt et al. (1995)). At the previous solution
(un(z) = ua(z), and w(z,Y) invariant with respect to z), she would thus rather go for
m(z) larger when z is higher and m(x) smaller when z is lower. This suggests than an
optimal audit might now be upper-tailed.

Moreover, prudence together with (14) implies that the premium p must decrease with

u, (see Kimball (1990), and Hartwick (1999)), and that
Ey[¢'(ua(z) + w(z,Y))] = ¢ (ualz)) < 0.

When being offered a slight increase in u4(x) that keeps (1 — m)uy + muy constant the

decision-maker would therefore depart from any proposal in which uy(z) > us(z) and

" The sign of ¢ is negative, positive or zero when, for instance, the agent’s utility function shows

constant relative risk aversion (CRRA) respectively lower than, greater than, or equal (as in the above

"

example) to 1/2. More generally, ¢"’(.) < (> or =)0 if and only if P > (< or =) 3R, where P = #
u
o

is the agent’s coefficient of absolute prudence, as defined and interpreted in Kimball (1990), and R = ulf

that of absolute risk aversion.
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0 < m(z) < 1, for this alternative offer entails that

dEC(z) = (1 —m)¢ (uy)duy +m[Ey[¢ (us(z) + w(x,Y))]duy

= m{Ey[¢'(ua(z) +w(z,Y))] = ¢'(un)}dus <0.

This suggests in turn that one should see ua(z) > uy(z) at the optimum, i.e. an audit
would accordingly constitute a carrot rather than a stick from the agent’s viewpoint (and

conversely audit would be perceived as a stick when ¢ > 0).

Let us now consider the information system generated by an auditing policy m(X) of
intensity M. Let L™ denote the likelihood ratio associated with such a policy. Clearly,

the event {L™ < I} is the same as
{Lx(X,a) <1 and there is no audit} U{Lx (X, a)+ Ly(Y,a) <! and an audit occurs} .
The cumulative distribution ®,,(-) of L™ is therefore given by

B, (1) = Prob(L™ < 1) = /(1 — m)S(l — Ly )dF + //mé(l Ly — Ly)dFdG , (16)

T'x I'xI'y

where 6(z) = 1 as long as z > 0, and 6(z) = 0 otherwise. The first and second moments

of this distribution are respectively
E(L™)=0 and Var(L™)=Ix(a)+ MIy(a), (17)

so the variance of the likelihood ratio distribution depends only on auditing intensity
and the Fisher information indices associated with X and Y. This supports the following

remark.
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REMARK 2: Two distinct contingent auditing policies that have the same intensity
cannot be ranked according to the mean preserving spread (MPS) relation between their

respective likelihood distributions.

The MPS criterion is thus rather ineffective when one deals with the information
systems associated with various contingent auditing policies. The upcoming section will

now develop a suitable refinement of this criterion.

4. A GENERAL RANKING CRITERION

The previous discussion and the outcome arrived at in (17) suggest that the design
of optimal contingent audits might finally come to performing some mean and variance-
preserving transformations (MVPT) of likelihood ratio distributions. According to previ-
ous works on such manipulations of probability distributions (see Menezes et al. (1980),
for instance), this would mean that in order to compare the obtained information systems,
and thereby supplement the MPS criterion, one should now invoke stochastic dominance
of the third order. The following subsection thus recalls briefly the notions of third and
n'"-order stochastic dominance, their relationships and some useful implications. Subsec-

tion 4.2 and section 5 will next substantiate our current intuition.

4.1. Stochastic Dominance Orderings

Let X and Y be two random variables® with corresponding distributions functions

F(z) and G(y) and densities f(z) and ¢g(y) which are strictly positive on the interval

8To avoid introducing others notations, X and Y refer in this section to any random variables.
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(b,d). These distributions are often compared according to some probability-weighted
function of deviations below an arbitrary target. This approach yields to the following

partial orderings of probability distributions.

DEFINITION: We say that X stochastically dominates Y in the n'* order, noted
t

X 2, Y, if for all t € [b,d] we have that / (t —2)"{f(2) — g(2) }dz < 0, the inequality
b

being strict on a subset of (a,b) of positive measure.

