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Laplace expansions in MCMC algorithms for
latent variable models

By

Chantal Guihenneuc and Judith Rousseau

R�esum�e

Il est n�ecessaire, dans les mod�eles de chaines de Markov cach�ees, d'avoir recours �a

des m�ethodes de simulations, de type Monte Carlo par Chaine de Markov (MCMC),

pour obtenir des estimateurs bay�esiens ou des r�egions de con�ances bay�esiennes. Le

nombre de param�etres �a simuler �etant en general, de l'ordre du nombre d'observations

- lorsque l'on consid�ere la repr�esentation par variables latentes - les algorithmes

MCMC deviennent rapidement assez lents. Dans cet article, nous proposons une

mani�ere d'acc�elerer l'algorithme en diminuant le nombre de param�etres �a simuler.

Pour ce faire, nous utilisons une approximation de Laplace pour int�egrer les param�etres

de nuisances, �a chaque it�eration de l'algorithme. La loi cible est donc modi��ee.

Nous d�emontrons que, en variation totale, la vraie loi cible et son approximation

sont tr�es proches, lorsque le nombre d'observations est grand (l'approximation est

en O(n�1)). Pour illustrer ce r�esultat th�eorique nous e�ectuons des simulations.

Les simulations montrent notamment que l'approximation que nous proposons se

comporte extrêmement bien, tout au moins dans les exemples consid�er�es.

Summary

To obtain Bayes estimates such as the posterior mean or bayesian con�dence regions,

in Hidden Markov models , it is necessary to simulate the posterior distribution using

a MCMC algorithm. These algorithms get slower as the number of observations

increases, specially in this case of latent variables. To improve the convergence of

the algorithm, we propose to decrease the number of parameters to simulate at

each iteration by using a Laplace approximation on the nuisance parameters. We

therefore study, theoretically the impact that such an approximation has on the

target posterior distribution. We prove that the distance between the true target

distribution and the approximated one becomes essentially of order O(n�1) as the

number of observations increases. A simulation study illustrates the theoretical

results. It turns out, that the approximated algorithm behaves extremely well, at

least in the example considered in the paper, which is driven by a study on HIV

patients.



1 Introduction

1.1 Motivations

As the complexity of the models covered by statistical inference increases, the need

of new computional tools gets increasingly pressing. In this respect, Markov chain

Monte Carlo (MCMC) methods have been widely developped in the last decade and

have enhanced the use of complex models in di�erent types of applications, typically

using bayesian inference, see Robert and Casella (1999). In a bayesian approach,

samples produced by MCMC algorithms are quite appropriate to approximate many

aspects of the posterior distributions using ergodic averages. Hidden Markov models

(HMM) constitute a widely studied class of complex models. They have been used

in many areas as a convenient representation of weakly dependent heterogeneous

phenomena. They are speci�c latent variable models where the completed model is

directed by an unobserved Markov process S. When the state space of S is contin-

uous, these models are usually called state space models such as in Econometrics,

in stochastic volatility models (Shephard and Pitt (1997), Hamilton (1989), Chib

(1996)) or in Signal processing (Hodgson (1999), Rabiner (1989)). HMM's also have

a large ranging number of applications, when the state space of S is discrete : in

Genetics as DNA sequence modelling (Rabiner (1989), Durbin et al (1998), Muri

(1998)) and in medical areas (Guihenneuc et al (2000), Kirby and Spiegelhalter

(1994)). This work has been motivated by biomedical applications but can be gen-

eralised to other domains of applications. In medical area, multistate models, i.e.

�nite state space HMM's, have been increasingly used to model and to characterize

the progression of diseases. The de�nition of the states is generally based on the dis-

cretisation of continuous markers as the decline of CD4 cell counts for HIV patients.

These markers are usually subject to great variability, so that the observed trajec-

tories give a noisy representation of the true trajectories. The states are therefore

considered as unobserved, leading to a hidden Markov modelisation.

Traditionally, there are essentially two ways to calculate posterior quantities

of interest: asymptotic expansions or simulations. In HMM's, the number of pa-

rameters is proportional to the number of observations and therefore, asymptotic

expansions such as Laplace expansions are not valid. It is then necessary to com-

pute the posterior distribution via a MCMC algorithm. However, the larger the

number of observations, the larger the number of parameters and thus, the longer

we have to run the algorithm to compute the posterior distribution, for instance.
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In the same time, had we been able to use an asymptotic approximation, such as a

Laplace approximation of the posterior distribution, the better it would have been.

We therefore study in this paper a way to combine those two approaches in order

to accelerate the MCMC algorithm.

