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Summary. We consider a Bayesian approach to goodness of fit, that is, to the problem of test-
ing whether or not a given parametric model is compatible with the data at hand. We thus con-
sider a parametric family 7 = {Fy,6 € ©} , where Fy denotes a cumulative distribution function
with parameter . The null hypothesis is Hy : X ~ Fy for an unknown 6, that is, there exists
6 such that F»(X) ~ U(0,1). If Hy does not hold, Fy(X) is a random variable on (0, 1) which
is not distributed as 2/(0, 1). The alternative nonparametric hypothesis can thus be interpreted
as Fy(X) being distributed from a general cdf Gy on (0, 1), where ¥ is infinite dimensional.
Instead of using a functional basis as in Verdinelliand Wasserman (1998), we represent Gv as
the (infinite) mixture of Beta distributions, polf(0,1) + (1 — po) >, PrBe(ax, Bx) . Estimation
within both parametric and nonparametric structures are implemented using MCMC algorithms
that estimate the number of components in the mixture. Since we are concerned with a good-
ness of fit problem, it is more of interest to consider a functional distance to the tested model
d(F,F) as the basis of our test, rather than the corresponding Bayes factor, since the later
puts more emphasis on the parameters. We therefore propose a new test procedure based on
E™[d(f,F)|X"], with both an asymptotic justification and a finite sampler implementation.

AMS 1991 classification. Primary 62C05. Secondary 60J05, 62F15, 65D30, 65C60.

Résumé. Nous considérons une nouvelle approche bayésienne des problemes d’adéquation
de loi, a savoir la compatibilité d’'un modéle paramétrique avec un échantillon. Si la famille
paramétrée s'écrit F = {Fy,0 € O}, ou Fy est une fonction de répartition paramétrée par
0, 'hypothése nulle est Hy : X ~ Fy avec 6 inconnu. Donc il existe 6 tel que Fp(X) ~
U(0,1). Si Ho n'est pas vrai, Fy(X) est une variable aléatoire sur (0,1) qui n'est pas dis-
tribuée comme %/(0, 1) quelque soit §. Lalternative non-paramétrique peut donc s’interpréter
comme Fy(X) distribuée suivant une loi générale Gy sur (0,1), ou ¥ est de dimension in-
finie. Au lieu de faire appel a une base fonctionnelle comme dans Verdinelli et Wasser-
man (1998), nous représentons Gw comme un mélange (infini) de lois béta pol/(0,1) + (1 —
Po) X~ PrBe(ar, Br) . Lestimation des modeles paramétrique et non-paramétrique se fait
via des algorithmes MCMC qui évaluent le nombre de composantes dans le mélange. Pour
évaluer I'adéquation a la loi, il nous semble plus intéressant de considérer une distance fonc-
tionnelle au modele testé, d(F, F), plutdt que le facteur de Bayes, dépendant plus directement
des paramétres. Nous proposons une nouvelle procédure de test fondée sur E™[d(f, F)|X"],
en fournissant une justification asymptotique et une mise en ceuvre a taille déchantillon finie.

Mots-clés: Inférence bayésienne, mélanges de lois béta, processus de vie et mort, consis-
tence, algorithmes MCMC, estimation non-paramétrique, modéle a dimension variable
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1. Introduction

It is both of high interest and of strong difficulty to come up with a satisfactory notion of
a Bayesian test for goodness of fit to a distribution or to a family of distributions

.7::{F9,9€®},

where Fy denotes a cumulative distribution function with parameter 6, for a given sample
X" = (x1,...,2n). The interest of the problematic being self-explanatory, let us rather
insist on the difficulty.

In regular testing problems, the Bayesian solution, as described in most textbooks (see,
e.g., Robert, 2001), is to build a prior distribution on each model and to derive the Bayes
factor, ratio of the marginal distributions for both models: the magnitude of this factor is
then interpreted as a degree of plausibility (or implausibility) of the hypothesis being tested.
In a goodness of fit setting, there is no such clearcut separation between two possibilities:
outside the case when X ~ Fy, the set of alternatives simply is the whole set of probability
distributions, with no obvious structure on which to base the derivation of a reference prior.
Since we do not want to engage in the difficult and disputed construction of nonparametric
priors, we will use the device of Verdinelli and Wasserman (1998), which reduces the problem
to finding a prior distribution on [0, 1], rather than on IR or IR”, through the use of the
probability transform, that is, considering Fy(X). If Hy does not hold, Fy(X) is a random
variable on (0,1) which is not distributed as 2/(0,1) for any value of §. The alternative
nonparametric hypothesis can thus be interpreted as Fy(X) being distributed from a general
cdf Gy on (0,1), where ¥ is infinite dimensional. In this setup, an acceptable resolution of
the nonparametric problem is to use mixtures of Beta distributions, of the form

pold(0,1) + (1 —po) Y _ piBe(ar, br) , (1)

E>1

whose shapes are variate enough to allow for an approximation of an arbitrary distribution
on [0,1], at least in the sense of the Hellinger distance

d(F,G) :/(\/d_F—\/E)2 .