Equivalent forms of this definition are often useful. In order to concisely state one
of them, let us introduce some new notation. For Z a random variable taking values in
(b,d) and having a distribution function H with density h, let us write H®(2) = h(z),
HWY(2) = H(z), and H™(z) = /z H®=Y(r)dr. The following identity can now be

b

derived (via straightforward integration by parts):

t

/(t = 2" Hf(2) = g(2)}dz = (n = DIF () = G (B)]. (18)

b

It follows that X >, Y if and only if F(™(t) — G™(t) < 0, the inequality being strict on
a subset of (b, d) with positive measure.

It can be shown that
X 2, Y impliesthat X 2,1 Y , (19)

where the converse is obviously not true. Hence, third-order stochastic dominance in

particular provides a finer ordering than second and first-order stochastic dominance.
Furthermore, consider an individual with Von Neumann-Morgenstern utility index

u: [b,d] — R. By definition, she prefers strictly a lottery with prizes X to another one

17



with prizes given by Y if
d

[ @@ - g@dz > o
b
After integrating the left-hand side by parts successively three times, we get

[u@lr@) - @iz = - [w@[F) - Gads
= —u(d)[FPd) — G (d)] + / u z) — G (z)]dx

= —u(d)[FP(d) -~ G?(d)] +u"(d)[FD(d) — G¥(d)]

_ / 4 (2)[FO (2) — GO (2)]da

The upcoming assertions which concern the relationship between stochastic dominance

and decision-making are now a direct consequences of the above.”

REMARK 3: (i) If &/(-) > 0 and X 2; Y, then X is strictly preferred to Y. (ii) If
W()>0or E(X)=E(Y),u"(-) <0,and X 2, Y, then X is strictly preferred to Y. (iii)
Ifu"(-) <0,u" () >0,u(D)E(X)—E(Y)] >0,and X 23 Y, then X is strictly preferred

toY.

As we implicitly pointed out in the previous sections, there are also some important
linkages between stochastic dominance and the notion of variance. By definition, the

difference between the variance of X and that of Y is given by'’,

V(X) = V(Y) = 2[F®(d) - GD(d)] + [FP(d) - GD@)][F?(d) + GP(d)] . (20)

b b
9Notice that E(X) = / cf(x)dr =b— / F(x)dx = b— F?)(b).
W0This expression comes Ztraighforwardly. from the definition of variance V(X) = BE(X?) - (E(X))?,
d

and the fact that / 22 f(x) = d? — 2dF?)(d) 4+ 2F®)(d).
J b
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One can now draw the following conclusions.

REMARK 4: (i) If X >, Y, then V(X) < V(Y). (i) If X >3 Y and E(X) > E(Y),
then V(X) < V(Y). (iii) If B(X) = E(Y), V(X) = V(Y), «"(-) > 0, and X >3 Y

(Y 23 X), then X is strictly preferred to Y (Y is strictly preferred to X).

Finally, an appealing characteristic of the notions of second and third-order stochastic
dominance is that they are “constructive” in the sense that, if two distributions can
be compared using those rankings, then one can be obtained from the other through a
finite number of straightforward manipulations involving mean-preserving spreads (i.e.
transfers of the probability mass from the center to the tails without changing the mean)
and mean-preserving contractions (i.e. transfers of the probability mass from the tails to
the center without changing the mean). Our last remark constitute a formal statement

of this practical feature.

REMARK 5: (i) (Rothschild and Stiglitz (1970)) If E(X) = E(Y), then X 2, Y if and
only if G(+) can be obtained from F(-) via a mean-preserving spread (MPS). (ii) (Menezes
et al. (1980)) If £(X) = E(Y) and V(X) = V(Y), then X 23 Y if and only if G(-) can
be obtained from F(-) via a mean and variance-preserving transformation (MVPT).

The first part is well-known and has been widely used throughout the economics and
decision-theoretic literatures. Lesser known and apparently much less intuitive is the

second part. According to Menezes et al. (1980), however, an MVPT is actually just a

combination of mean-preserving spreads and mean-preserving contractions.
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4.2 Comparing Likelihood Ratio Distributions

With the previous background and discussion, we are now ready to state and prove a
general ranking criterion for the information systems arising generally in principal-agent
problems. This criterion is also based on likelihood ratio distributions. The MPS criterion

is thereafter derived as a special version of it.

PrOPOSITION 3: The principal prefers a signal T to a signal Z to implement a
given action a if Ep[A*(Ar + ppLr)] > Ez[A*(Ar + ppLz)], where Ay and pp are the
multipliers of the participation and the incentive constraints which appear in the principal-

agent problem with signal T'.