1.2 The HMM model

Denote X the observations and S the hidden states and denote L any distribution,

so that L(�jX;S; �) represents the conditional distribution of � given X;S; �, for

instance. We assume, as is traditionally the case in HMM's, that the observations

X, conditionally on latent variables S, are independent and distributed according to

some family of distributions indexed by a parameter �. The distribution of the latent

process S depends on a parameter �. Assume that � is the parameter of interest,

and let � and h be the priors on � and � respectively. The aim is thus to simulate the

posterior distribution of � given X or of (�; S) given X. The hierarchical structure

of HMM's induces a natural Gibbs algorithm, which would be constructed as follows:

1. �t � L(�jX;St�1; �t�1)

2. St � L(SjX; �t; �t�1)

3. �t � L(�jX;St; �t).

We denote M0 this algorithm, which we call the Gibbs algorithm. It often happens

that the correlations between S and � are very strong, in other words that the

knowledge of S (and X) implies a good knowledge of �. In this case, the Gibbs

algorithm has poor mixing properties. This phenomenon occurs in particular in

medical models, such as the HIV model proposed by Guihenneuc et al (2000) or in

the Ion channel model considered by Hodgson (1999). It is then important to get

rid of �, which is a nuisance parameter.

In this paper, we consider the following type of HMM's : the data consist of

observed values Xij where i indexes the individual and j the follow-up point, 1 �
i � n, 1 � j � ni. The Xij's are independent conditionally on the unobserved

random variables Sij = s, with distribution P�s. We assume that P�s has a density

with respect to Lebesgue measure denoted by f�s(X), s = 1; :::; k, where �s 2 �s,

and �s is an open subset of IRps. The densities f�s may di�er by more than the
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parameter �s, they can belong to di�erent parametric families. The latent process

is de�ned as follows : the individuals are independent, and for each indiviual i, the

Sij's, j = 1; :::; ni, are continuous time markov processes depending on a parameter

� 2 L. This structure is driven by medical applications but the markov property is

actually not necessary and we could use any kind of dependence structure to model

S, as can be seen in Section 2. In this regard, a motivating illustration of such

HMM concerns the HIV model proposed by Guihenneuc et al. (2000). There, the

latent process S represents the health progression throughout 6 transient unobserved

states. The observed process is a biological marker (CD4 cell counts), which has

a great within individual variability. In this model, a seventh state is considered,

which corresponds to the the AIDS's status, based on clinical symptoms. This state

is therefore perfectly observable. S is modeled by a Markov process on f1; :::; 7g,
for which �ij represents the transition rate to state j starting from state i. The

conditional distributions for S are therefore given by:

pr(Sijj�; Sij�1) = (exp �dtij)Sij�1Sij
and pr(Si1 = s) = �(s) > 0; (1)

where � is the in�nitesimal transition matrix. The error process is supposed to be

Gaussian.

Let � = (�1; ::::; �k) 2 � = �1 � � � ��k, �(�), h(�) the priors on � and L,

respectively. We also denote �s(�s) the marginal prior of �s, s = 1; :::; k. If we want

to characterize the progression of the hidden process S, � is then the parameter of

interest, if we want to reconstruct the individual trajectories, then S is the parameter

of interest, we can also consider (�; S) as the parameter of interest, but � is generally

a nuisance parameter. We are thus interested in the posterior distribution of the

parameter of interest, for instance �(�jX), the posterior density of �, to determine

Bayes estimates such as the posterior mean or the posterior median of each �ij, or

to construct con�dence regions, such as HPD regions. This posterior distribution

is obviously not available in close form and we must simulate it, using an MCMC

algorithm. Indeed, the posterior distribution of interest has the following form when

� is the parameter of interest:

�(�jX) =
X
S2S

�(�; SjX)

/
X
S2S

Z
�

f(Xj�; S)d�(�)pr(Sj�)h(�);

where S is the set of all possible cases for S. Although S is �nite when the number

of hidden states is �nite, it becomes quickly very large, when the number of obser-
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vations increases. Moreover, in most cases, the integral of the right hand side of the

above equality, i.e. the integral over �, cannot be obtained in close form. Therefore,

it is usually necessary to use a Gibbs algorithm in the form of M0. Within this

structure, there are ways to improve the classical Gibbs algorithm, in particular

when a Hasting-Metropolis step is needed as would often happen when simulating

�, conditionally on all the other variables, see for instance Tierney and Mira (1999).

The improvement, here, would however only be on the Hasting-Metropolis step,

which is not the problem we focus on.

In this paper, we propose an other way to accelerate the algorithm, while chang-

ing slightly the target distribution. An other interest that, we believe, such work

might induce, is as a �rst step in studying how an asymptotic expansion can rea-

sonably be done inside steps of an MCMC algorithm, and the e�ect it has globally

on the simulations. Usually Laplace expansions are used to build up good proposal.

Here the aim is therefore quite di�erent.