We believe that this approach is relevant since it models naturally the distortions from
the uniform distribution. In this respect, Petrone and Wasserman (2002) have studied
Bernstein priors based on Bernstein polynomials. The advantage of Bernstein polynomials
over general mixtures of Beta distributions is that this modeling is easier to implement since
the parameters of the Beta distributions which appear in the modeling of the nonparametric
density are fixed integers; the weights are the only quantities to estimate. However we think
that by allowing the parameters to be free, we do need less components to approximate a
given density on [0,1]. Moreover, since the parameters of the Beta distributions are also
allowed to vary in ]0, 1] and are not restricted to be greater than 1, the mixtures of Beta
distributions such as (1) can approximate unsmoothed densities as well as densities that
diverge at 0 or 1.

The resolution being nonparametric, there is no hope to determine a subjective prior on
the whole set of parameters. It is thus necessary to assess the consistency of the posterior
distribution, as a validation for our prior. Diaconis and Freedman (1986) advocate this
approach and maintain that this property is important even for a subjectivist. In this
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paper, this assessment is paramount given that we are concerned with a goodness of fit
perspective. The informal perspective on this point is that if the parametric model is not
far from the true model, it is better to use such a model, especially when the number of
observations is not large. In other words, the smaller the sample is, the more relevant the
parametric model might get.

The quantity of interest is then the distance between the true density and the proposed
model, d(f, F). We approximate this quantity using E7[d(f, F)|X"]. To test the parametric
model, we must therefore compare the above posterior expectation with a quantity that
would characterize its behaviour under the null hypothesis. To do so, we use the distribution
of E™[d(f, F)|Y™], when Y™ is distributed according to

moy"|X") = [ faly")dmof6]X").
e
which is its predictive distribution under the null hypothesis. The test consists in evaluating
PE™[d(f,F)ly"] > E™[d(f, F)|X"]| X"],

where the probability is calculated under mg(y™|X™).

We prove, in section 5 that such a test is consistent, in the sense that the above prob-
ability goes to zero as n goes to infinity under the alternative and that the distribution of
E™[d(f,F)|y"] is equivalent to the true distribution of E™[d(f, F)|X™] under the null hy-
pothesis, see Theorem 4. This test procedure is therefore also satisfying from a frequentist
point of view, since it is equivalent to using a p-value.

The paper is organised as follows: in Section 2, we define the prior distribution associated
with the specific mixture of Beta distributions (1); in Section 3, we show that the posterior
distribution of the parameters of a mixture of Beta distributions is consistent; in Section 4,
we explain the estimation procedure associated with this posterior distribution; in Section
5, we detail the test of goodness of fit; Section 6 concludes with a illustration of the Hellinger
distances for some simulated samples.

2. Mixtures of Beta distributions

2.1. Representation
Given that any distribution on [0,1] can be approximated as a infinite mixture of Beta
distributions,

> peBlak, Br)

k>1
we define the general alternative to X ~ U([0,1]) to be

XNZPkB(aka,Bk) Zpkzl-

E>1 k>1

We are thus facing a rather standard mixture estimation problem where the number of
components is unknown, as in Richardson and Green (1997) or Stephens (2000). (The
approach we follow is Stephen’s (2000), as detailed below.) Due to the specificity of the
testing problem, we reparameterise the mixture as follows:

K

polU(0,1) + (1 =po) Y prBlaker,ar(l1—e)) Y pr=1, (2)
k=1 E>1
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to signify that the null hypothesis corresponds to py = 1 and that the alternative corresponds
to po # 1, under the identifiability constraint that none of the other components B(ay, by)
is equal to U(0,1).

Given the difficult identifiability issues connected with mixtures (see Celeux et al., 2000)
and this representation of Hy, we circumvent this difficulty by (a) resorting to the estimation
of the distance between (2) and (0, 1), bypassing parameterisatio problems, and by (b)
selecting an appropriate prior distribution.