Proor. Let I'; , H(t,a,i), h(t,a,i), and L; denote the support, distribution function,
density function, and likelihood ratio associated with signal i =T, Z . The corresponding
objective, participation constraint, and incentive compatibility constraint of the principal-
agent problem are now respectively written:

B0, — / w(t)dH (¢, a,i) (21)

T

<
—~
[\
[\
~—

/u(w(t))dH(t,a, N—a >

/ w(w(®)dH(t a,i) > 1. (23)

The Lagrangian function associated with this problem is

A= —/w(t)dH(t,a,i)+)\i{/u(w(t))dH(t,a,@')—a—Q}+ui{/ w(w(t))dH, (¢, a,i)—11,

Fi F'L
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or equivalently

From the necessary optimality conditions, we know that there exist some nonnegative
multipliers )\; and p,; such that the wage schedule w;(-) maximizes A(w, \; + p,L;) and

the following equations are satisfied:

M / w(wi())dH (¢, a,i) — a — U} = p{ / w(wi(t))dH (¢t ai) — 1} =0 . (25)

ry; ry;

The principal now prefers the information system generated by signal T" to the one gen-
erated by signal Z if using the former is cheaper, that is if E—C*Z — E—C*T > 0. At an

optimum, we have that
A = Ei[A" (N + piLi)] = Aila + U) — p; < Ei[A(wi, A+ pLi)] = Ma+U) — p

for any A > 0 and p, and

——t

A — A, =EC, —EC, . (26)
It follows that

EC, —EC; > Ep[A*(Ar+ ppLr)] — Ez[A(wz, Ar + ppLz)] (27)

> Ep[A*(Ar + pplr)] — Ez[A"(Ar + prLz)]

Hence, the principal selects signal T" over signal Z to implement an action a whenever
Er[A*( A + ppLy)] > EZz[A*(Ap + ppLly)], as claimed. (Note that, in this model, the

multiplier pp is strictly positive). B
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The following assertion, which is a restatement of Kim (1995)’s proposition 1, is now

a direct consequence of the proposition.

COROLLARY 1 (MPS criterion): The information system from a signal T is preferred
by the principal to the one from a signal Z if the likelihood ratio distribution of T is a

mean-preserving spread of the likelihood ratio distribution of Z, that is if Ly 29 L.
PROOF: By definition, A*(0) = maxyew A(w, o) where A(w, o) is a linear function
of 0. As a consequence,
A*(Aog+ (1 = No1) = M(w(Aog+ (1 = N)o1),00) + (1 — N A(w(Aog + (1 — N)oq),01)
< AAY(a0) + (1= N)AY(01)

1

so A*(+) is a convex function.!! Since

Ey[A*(Ar 4 ppLy)] = Ep, [A"(Ar + ppLy)], for J =T, 7,

the statement follows from Remark 3(ii).

Using Remark 3(iii), furthermore, an additional ranking criterion is now also available,

which is based on stochastic dominance of the third order.

COROLLARY 2: Let A* > (<L)0. The information system from T dominates from

the principal’s viewpoint that from a signal Z when Ly 23 Ly (Lz 23 Lt).

In practice, the sign of the third derivative A*(-) could be inferred from the sign of the

third derivative of ¢(-). By the envelope theorem A* (o) = u(w(o)), where w(o) satisfies

I'The reader might have noticed that A* is actually the mathematical conjugate of ¢. And the

conjugate function of a convex function is itself convex (Rockafellar (1970)).
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u/(w)o =1 or equivalently ¢'(u(w)) = o. This entails that A¥(c) = ¢'~!(c), and so

mn

") >0 A" () <0. (28)

The latter brings Corollary 2 closer to Proposition 2 of the preceding section, which per-
tains to optimal auditing policies. The actual linkage will be spelled out in the upcoming

section.

5. COMPARING AUDIT-GENERATED INFORMATION SYSTEMS

In order to use our general ranking criterion, we need a statement that precisely relates
the design of auditing policies to some stochastic ordering of the implied information
systems. This is the purpose of our last proposition, which proof can be found in the

Appendix.

PROPOSITION 4: Let m(X) and m(X) be some auditing policies with the same inten-
sity. If for any © € I'x we have that / mdF > / mdF - the inequality being
InfX InfX

strict for a set of positive measure, then L™ >3 L™.