The paper is constructed as follows. In Section 2 we present our approximated

algorithm and how it is constructed. We then present theoretical results which val-

idate such an approach, since we prove that our limiting target distribution is close

to the true target distribution as the number of observations goes to in�nity. In Sec-

tion 3 we present simulations to illustrate the theoretical results. These simulations

shed lights on some features of the Gibbs algorithm.

2 Laplace expansion

2.1 The Laplace algorithm

To begin with, we de�ne some notations used throughout the paper: Let ln(�)

be the log-likelihood, conditional on S, i.e. the log-likelihood of the completed

model and let �̂ = (�̂1; :::; �̂k) = �̂(X;S) be the conditional maximum likelihood

estimate. The di�erentiation operator will be denoted by D, i.e. for any function

g : IRp �! IRq with p; q � 1, D�g(z) is the �-th derivative of g with respect to z,

where � = (�1; :::; �p), �i � 0. We also denote j�j = �1 + ::: + �p. For simplicity's

sake we also denote Dg(z) the vector of �rst derivatives and D2g(z) the matrix of

second derivatives of g. Let J be the non normalized empirical Fisher information

matrix of the completed model, i.e. J = �D2ln(�̂) and let jJ j be its determinant.

Finally, jj�1� �2jjTV denotes the total variation norm of �1� �2 and  = log �(�) ;

recall that ns denotes the number of observations in the state s, when the vector S
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is known.

The true marginal distribution of (�; S)jX is given by :

�(�; SjX) =

nR
�

Qk
s=1

Q
Sij=s

f(Xijj�s)�(�)d�
o
pr(Sj�)h(�)R

L

P
S

nR
�

Qk
s=1

Q
Sij=s

f(Xijj�s)�(�)d�
o
pr(Sj�)h(�)d�

:

� is a nuisance parameter, that we want to avoid simulating. We therefore propose

to replace the integral over �, which is a �nite dimensional parameter, by its Laplace

approximation. The approximate marginal distribution of (�; S)jX would then be :

�̂(�; SjX) =

nQk
s=1

Q
Sij=s

f(Xijj�̂s)�(�̂)J�1=2
o
pr(Sj�)�(�)R

L

P
S

nQk
s=1

Q
Sij=s

f(Xijj�̂s)�(�̂)J�1=2
o
pr(Sj�)�(�)d�

:

Because of the structure of the model, we have :

ln(�) =
kX

s=1

X
Sij=s

log f(Xijj�s) =
kX

s=1

ls(�s):

The conditional model can therefore be separated into k submodels that work like

standard independent and identically distributed models, for which the Laplace

expansion is well known, see for instance Kass, Tierney and Kadane (1989).

Denote also, Jns the normalized conditional empirical Fisher information matrix

associated with the group s, : Jns = �n�1s D2ls(�̂s), s = 1; :::; k and jJnsj its deter-
minant. Let g(XjS) be the marginal conditional density of X given S and ĝ(XjS)
its Laplace approximation, i.e.

g(XjS) =
Z
�

eln(�)�(�)d�

and

ĝ(XjS) = (2�)p1+:::+pk
kY

s=1

n�ps=2s jJnsj�1=2
Y
Sij=s

f(Xijj�̂s)�(�̂):

We thus would have :�̂(�; SjX) / ĝ(XjS)pr(Sj�)h(�). However, since this ap-
proximation will be used at each iteration of the Gibbs algorithm, there will be cases,

i.e. S, for which the approximation is quite poor. To avoid weird e�ects that could

be caused with such S's we use instead as the approximated density of X given S

: ~g(XjS) = IIB(S;X)ĝ(XjS); where B = f(X;S); g(XjS) = ĝ(XjS)(1 + O(n�a))g,
for some a 2 (1=2; 1), and where n is the number of individuals. a will be cho-

sen as close to 1 as possible. We then have as the limiting target distribution :

~�(�; SjX) / ~g(XjS)pr(Sj�)h(�). The new algorithm has thus the following struc-

ture : at the t-th iteration,
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1. �t � �(�jX;St�1) which is the true one,

2. St � ~�(SjX; �t).
We denote ML this algorithm which we call the Laplace algorithm. To validate

this algorithm, we thus need to make sure that its target distribution is close to the

true one, as n goes to in�nity. The idea is the following, the Laplace expansion,

ensures us in regular cases, that g(XjS) = ~g(XjS)(1 + O(n�a)) for all S such that

(X;S) 2 B. The di�erence between the true and the approximated distribution of

(�; SjX) (in total variation), will then be essentially of order n�a except on Bc, the

complementary set of B, which will be forgotten by our algorithm. To control this

di�erence, we thus need to control pr(BcjX), which is done in the following section.