For simulation reasons discussed in Cappé et al. (2001), we also choose to replace the

weights pj. with their unscaled version, wg, namely (k=1,..., K)
w
PE = Ki’c ; 0<w,<1.
Zezl we

Note at last that the representation of a Beta distribution as Be(ayeg, ag (1 —€;)) is chosen
to distinguish between the scale a > 0 and the position 0 < ¢ < 1.

2.2. Testing priors for Beta mixtures
Although a regular conjugate prior could be used in this setting just as in Diebolt and
Robert (1990) or Richardson and Green (1997), we now build a specific prior distribution
in order to oppose the uniform component of the mixture (2) with the other components.
So we choose a uniform {1, ..., Kjax} distribution on the number of components, K, the
prior

po ~ Be(0.8,1.2),

on pg [in order to favour small values of po, since the distribution Be(0.8,1.2) has an infinite
mode at 0], the prior
wy ~ Be(1,k), k=1,....K,

on the wy’s for parsimony reasons [so that higher order components are less likely], and a
prior of the form

(ak,ex) ~ {l—exp[—{Bi(ar —2)® + Ba(ex —.5)*}]}
exp [—Toa2°/2 — Tl/{aiclezl (1—€,) }] , (3)

on the (o, €x)’s, where co, . .., ¢4, 70,71, B1, B2 are hyperparameters. This choice is purpos-
edly designed to avoid the (a,€) = (2,1/2) region for the parameters of the other compo-
nents. There obviously is a fair amount of arbitrariness in the choice of that specific prior
on the (ay,€r)’s, but it fits our purpose that (a) the extra-components should avoid the
uniform distribution as much as they can and (b) that small values of ce and a(1—¢) should
also be excluded.

In the following simulations, we took the specific form

(an,ex) ~ {1 —exp [=€ {(an —2)* + (ex — -5)*}] fexp [-(/{ajer(1 — 1)} — Ka} /2] (4)

illustrated by Figure 1 for a series of values of (¢, , k). Our specific choice in the following,
unless otherwise specified, is (£, (, k) = (5,.01,.01), which corresponds to Figure 2.

As in many Bayesian nonparametric analyses, we now prove the consistency of the
posterior, which validates the choice of the prior. These consistency results are also used to
prove the consistency of the test procedure, in Section 3.2.
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Fig. 1. R’s filled. contour representation of the prior distribution (3) for various values of (¢, ¢, )
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xi= 5, zeta= 0.01 , kappa= 0.01

2 a 6 8

Fig. 2. R's filled. contour representation of the prior distribution (3) for (¢, ¢, k) = (5,0.01,0.01)

3. Convergence of the posterior distributions for Beta mixtures

As in Verdinelli and Wasserman (1998) /hereafter VW], we rewrite the problem of testing
the appropriateness of a family of distributions

F = {F@, 0 e @},
where Fy is a cdf indexed by a parameter § € ©, for a given sample z1,,...,2,, as a test
of uniformity for the transforms u; = Fy(x1),...,u, = Fp(z,), for a certain value of 6.
The alternative to this null hypothesis, also called full model, is that the sample u1, ..., uy

is distributed from an arbitrary distribution on [0,1], represented as a possibly infinite
mixture of Beta distributions [but not restricted to integer valued parameters as in Petrone
and Wasserman (2002)] .

The full model on the observations x1,, ..., x, is thus given, in terms of densities, as

H=Af = fo(x)gy(Fy(z)),0 € ©,¢) € S}, (5)

where gy is the density of a mixture of Beta distributions,

K
gy () =po + (1 —po) Y _ pig;(w), (6)

=1

with g; the density of the Beta distribution Be(a;,b;), K € N, po € [0,1], p; = w;/ E{il wi,
w; > 0. The parameters for this general model are then

Y = (K, po,{wj,a;5,b;,j =1,...K}) and 6¢€ 0.

In a more general framework than Section 2.2, we consider priors of the form 7 (v, 0) =
1 ()2 (6]¢), where 7y is assumed to satisfy the following conditions:

(a) K ~ P(K). We assume that V¢ > 0, 3r > 0 such that

P(K >tn/logn) <e ™, (7
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(b) po ~ m(po) a.c. wrt Lebesgue and with support is [0, 1].

(c) Conditional on K, we denote h(wy, ..., wk) the prior density on (wy, ..., wk ) wrt Lebesgue
measure on [0, 1]%. We assume that h is continuous.