Thanks to this result, it is now possible to compare and rank any two contingent
auditing policies that have the same frequency: L™ >3 L™ if the auditing policy induced
by m controls more intensively than m the high values of signal X. This new criterion
is obviously not complete, but in our context it is very useful, for two reasons. First, let
myr(X), mpr(X), and m(X) represent respectively an upper-tailed, a lower-tailed, and

a random auditing policy. The proposition says that

LT >y [ > [T (29)
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"

According to Corollary 2, the principal therefore prefers myr when ¢” < 0 and mpr

when "

> 0, which is consistent with Remark 4(iii) and corroborates Proposition 2.

Furthermore, starting from a given auditing policy, the principal can enhance the
efficiency of her information system by auditing more intensively the highest (resp. the
lowest) values of signal X and less intensively the lowest (resp. the highest) ones when
¢" <0 (resp. ¢" > 0).

This result finally hints at a procedure for setting up an optimal auditing policy (given,
of course, some auditing technology).

- First, determine the appropriate frequency of audits. This would involve standard
considerations of risk sharing and incentives, taking into account the unsunk cost of
auditing.

- Secondly, determine what instances of the signal X would trigger an audit. The
agent’s prudence (or the way his risk attitude changes when his wealth varies) would now
be relevant, and via the construction pointed out in Remark 5(ii) the principal might then

consider making the agent’s compensation more sensitive to the observables when these

are higher or lower.

6. CONCLUSION

The literature on moral hazard has so far exclusively emphasized the tradeoff between
incentives and insurance. The above analysis indicates, however, that the design of op-

timal auditing policies must also take into account the agent’s prudence, for it amounts
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finally to examine mean and variance-preserving transformations of given information
systems.

This general insight could be useful in various context. In multi-tasking, for instance
(provided the current one-dimensional analysis can be extended to this context), submit-
ting hard-to-appraise activities to audits triggered by the observation of high performance
on the more staightforward ones might alleviate incentive problems (Sinclair-Desgagné
(1999)). Prudence and MVPT should also play a role in setting optimal contracts within
repeated principal-agent relationships (Rogerson (1985)) or in agencies submitted to back-

ground risk (Gollier and Pratt (1995)).

Université de Rouen and CREST-LEI, 28 Rue des Saints-Péres, 75007 Paris, France.

CIRANO and Institut d’Economie Appliquée, HEC' Montréal, Canada H3T 2A7.

APPENDIX

PROOF OF PROPOSITION 1: For the sake of this proof, let us abuse notation and
denote respectively ET(K) and M(K) the expected optimal transfer and the intensity
of an optimal auditing policy at a given effort level a, when the unit cost of an audit is
K. At different cost levels K and K', the principal’s objective function would be such
that ET(K) + M(K)K < ET(K') + M(K)K’. Similarly, reversing the respective roles
of K by K’ also gives ET(K') + M(K')K' < ET(K)+ M(K')K. The sum of these two
inequalities yields (K — K')[M (K)— M(K')] < 0. Accordingly, the intensity of an optimal
audit must decrease with K.
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To prove the second part of the proposition, observe that according to (9) the term

within brackets in (6) is precisely

Ey[A*(A+ pLx + pLy)] — A*(A+ pLy) — K.

So we have that

Ey[A*(A+ pLx + pLy)] = Ey[A(w(z), A+ pLx + ply)] = A"(A + pLx)

(the inequality being strict at an interior solution), and the bracketed term in (6) is always

nonnegative when K = (. ®

PROOF OF PROPOSITION 2: Let un(z) = u(w(z)) and ua(z,y) = u(s(z,y)). First,

equations (7) and (8) become respectively

¢'(un(r)) = A+ pLx(v,a) and ¢'(ua(z,y)) = A+ pLx (v, a) + pLy(y, a),

which implies that

Ey[¢'(ua(z,Y))] = A+ pLx(z,a) = ¢'(un(z)). (30)

On the other hand, applying the Envelope Theorem gives A*¥ (o) = u(w(c)) when w(o) =
Argmax,, A(w,0); and it follows that the function G(-) defined in (6) has a first-order

derivative at Ly (x,a) which is given by

G'(Lx(x,a)) = Ey[ua(z,Y)] — uy(z). (31)

The combination of (30) and (31) allows us now to conclude that:
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e When ¢”(.) > 0 so ¢’ is convex, we have that ¢'(uy(z)) = Ey|¢/'(ua(z,Y))] >
¢ (By ([ua(z,Y)]). Consequently, uy(x) > Ey[ua(z,Y)] and G(-) is a decreasing function,
so the optimal auditing policy must be lower-tailed.