2.2 Validity of the approximation

In this Section, we present results ensuring that the approximated target distribution

and the true target distributions are close to one an other. As was said in the

previous Section, the conditional model (of X given S) can be separated into k

independent and identically distributed models. The Laplace approximation, will

then, mainly be a Laplace approximation in each submodel. To make sure that this

approximation is good, we thus need to have enough observations in each model,

i.e. in each state s, s 2 f1; :::; kg. To do so we consider the following assumption on

the underlying unobserve process S :

[H] : For all s � k, i = 1 � � �n,
pr(for some j � ni;Sij = sj�) � c0(�) > 0; such that

Z
L

c0(�)h(�)d� <1:

This hypothesis is not strong. In particular in the HIV example, we have,

pr(for some j � ni;Sij = sj�) > �(s), so that [H] is satis�ed.

The results that are stated in this section are written for non compacts �. In the

compact case things are simpler, we point out, throughout this section how things

would simplify in the compact case. In particular, the assumptions [A1]-[A6] given

below can be slightly simpli�ed in the compact case.

In the following, we denote E�fh(X)g the expectation of h(X) under P�

[A1 ] In each submodel, s = 1; :::; k, the log-likelihood, log f�s(x), is 4 times con-

tinuously di�erentiable in �s and satis�es: for � = (�1; :::; �p) 2 INp, such that

j�j � 4, there exists � > 0 and there exists q > 2 for whichZ
E�s

 
sup

j�s��0sj<�
jD� log f�0s(x)jq

!
�s(�s)d�s <1;
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where �s denotes the marginal prior density of �s.

[A2 ] In each submodel s = 1; :::; k, the informationmatrix Is(�s) is de�nite positive,

for all �s 2 �s, where

Is(�s) = �
Z
@2 log (f�s(x))

@�s@�ts
f�s(x)dx;

is the Fisher information matrix per observation associated with the density

f�s(x).

[A3 ] For all s = 1; :::; k, there exists 0 < c < 1=2 such that :Z
�s

P�s

�
j�̂s � �sj > n�cs

�
�s(�s)d�s � n�2s :

[A4 ] Let �0 = (�0;1; :::; �0;k) with �0;s 2 �s, s = 1; :::; k. For all s = 1; :::; k,Z
�

prf�s; j�s � �0;sj > n�cs ; Ks(�0;s; �s) < 2 logns=nsg�s(�0;s)d�0;s � Cn�2�as ;

andZ
�

pr

�
�s; j�s � �0;sj > n�cs ; K2

s (�0;s; �s) <
(2 + a) logns

ns
M2;s(�0;s; �s)

�
�s(�0;s)d�0;s � Cn�2�as ;

where Ks(�0;s; �s) = E�0;s

�
log f�0;s(X)� log f�s(X)

�
and

M2;s(�0;s; �s) = [E�0;sf(log f�s � log f�0;s)
2g]1=2[E�sf(log f�s � log f�0;s)

2g]1=2:

[A5 ] There exists 0 < t < c, such that qt � 2, with q de�ned in assumption [A1]

and c in assumption [A3], satisfying: pr (jIs(�s)j�1 > nts=2) < n�2s :

[A6 ] �(�) > 0, for all � 2 �, and � is twice continuously di�erentiable and satis�es

the following conditions : for all s � k,

pr

 
sup

j�s��0;sj<n�c
s

jD log�(�s)j > nts

!
� n�2s ;

and

pr

 
sup

j�s��0;sj<n�c
s

jD2 log �(�s)j > n2ts

!
� n�2s ;

with t de�ned in assumption [A5] and c in assumption [A3].

7



The �rst four conditions are usual in Laplace expansions. The fourth condition

is expressed quite generally, as it is done in Bickel and Ghosh (1990). In regular

models, it often requires fairly weak conditions on the prior, such as moment con-

ditions. We have chosen this general expression because, depending on the model,

the appropriate types of assumptions could be fairly di�erent, even for very smooth

models like the Gaussian (�; �) distribution, for instance, with (�; �) 2 IR � IR+,

conditions such as those proposed by Ibragimov and Hasminskii (1981) are not re-

ally appropriate. Conditions [A5] and [A6] are conditions on the prior, and are

needed to control the behaviour of the Laplace expansion when the parameter goes

to the boundary of the set. When � is compact, it is enough to assume that terms

are bounded, but when � is not compact, it is necessary to control the integrals.

In the Gaussian case however, as in the HIV example, these conditions reduce to

very simple conditions on the prior density, in the form : pr(� > cn= logn2) � n�2:

Condition [A6] is equivalent, in the non compact case, to the type D4 of priors

de�ned in Ghosh et al. (1982).