(d) Conditional on K, we denote pk (a1, b1, ..., ak, bi) the prior density on the parameters
of the Beta densities. We impose the following form on pg:

K
pK(ala bl: ey K, bK) - Hp(aj7 b])
j=1

where a; = ajej, b = aj(1—¢;), with o; > 0 and €; € (0,1), and (o, €;) is distributed
from (3).

Obviously we need not assume that K and py are independent; however we consider
such a prior as the basis of the following results. Note that the condition (7) is satisfied in
particular by the Poisson distribution.

We first consider the consistency of the plain model, i.e. {gy,% € S}, without the
additional level of estimating the parameter 6.

3.1. Mixtures of Beta distributions
Let thus Uy, ..., U, be n iid observations from a distribution g on [0, 1].

Let A:(g0) = {9 : d(g0,9) < e} and N. = {g : Z(go,g9) < €}, where d is the Hellinger
distance and 7 is the Kullback divergence,

Z(g0,9) = /01 go log [%} du.

First, we prove that the set of densities that can be approximated, in the sense of
the Kullback-Leibler divergence, by a mixture of Beta distributions contains the set {2 of
densities that have at most a countable set of discontinuities and that satisfy s

/0 g(z)|log g(z)|dx < oo

Tt is in fact well-known (Petrone and Wasserman, 2002) that any continuous density on [0, 1]
can be approximated by Bernstein polynomials, which constitute a subset of 2. Obviously, a
general mixture of Beta distributions can, at least, also approximate a density that explodes
around 0 at a polynomial rate 2~ ¢, d < 1 (or around 1 at a rate (1 —z)~9).

THEOREM 1. Let g € 1, then, for every € > 0, there exists g, with ) € S, such that

(g, 9y) < €.

The idea of the proof, is the following. Since g € 2, we can approximate

/ g(@)logg(x)de by / () log §(x)d
0 0

where g is piecewise constant, and since g has a countable set of discontinuities, the pieces
where § is constant can be considered as intervals in (0,1). We then approach § in terms
of Kulback-Leibler divergence, using a mixture of Beta distributions. By considering a
mixture, we can work on each sub-interval separately, and this simplifies the calculations.
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Proof. Let g € Q. There exists a piecewise constant function § such that [|glogg +

glog gldz < e. We can moreover impose wlog that g(z) = Zf\;l I, w;, with Zf\;l wi|A;] =
1 and A, = (Ti — (Si,TZ' + 61)

Now consider gy (z) = Zf;l w;(20;)h;(x), where h;(z) is a Beta density. We have

N N
Z w; l(%i) logw; — / | log {Zwl(%l)hl(a:)} dm]

i=1 t =1

< (@ tog — [ tog w20l

i=1 Ai
N
== >wi [ Togl(26)hi(e)lde.

Since we can work on each A; separately, we drop the subscript i for simplicity’s sake.

We prove that, by choosing carefully the a’s and §’s (the parameters of the Beta densities),
we obtain

/ og (1A hs(e)ldz = [Ad] x o(1), (®)

For each ¢ € (0,1) (fixed), the normalising coefficient of the Beta distribution satisfies
[(a)
T(ae)T(a(l —¢))
_ a“e *\/2r/a

(ag)ec e\ /27 [(ae)(a(l — g))a(1=e) e=all=2), /27 /(a(1 — €))
Q=)' ae(1 —¢)

B(ag,a(l —¢))

(1+0((ee(1-¢))™"))

as a,ae, a(l —€) — oo, by Stirling’s formula. Moreover, let §/7 = o(1), §/(1 — 7) = o(1),
and € = 7, then

749
/ log [2*™ (1 - 2)*0~)"1dg
T—0

= (ar—=1)((t+d)log(r+ ) — (1 —9)log (T — &) — 20)
+a(l-7)-1)((1—-—74+0d)log(l—7+6)—(1—7—10)log(1 —7—0)—26)

56° 5
= (ar—1) [2610g7+ 3.3 +0 (ﬁ)]

+(a(l-7) - 1) [2610g(1 —7)+ 3(15i)2 +0 <(1 i)gﬂ .