e When ¢”(.) < 0 so ¢’ is concave, conversely, ¢ (un(z)) = Ey[¢ (ua(z,Y))] <
¢ (BEylua(z,Y)]). In this case uy(z) < Ey[ua(z,Y)] and G(z) increases with z, so the
optimal auditing policy is upper-tailed.

e When ¢"'(.) = 0o ¢’ is a linear function, finally, then ¢'(uy(z)) = Ey[¢ (ua(z,Y))] =
¢ (Ey|ua(z,Y)]). In this case, uy(z) = Ey|ua(z,Y)] and the agent is indifferent between
being audited or not, so the principal will select any auditing policy that has the appro-
priate intensity. B

PROOF OF PROPOSITION 4: First note that we can use the function §(.) to express
friendly the condition about third order stochastic dominance for a random variable Z of

which cumulative function and support are denoted by H and T = (b, d):

HO (1) = / H(z)dz = / H(2)8(t — 2)d>

v

H®(v) = /H(Q)(t)dt = /H(Q) (t)o(v —t)dt = //H(z)é(t — 2)6(v — t)dzdt

Applying Fubini’s theorem and using a little algebra then yields
HO (1) = / H [ 8t 2)5(0 — t)di}dz = / H(2) Maz(v — 2,0)dz.
T T
I'p

% + &),Sup(E + &)] the common support of the

f

distributions ®,, and ®;, corresponding to the likelihood ratios L™ and L™.By definition,

Moreover, denote as 'y = [Inf(
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L™ >3 L™ means that

Qv) = /[@m(z) — @p(2)|Maz(v — 2,0)dz > 0

Iy

for any v € I', the inequality being strict on a subset of I';, with positive measure.
Meanwhile, the expression for ®,,(z) given by (16) gives:

By () — By (2) = /(m —m)(z — Ly)dF — //(m —m)S( — Ly — Ly)dFdG.

I'x Ix I'y

So we have that

Q) = C—D, where

c = //Max(v 2, 0) (1 — m)S(z — Ly)dzdF and

I't I'x

D — ///Max(v 2, 0) (1 — m)S(2 — Ly — Ly)d=dFdG .

' I'x Ty

Invoking Fubini’s theorem again, the latter can be written as
C = / /Max 0)6(z — Lx)dz}dF

D = //m m) /Ma:z: v—2,0)0(z — Lx — Ly)dz}dFdG.

And since / Max(v —2,0)dz = (1/2)(Max(v — 2,0)?, Q(v) is finally written as
Q) = (1/2) {/ m)[Max(v — Lx,0)]*dF
- / /(m —m)[Mazx(v — Lx — Ly,0)]*dFdG}

Ix Iy

- (1/2)/F (m — M) ¥(v — Ly)dF (32)
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where the function ¥(-) is defined as
U(t) = By[Max(t — Ly,0)%] — Maz(t,0)>. (33)

Note that ¥(-) is a differentiable function because the derivative of Maz(C,0)? exists and

is equal to 2Max(C,0). Therefore,
V'(t) = 2Ey[Max(t — Ly,0)] — 2Max(t,0) > 0,

&[ and is constant elsewhere.

which entails that W(+) is strictly increasing on |In f &, Sup
g g
In particular, ¥'(0) > 0.

The right-hand of (32) can now be integrated by parts, which yields

Qv) = /{ / (m(z) —m(z))dF (z,a)}¥' (v — LX)(BL—X)dx . (34)

ox
FX Ian

X T

m(z)dF(z,a) > / m(z)dF(z,a) for any z, then

We conclude that: (i) if /
InfX

InfX
T

m(z)dF(z,a) > / m(z)dF(z,a) on some interval [c, d],
InfX

T

Q) >0, and (ii) if /

InfX

then letting v = Lx(d,a) we get

Qv) > /{ / (m(z) —m(z))dF(z,a)}¥' (Lx(d,a) — LX(x,a))(aaﬁ)dx >0

X
c InfX

x x

m(2)dF (2, q) > / A (2)dF (2, )

in a neighbourhood of Lx(d, a). In both cases, if /
InfX

InfX

with strict inequality on a subset of positive measure, then 2(v) > 0, as claimed. M
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