In the previous Section we had de�ned B in a vague way : B = f(X;S); g(XjS) =
ĝ(XjS)(1 +O(n�a))g, for some a > 0. To be able to implement the algorithm, and

to obtain a rigorous proof on its validity we now give an explicit expression of B: let

t = 2=q 2 (0; 1) with q de�ned in assumption [A1], � 2 (1=2; 1), let As be de�ned

by : As = f�s; ls(�s)� ls(�̂s) > � lognsg \ fj�s � �̂sj > n�cg; then
B(�; t; c) =

n
(X;S);ns > n�; pr(As) � n�1s ; jD�ln(�̂s)j � n1+ts ; j�j � 3; jJsj � n�ts ;

sup
j�s��̂sj<n�c

s

jD�ln(�s)j � n1+ts ; j�j = 4; sup
j�s��̂sj<n�c

s ;8s
jD2 (�)j � n2ts ; D (�̂) � nts; 8s

)
;

where c is de�ned in assumption [A3]. Condition [H] implies that � can be as close

to 1 as we want.

When B is de�ned as such, a = �(1 � 3t). This de�nition of B could be made

simpler in the compact case, in particular, we could drop the last two constrains on

 = log �.

We now state the main result of this section :

Theorem 1 If [H] is satis�ed and if the hypotheses [A1]� [A7] are satis�ed, the

approximate target distribution is close to the true one in the following sense:

jj�̂(�; SjX)� �(�; SjX)jjTV � Cn�a; (2)

except on a small set i.e.

Pm(X)(jj�̂(�; SjX)� �(�; SjX)jjTV > Cn�a) � n�1;
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where Pm(X) denotes the probability under the marginal distribution of X.

By imposing stronger conditions, in particular by imposing bounds in the form

n�h for h greater than what is already imposed in assumptions [A3]-[A6], we can

obtain a better bound for Pm(X)(jj�̂(�; SjX)��(�; SjX)jjTV > Cn�a), as will appear

clearly in the proof.

proof of Theorem 1: We have, for any borel set A on L� S :

j�̂(AjX)� �(AjX)j
=

����
P

S

R
�
IIA(�; S)IIB(X; s)ĝ(XjS)pr(Sj�)h(�)d�P

S IIB(X;S)ĝ(XjS)pr(S)
�
P

S

R
�
IIA(�; S)g(XjS)pr(Sj�)h(�)d�P

S g(XjS)pr(S)
����

�
P

S

R
�
IIB(X; s)jĝ(XjS)� g(XjS)jpr(Sj�)h(�)d�P

S IIB(X;S)ĝ(XjS)pr(S)
+

����
P

S

R
�
IIA(�; S)IIB(X; s)g(XjS)pr(Sj�)h(�)d�P

S IIB(X;S)ĝ(XjS)pr(S)
�
P

S

R
�
IIA(�; S)g(XjS)pr(Sj�)h(�)d�P

S g(XjS)pr(S)
����

� n�a + pr(BcjX) +

P
S

R
�
IIA(�; S)IIB(X; s)g(XjS)pr(Sj�)h(�)d�P

S g(XjS)pr(S)
�����

P
S g(XjS)pr(S)�

P
S IIB(X;S)ĝ(XjS)pr(S)P

S IIB(X;S)ĝ(XjS)pr(S)
����

� 2n�a + pr(BcjX) +

P
S IIBc(X;S)g(XjS)pr(S)P
S IIB(X;S)ĝ(XjS)pr(S)

:

When (X;S) 2 B, (1� n�a)�1g(XjS) � ĝ(XjS) � (1 + n�a)�1g(XjS); so,

j�̂(AjX)� �(AjX)j � 2n�a +

P
S IIBc(X;S)g(XjS)pr(S)P
S IIB(X;S)g(XjS)pr(S)

(1 + n�a)

� 2n�a + (1 + n�a)
pr(BcjX)

1� pr(BcjX)
:

Therefore to prove Theorem 1, we just need to prove that

Pm(X)fpr(BcjX) > n�ag � Cn�1: (3)

We use Markov's inequality :

Pm(X)fpr(BcjX) > n�ag � napr(Bc)

= napr(Bc \ f9s;ns � ntg) + napr(Bc \ f8s;ns > ntg) (4)

Assumption [H] implies that the �rst term of the right hand side of (4) is bounded by

n�h, for all h > 0, when n is large enough. We now consider the second term of the

right hand side of (4): naEfpr(B1jS; �; �)g, where B1 = Bc \fns > nt; s = 1; :::; kg.
Inequality (3) will therefore be satis�ed if

pr(B1jS; �0; �0) �
c(�0)

n1+a
; with

Z
�

c(�)�(�)d� <1: (5)
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Let Bs = fXs; gs(Xs) = ĝs(Xs)(1 + n
�a=�
s )g, with Xs = (x1; :::; xns) are ns indepen-

dent and identically distributed random variable distributed according to f�0;s,

gs(Xs) =

Z
�s

nsY
i=1

f�s(xi)�s(�s)d�s;

and ĝs is its formal Laplace expansion. In other word, Bs is the set on which the

Laplace expansion is correct, conditionally on S, in the sub-model s. The conditional

independence structure implies that (5) will be obtained if, for all s � k,

P�0;s(Bs) � c(�0;s)

n
(1+a)=�
s

; with

Z
�

cs(�s)�s(�s)d�s <1: (6)

We can therefore work in each submodel independently, and drop the s, for simplic-

ity's sake.