Therefore, when o = o(6~*/(7(1 — 7))?), ar,a(l — 1) = oo,

3(1 Y
/ log [(20)h(z)]de = 20 [3?;57_) ~log ((1 — 7)) + log v/a — mng +log (26) + o(1)
A T T
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and (8) is satisfied as soon as

583 B log (27)
m—FlOg\/_—]Og(T(I—T)—10g(26)+ 5

There exists a solution to this equation, which is essentially of order O(6=37(1—7)|log d/(7(1 — 7))|)
and Theorem 1 is proved. O

We then have the following result on the posterior distribution:

THEOREM 2. Let Uy, ..., U, be independent and identically distributed r.v.’s from go € (0.
Consider the prior w1 satisfying the above conditions (a)—(d), then the posterior distribution
of ™ converges in the following strong sense: Ye > 0,

A (90)|Ur,...,Un] = 1, go a.s. 9)

The consistency of the posterior mean of the density (which is a standard Bayesian
estimate for the density) follows from (9) in terms of the Hellinger distance d.

Proof. The proof of this theorem is obtained using Theorem 1 of Barron, Schervish and
Wasserman (1998) [hereafter BSW], which we recall in Appendix A.

To begin with, we prove condition [Al] in Theorem 1 of BSW. Let go = gy, where
¥ = (po, K,wi,a;,€;,i < K). So we first consider a finite mixture of Beta distributions.
Then 7(N.) > 7(NX), where NX is the set of densities in N., that are mixtures of K Beta
distributions.

To obtain condition [A1] in Theorem 1 of BSW, we prove that there exists § > 0 such
that |¢p — 4’| < 0 implies that fy € N,, and thus 7(N,) > 7[{|]p — ¢'| < §}]. The prior
density being strictly positive, the above probability will then be strictly positive.

When K is fixed, the model is a parametric model. A Taylor expansion of log g, around
1) leads to

|log gy (u) —log gy (u)] < M(1+logu)l — 4|,

and thus,

1
I(gy,gu) < M|t — w'|/0 1+ logulut(1 — u)~tdu < M|y — o).

Let us consider some density go € 2 on [0, 1]. Theorem 1 implies that Ve > 0, there exists
Y = (po, K,wj,a;j,bj,j =1, ..., K) such that Z(go, g4) < €/2. Using the above calculations,
we deduce that for any such go € , condition [Al] is satisfied.

We now consider condition [A2]. We construct F, in the following way:

Fn={gy; K <tn/logn,t, <aj,b; <Typ,j=1,.., K},

with T,, = n!, with [ > 1/co and t,, = 2e~T where ¢y > 0 is defined by (3). Then simple
calculations imply that 7(F5) < e "", for some r > 0.

Let A, = {gap, 0 < tp < a,b <T,}, where g, is a Beta density with parameters a and
b and n = (a,b) € [t,, Tn]*.
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Denote 7 = (11,72), 1 = a+ b, T = 71 + 72, B(n) be the renormalising constant of the
Beta density with parameter n = (a,b) and C' and p be generic positive constants. For all

n' = (n,m3) € [n—7,n+7]

9y (U) < gnf‘r(u)M = gU(

Bin ¢

We now determine conditions on 7 and 7» such that

/gU(u)du - % <145, (10)

Using simple calculations on logI'(z), we obtain that

(i) fa,b<2i=12

F(G—Tl)r(b—TQ) ]_—‘(77’+7_—) 27_1 27_2
8 (F(a+T1)F(b+TQ)> +log (m) S s tion AnAn)C

Then the integral is bounded by 1+ § if 1 < dpa and 79 < dpb, with 1/2 > p > 0.
(ii) fa < 2, b> 2, then 7 > 2 and

L(a—7)T(b—7) I(7+7) o
o8 (F(a +7)0(b+ m) +1og (W) < oo e (@+1) - C

Then the integral is bounded by 14 6 if 1 < pda(l+log(7+1))"" and = <

pd (14 1log (7+1))7".

(iii) If b < 2, a > 2, then things are symmetrical to the previous case.
(iv) If a,b > 2,i=1,2, then

I(a—7)L(b— 1) T(j + 7) )
to <F(a T+ m) +log (m) < =2(r +m)[p —log (71 + 1)].

The integral is then bounded by 1+ 4§ if 7; < pd[1 +log (7 + 1)]7%, i = 1,2.
We now count the number of upper bounds in F,,:

(i) In the cube [t,,2]?, ¢ (1 + p6)K > 2 implies that the number of upper bounds in this
cube is bounded by:

Ny < (log (2/t) log (14 p0) ™)

(ii) In the cubes [ty,2] % [2,T}] or [2,T,] X [tn, 2], in each column (for b fixed), the number
of upper bounds is bounded by

log(3+1T),)

K <log (2/ty)log (1 + pdlog (3 +T,)™") " < 2log (2/t,) p

when T is large enough. The total number of bounds in the cube is then bounded by:
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(iii) In the cube [2,T,] %X [2, T3], the number of upper bounds is bounded by:
c
N; < 6—2T3 log T,
Finally, the total number of cubes is bounded by
N = ?:S—S’Tﬁ longQ, since t, = 2e T,

Using Genovese and Wasserman (2000), we obtain that the number of upper bounds for
the elements of F,, can be bounded by

2k,
B Ak
2k

(3MB)2tn/10gn

tn/logn
J4tn/logn :

= 2(tn/logn + 1) (T?log T?)