In the compact case, i.e. if � is compact or equivalently if each �s is compact,

Ghosh et al. (1982) have obtained conditions on the model, i.e. on f� and on �

to be able to integrate out the Laplace expansion with respect to �, see also Bickel

and Ghosh (1990). Now, if � is not compact, as is typically the case in medical

studies, no such result exists. Our de�nition of B and the hypothesis [A1]-[A6] are

de�ned for such non compact sets. These assumptions can be relaxed slightly in the

compact case, see Ghosh et al. (1982) and Bickel and Ghosh (1990).

In the general case, dropping the index s, we have :

P�0(B) � P�0f�(An) > n�1g+ P�0finf x0Jx=(x0x) � n�tg

+
3X

j�j=2
P�0(jD�ln(�̂)j � n1+t) + P�0

 
sup

j���̂j<n�c

jD4ln(�)j � n1+t

!

+P�0

 
sup

j���̂j<n�t

jD2 (�)j > n2t

!
+ P�0

�
D (�̂) > nt

�
: (7)

Hypothesis [A4] implies that :Z
�

P�
�
j�̂ � �j > n�c

�
�(�)d� � n�2

so we only need to work on f�; j� � �0j � 2n�cg. The last two terms of the right

hand side of (7) are bounded by n�2 using hypothesis [A6]. We now consider the

�rst term of the inequality (7). In Appendix 1, we prove that

P�0

�Z
j���0j>n�c

exp fln(�)� ln(�̂)g�(�)d� � 2n�1
�
� n�2: (8)
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Let g�(X) = supj���0j<n�c jD� log f�(X)j, then

P�0

 
sup

j���0j<n�c

jD�ln(�)j=n > nt

!
� P�0

 
nX
i=1

g�(Xi) > n1+t

!

� n�qtE�0fg�(Xi)
qg;

assumption [A1] then implies that for all j�j � 4Z
�

P�0

 
sup

j���0j<n�c

jD�ln(�)j > n1+t

!
�(�0)d�0 � n�2: (9)

It thus only remains to bound the second term of (7). Let Jn(�) = �n�1D2ln(�)

and Jn = Jn(�̂), then Jn = Jn(�0) + (�̂� �0)DJn(��)
T , with �� 2 (�0; �̂) and where AT

denotes the transpose of A. Let Zn;2(�0) be de�ned by Jn(�0) = I(�0)+n
�1=2Zn;2(�0);

then

P�0
�jJnj�1 > nt

� � P�0
�jI(�0)j�1 > nt=2

�
+ P�0

�
n�1=2jZn;2(�0)j > 1=4

�
+P�0

n
j(�̂ � �0)DJn(��)

T j > 1=2
o
: (10)

Hypothesis [A5] implies that the �rst term of the right hand side of (10) is of the

right order. The last term is bounded by

an = P�0

�
jDJn(�̂)j > nc=2

�
+ P�0

�
j�̂ � �j > n�c

�
:

The �rst term of an is bounded by n�2 as previously and the second one also, using

hypothesis [A3]. We now consider the second term of (10).

P�0
�
n�1=2jZn;2(�0)j > 1=4

� � 4q
0=2n�q

0=2E�0

�
jZn;2(�0)jq0

�
� Cn�q

0=2E�0

�
jD2 log f�0(X) + I(�0)jq0

�
;

where C is a constant depending only on q0. Inequality (9) implies that there exists

4 � q0 � q such that the above expectation is �nite and integrable in �0. This

achieves the proof of Theorem 1. 2

The algorithm ML gives therefore a reasonable answer when the number of in-

dividuals is large, in theory. We now present a simulation study, to illustrate this

in practice and to compare it to the classical Gibbs algorithm M0.

3 Simulations

We have simulated a data set in a simple case of HMM, the posterior distribution

of the parameters is estimated by the Gibbs sampling M0 as described in Section

(1.2) and by the Gibbs sampling with the Laplace approximation step ML. The

comparison allows us to appreciate the relative performance of each one.