When T}, = n!, with I > 1/cy and by choosing ¢ = ¢/6l, we obtain log N,, < nc and (9) is
proved. O

3.2. General goodness of fit model
We now consider the general parametric model

H={f(x) = fo(2)gy(Fos(2)),0 € ©,¢ € S} (11)

where g, is defined as in the previous section. We establish the strong consistency of the
posterior distribution, under some regularity conditions on fj.

Let X1, ..., X, be n iid observations from a distribution with density fo against Lebesgue
measure. Let F = {fp,0 € O} be the parametric model, with @ C IR? compact. Denote
m(f) the marginal prior density on ©.

We consider the following assumptions:

H1 For all § € O, supp(fy) = X, independent of 6 and supp(fo) C X.
H2 For all § € ©, ¢ > 0, 3¢ € S such that

Z(fo, fogy (Fp)) < e.

H3
({6, Z(fo, fo) < 00}) = 1.

H4 Assume that V0 € ©, f4 is bounded and that 37y > 0 such that V7 < 7,

/X \/f;?(z)dz < oc.

H5 Assume that VA € ©, 3dy, 71, C, B > 0, such that Vd < dg, 30 < 7 < 7yd®, Imy,ms > 0
such that
mi fo(@)'F7 < fo(x) <mafe(z)' ™7, VI8 — 6] <d,

and -
mg/ fo(x)"dz < 1+ Cd°.



Bayesian Goodness of Fit 11

Although the expression of the hypotheses H4 and HS5 is rather unusual, they are in
essence fairly general and are satisfied for most known models, when the parameter space
is compact. For instance, if f5(z) = =976, with 6 € [¢, E], 0 < € < E, then if |§' — 6| < d#,

(1= d)6 " fy (@) < for(x) < (1 + D) fo(2) 7.

Heavy tail distributions can also satisfy H4 and H5, at least when they have moments of
order greater than 2 (for H4 to be satisfied). We have chosen such an expression for the
above hypotheses because it is more appropriate to the mixture of Beta distributions.

We then obtain the following consistency theorem :

THEOREM 3. Under the conditions H1I-H5, Ve > 0,
w[AJ X" =1, as n— oo, foa.s. (12)
This result implies that

E™ [d(fo, fo,u)| X" = 0, foa.s.

as n goes to oo.

Proof. As in Theorem 1, the proof is based on Theorem 1 of BSW. The hypothesis H2
implies that Ve > 0, V0 € O,
m[Ne|6] > 0,

therefore 7[N;] > 0 and condition [A1] in BSW is satisfied. We now prove condition [A2].
Let

Fn ={fo(x)gy(Fo(x)), ¢ € Fn,0 € O},

and construct the upper bounds g]U as in the previous section, i.e. in the proof of Theorem
2, but with the constraint:

1
/ g]l-](u)du <1446/2,
0

instead of 6. Since fj y is a mixture of parametric densities, we first count the number of
upper bounds for gy = g4, i.6. a Beta density with parameters (a,b), as in the proof of
Theorem 2. Then, g;(u) has the form of a beta distribution with a larger renormalisation
constant: it can be written as

95 () = gap(u)(146/2).

We can therefore work as if g; = g.4. As in the proof of Theorem 2, let ¢, < a,b < T,
with T,, = n!, 1 > 1/cy and t, = n~%, for some a > ¢; so that 7[F¢] < e~™" for some r > 0.
Throughout the proof, C' denotes a generic constant.

We thus need to bound

sup  for()ga,p(For (2))-
|6"—6|<d

First, let a,b > 1 and denote

T

ho(e) = Hy fo(e)™", Hy(z) = / ho(y)dy,

—0o0
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where H; is the renormalising constant, note that the hypothesis H5 implies that H; < oc.
we have

1=Fo@) = [ fola)de < mathy(1 - Ho(a)

Fy (x) \

thus, V|0’ — 6] < d, with d < do,
for9ap(For)(x) <m0 HI P hy(2)ga 5 (Ho(z)) = h(z).

IA

moH Fy ($):

So,
/ h(z)de = mg P H{T T <146/3
X

if moH, < (14 6/3)!/(e+b=1) Replacing a,b by T}, = n!, this is satisfied if
moHy <14 6/(8T)). (13)

Hypothesis H5 implies that (13 ) is valid when d < én~="/#/(8C). The number of such
upper bounds, for fixed a, b is then bounded by N(0)} < Co—Pn=P!/5,

Let a < 1 and b > 1 (or similarly a > 1 and b < 1). Writing hg = h§h,™®, with
a=(14+7)/(1+ 27) and using Holder’s inequality, we obtain,

z x 27
ey < ([ ) ([ Vi) (1)
— 0o —0o0
This is finite because of hypothesis H4. Hypothesis H5 implies that
Fo@)zm [ 1700 gy,

we obtain, using 7' = (14 7)/(1 — 7) — 1 instead of 7 in equation (14),

Fp(z) > m S Ho ()27

(7 VRsdy)
= mlHy() (15)

Note that m] goes to 1 and 7' goes to 0, as d goes to 0. We thus have

for(2)gas(Fpr(z)) < B(a,b)~ Hymy(m})*  hy(x)Hy(z) 2@ (1 — m! Hy(2)1H27))0 1 dg
< Hyma(my)" ™ (14 7)hg () Hy () 270D (1 — g Hy () #2701
= h(z),
which implies that
1
/ﬁ(w)dw < H1m2(m'1)“71(1+7")/ w21 (1 ot ) (1279 (1) gy
X 0
_ B(d',V
< Humat) 1+ 7)o,

where @' =a+7'(a—1) and ' =b+7'(b - 1).
Therefore, [, h(z)dz <1+ 6/3 if
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(i) Hy <1+4/15.
(i) my <1+46/15.
(iii) myHy /077 > (14 6/15)7L, with Ho = S fo(z)t ™ dz, for some fixed 7 > 7.
(iv) B(a',b")/B(a,b) < 144/15. Using the calculations of Section 3.1, this will be satisfied

if 27(1—a)/(1—7) < pda(1+log (b+ 2))~! and 27(b—1)/(1—7) < pé(1+log (b + 2)) 71,
for some p > 0.

Note that 7 depends on d the distance between 6’ and 6. As a crude upper bound we can
let a = t,, and b = T, so that when n is large enough, the most constrictive condition is
(iv). We thus need

T < pé(1+1logn) tn" =1, (16)
where h = max(l,a). Let d,, be such that when |0’ — 0| < d,,,
my fo(x)' ™ < for(x) < mafo(a) T,

as in hypothesis H5, then d,, > T,ll/ﬁ/ﬁ > p'61/Bp=h/B=1 where p' is some constant. The
number of such upper bounds, for fixed a, b, is then bounded by Cd,,? = O(n7), for some
T >0.

Let a,b < 1. We then use the same calculations as above to obtain

for(2)gap(For (z)) < Hi(mb)" ™" (m}) "2 ho(z) Hy (x) " +27) @D (1 Hy(2)) 270D = h(a),

and

B(d', V)

Bla.D) <1+46/3

/ h(z)de < Hy(ml)" (m])e!
X

To obtain the above inequality we therefore need the same conditions as previously, i.e. (i)—
(iv), apart from (iv) which is now expressed as

2r(1—a)/(1—7) <dpa and 27(1—0)/(1—7) < dpb

as in the proof of Theorem 2. This condition is again the most constrictive, when replacing
a and b by t, = n~%. The above inequality will therefore be satisfied when 7 < p’'én~, for
some p’ > 0, when n is large enough.

Finally the logarithm of the total number of upper bounds for the densities fggy(Fp),
with § € © and ¢ € F,, is bounded by

log V,, + Clogn,

where N, is the number of upper bounds defined in Section 3.1, in the case of mixtures of
betas densities, and C' is a positive constant. It is thus bounded by en, for n large enough.
O

The condition that © is compact could be relaxed, but that would imply conditions on
the regularity of the fy’s stronger than those considered here as well as conditions on the
prior 7.
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4. Estimation of Beta mixtures

4.1. Estimating the number of components
Although we are not aware of mixtures of Beta distributions being estimated in the past,
there is nothing inherently complicated in the estimation of a mixture model

K
ZpkB(akaﬂk):
k=1

with a fixed number of components K. For instance, a Gibbs sampling strategy as in Diebolt
and Robert (1990) can be implemented, based on a completion of the sample z1,...,z,
into (z1,21),-..,(Zn, 2n) where the z;’s are the component indicators,

zl-N./\/l(pl,...,pK), .T,‘,'|ZZ‘:kNB(Oéka,ak(l—ek)).