11



3.1 Simulated Model

The hierarchical model used for the simulations involves 3 states in the Markov

process, the third one being the absorbing state, and a gaussian distribution as a link

between the observations and the true states. More precisely, if Sij is the state of the

individual i, at time tij, then Sij takes its value in f1; 2; 3g and the transitions rates

are chosen to be �1 = 0:04, �2 = 0:005 and �3 = 0:009 corresponding, respectively,

to the transitions from state 1 to state 2, from state 2 to state 1 and from state

2 to state 3. The third state is supposed to be observed. If Xij is the value of

the continuous observed variable, then the conditional distribution of X given S is

L(XijjSij = k) = N (�k; �
2
k); k = 1; 2, where �1 = log 1100; �2 = log 400; �21 =

0:1; and �22 = 0:07. The choice of the parameter's values was inspired by the

HIV example where the observed variable X corresponds to the CD4 cell counts

in a log scale. 300 individuals were simulated with a number of observations per

individual between 10 and 12.

Figure 1 represents the histogram of the simulated X where the existence of two

modes clearly highlights the two states.

5.5 6.0 6.5 7.0 7.5 8.0

0
10

0
20

0
300

400
500

600

X

Figure 1: Histogram of simulated data

3.2 Implementation

The nuisance paramaters are globally denoted by � and the transition rates by �.

We consider two cases. In case 1, the mean parameters, �1 and �2, are supposed to

be known, � is then simply composed by the variance parameters (�21; �
2
2). Then,

12



it is very easy to obtain an exact analytical expression of

Z
�

�(�; S; �jX)d�. In this

case, we can simulate a Markov chain (�t; St) whose stationary distribution is the

true posterior �(�; SjX), without simulating �. This algorithm will be called the

Exact algorithm and the posterior distribution of the parameters will be considered

as a reference in the comparison with the results obtained by the other two algo-

rithms: the Gibbs Algorithm M0 and the Laplace algorithm ML. This provides us

a way to evaluate the performance of the Laplace approximation and the e�ect of

the approximation on the posterior distribution. In case 2, we consider the mean

parameters as unknown so that the nuisance parameter � contains in addition �1

and �2. In this case, no analytical expression of

Z
�

�(�; S; �jX)d� exists, excluding

the use of the Exact Algorithm.

Recall that, in the Laplace algorithm, we need to control the fact that (X;S) 2 B,
where B is de�ned in Section 2.2. In our case, since f(xj�) is gaussian, we only need
to check that the numbers of observations per state, i.e. the ns's, is large enough,

i.e. greater than n�3=4, for instance, and that the �̂'s were always neither too large

nor too small. It turned out, that these cases never happened.

As in the HIV problem studied by Guihenneuc et al. (2000), we consider the fol-

lowing prior distributions. The transition rates are taken to be uniform on [0; 0:25],

�1 and �2 are independent inverse Gamma's with parameters (4,0.1). In the case of

unknown mean, i.e. Case 2, e�2 is uniform random variable on [100; 1100], and �1

is �xed as log 1100.

3.3 Results

The results are obtained on the basis of 50000 iterations of each algorithm excluding

1000 iterations for the burn-in. Figure 2 represents the estimated posterior distri-

butions of �1 when the mean parameters are considered as known for the three

algorithms (case 1). We notice that the Exact algorithm and the Laplace algorithm

give very similar results in terms of posterior means and credibility intervals. This

remark shows in this example a very good performance of the Laplace approxima-

tion. The third algorithm, i.e. the Gibbs Algorithm, leads to a posterior mean close

to the other two means and coherent with the true value of � but the estimated cred-

ibility intervals are smaller than those obtained by the �rst two algorithms. The

Gibbs algorithm therefore seems to underestimate the tails of the posterior density of

�. This point could be explained by the strong correlation between S and � leading

to poor mixing properties in the Gibbs sampling as suggested in Section 1.2. The
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classical diagnostic tools such as those provided by CODA give no real indication

of divergence for the three algorithms. This is probably due to the well known fact,

that those tools fail to diagnostic when the Markov chain never visits parts of the

support of the target density. Moreover, this feature of the Gibbs algorithm, i.e. it

doesn't explore well the tails of the target density when the number of parameters is

very large is well known. What is rather surprising, is that the algorithm improves

so much, by reducing the number of parameters by a small amount.
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Figure 2: Posterior distributions of �1 for the case 1 obtained by, from top to bottom:

Exact, Laplace, Gibbs algorithm

A new parameter of interest which can be evaluated at each iteration is the

waiting times Ti!j of passage into state j starting from state i. Figure 3 gives the

estimated posterior distributions of T1!3 by the three algorithms. This parameter

can be considered as a summary of the global trajectory of the individuals, its

computation involves the value of the three transition rates. The three algorithms

give similar results in terms of posterior mean and credibility intervals, suggesting

that the di�erences previously noticed are counterbalanced. We observe the same

phenomenon in the second case when the mean parameters are unknown. Figures

4 and 5 represent the estimated posterior distribution of respectively �1 and T1!3

by the Laplace algorithm (top) and the Gibbs Algorithm (bottom). Remember

that, in this case, the Exact algorithm can not be implemented. We observe again
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Figure 3: Posterior distributions of T1!3 for the case 1 obtained by, from top to

bottom: Exact, Laplace, Gibbs algorithm

a coherence between the posterior means but not between the ranges of �1. As

previously, the Gibbs Algorithm seems to have some di�culties to cover the support

of posterior density of this parameter. Note also that the distributions of T1!3

obtained from both algorithms are again very similar.

We do not present here the results for �2 and �3 since they are very similar to

those obtained for �1.

A good estimation of the transition rates is very important because it charac-

terizes the trajectories before the absorbing state. It is specially relevant, when a

covariate e�ect, such as a treatment, is studied. The covariate e�ect, say the treat-

ment, can be measured, for instance, by the ratio between the rates associated to

treated patients and the rates associated to non treated patients. The treatment

would have an e�ect if 1 does not belong to HPD regions for this ratio. Guihen-

neuc et al. (2000) show that the covariate e�ect can be highlighted on a part of

trajectories but is diluted in global measures like waiting times, T1!3 .
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Figure 4: Posterior distributions of �1 for the case 2 obtained by, from top to bottom:

Laplace, Gibbs algorithm
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Figure 5: Posterior distributions of T1!3 for the case 2 obtained by, from top to

bottom: Laplace, Gibbs algorithm
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4 Conclusion

In this paper, we therefore propose an algorithm, which simulates an approximated

posterior density, by using a Laplace approximation at each iteration of a Gibbs

algorithm. We have proved that the new target density gets close to the true one,

as the number of observations increases. In the simulations we have carried out,

we observed that, even with a reasonable number of individuals (300), the posterior

distribution was very well approximated by the Laplace algorithm. The surprisingly

good behaviour of the Laplace approximation, might be due to the fact that Laplace

approximations of posterior quantities are actually correct to the order n�3=2 instead

of n�1, as was suggested by Tierney, see Kass, Tierney and Kadane (1989).

The types of models considered here, i.e. hidden Markov models with conditional

independence, are of great interest in many �elds of applications. This algorithm

could therefore be used in many applied studies where the large computation time is

a real problem, as an improvement of the classical Gibbs algorithm. It seems that,

not only it reduces the computational time, but also that the tails of the posterior

distribution are better estimated, leading to more reliable con�dence regions.

It would be interesting to study the behaviour of the Laplace algorithm on real

data, where we are, in addition, often faced to the misspeci�cation of the model.

An other extension of this work, could be to consider more complex dependence

structure, as is encountered, for instance, in DNA problems.
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5 Appendix 1 : Proof of (8)

We recall that An = f�; j� � �0j > n�c; ln(�) � ln(�̂) > � logng. In this proof, for

clarity's sake, we denote �(B) the probability of B under the prior distribution of
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�. Then

P�0
�
�(An) > n�1

	 � nE�0f�(An)g
= n

Z
j���0j>n�c

P�0 fln(�)� ln(�0) > � logng �(�)d�

� n

Z
j���0j>n�c

P�0
�
Zn(�) >

p
nK(�0; �)� logn=

p
n
	
�(�)d�;

where Zn(�) = n�1=2 fln(�)� ln(�0) + nK(�0; �)g. Let
~An = f�; j� � �0j > n�c; K2(�0; �) � (2 + a=�) logn=nM2(�0; �)g;

Hypothesis [A4] implies that

P�0f�(An) > n�1g � n

Z
~An

P�0
�
Zn(�) >

p
nK(�0; �)=2

�
�(�)d� + n�1�(a=�):

Let � 2 ~An,

P�0
�
Zn(�) >

p
nK(�0; �)=2

� � e�t
p
nK(�0;�)=2

h
E�0

n
et(log f��log f�0 )=

p
n
o
etK(�0;�)=

p
n
in

= e�t
p
nK(�0;�)=2

�
1 +

t2

2n

Z 1

0

E�0

n
(l(�0)� l(�))2eut(l(�)�l(�0))=

p
n
o
du

�n

� e�t
p
nK(�0;�)=2

�
1 +

t2M2(�0; �)

n

�n

� e�t
p
nK(�0;�)=2+t2M2(�;�0)=2:

Let t = 2
p
nK=M2, then P�0 (Zn(�) >

p
nK(�0; �)=2) � e�nK(�0;�)2=M2(�;�0), we thus

obtain
R
~An
e�nK(�0;�)2=M2(�;�0) � n�2�(a=�); which achieves the proof of (8).
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