The simulation of the parameters (a, €) is then based on either an accept-reject algorithm
adapted to the distribution

{1—exp[-&{(a—2)* — (e—.5)*}] } exp [-(/{a’e(l — €)} — ka® /2]

ae a(l—¢)
M) \™ [ B
(F(ae)r(a(l — e))) { H 1‘,} { H (1 Z)} ,

zi=k zi=k

based on a N(0,10) x U([0,1]) proposal, or more simply on a random walk Metropolis—
Hastings proposal on (loga,loge/(1 —€)). As noted in Celeux et al. (2000), the posterior
distribution of a mixture problem is available in close form, except for the normalizing con-
stant, and, therefore, direct [meaning, without completion] Metropolis—Hastings algorithm
can be implemented.

The difficulty with this model arises when the number of components K is unknown. The
setting is, however, familiar, in that several solutions for this problem have been proposed
in the past, the two most prominent being Richardson and Green’s (1997) reversible jump
MCMC algorithm and Stephens’ (2000) birth-and-death process algorithm, who both dealt
with normal mixtures. Although both solutions are intrinsically equivalent, as discussed in
Cappé et al. (2001), we chose to implement the birth-and-death process solution here, be-
cause the birth-and-death process approach is somehow simpler when no additional “split”
and “combine” moves are required, borrowing Richardson and Green’s (1997) terminology.
In the case of normal mixtures, Stephens (2000) showed that the mixing properties of the
algorithm were fairly good and we confirmed through simulations that this is equally the
case here. Note that, in the case of hidden Markov models, Cappé et al. (2001) found that
the “birth” and “death” steps were not sufficient to ensure proper moves for the MCMC
chain of the K’s and the #’s, thus requiring additional “split” and “combine” moves with a
complexity then equivalent to Richardson and Green’s (1997) algorithm.

We will not describe in detail Stephens’ (2000) birth-and-death algorithm, nor will we
give the corresponding description for Richardson and Green’s (1997), enough details being
available either in the original papers, or in Cappé et al. (2001). It is sufficient to mention
here that the algorithm is based on a continuous time jump process that changes K at each
jump by +1 [birth] or —1 [death], with a fixed birth intensity A¢ and a death intensity propor-
tional to the sum of the likelihood ratios corresponding to the removal of one of the K com-
ponents. The durations between jumps are exponential variates with inverse expectation the
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sum of the birth and the death intensities, that is, with 6 _z) = (01,...,0k1,0k11,-..,0K),

K
Ao 5 L(K — 1,0(_k)|X”)>

Ty~ Tjy ~ Ao + 28
1 5$p< o+ % 2 LK, 0| xX")

except at the endpoints K = 1 and K = Ky,x. Observation of the jump process chain
at fixed time (or at every jump weighted by the duration time T; — T;_;) then leads to a
stationary evaluation of the posterior distribution on (K, ) (see Cappé et al., 2001).

4.2. Performances of the sampler

The purpose of this paper being far from studying the performances of a birth and death
jump process to evaluate the number of components in a mixture of Beta distributions, we
simply report here some basic facts that ensure that the MCMC sampler is working well
for our purpose. The illustration is thus based on 3 simulated data sets, the first one being
artificially made of 1000 equidistant values on [0, 1] which correspond to a flat histogram,
the second one being made of random iid observations from a Beta distribution, and the
third one being made of random iid observations from a mixture of two Beta distributions.

In the first case (Figures 3 and 4), the algorithm does capture the uniform structure
of the sample and it produces an estimate of K equal to 0, as shown by the upper left
and upper central graphs in the monitoring plots. The other graphs are not particularly
relevant when K = 0, since they were designed for the non-uniform case K > 0. One can
still notice that the posterior distribution on (g, €x) (lower left and lower center graph) is
quite similar to the prior distribution (see Figure 2) and also that the posterior distribution
on the pg’s when K > 0 (central left) is quite concentrated at 1.

In the second case (Figures 5 and 6), the unimodality of the distribution is again well-
captured by the algorithm since the estimate of K is 1 (upper left and upper central graphs
of Figure 5). In addition, the uniform part of the mixture is estimated as negligible (center
left graph of Figure 5) and the position parameter ¢; is well concentrated around 0.4, while
aq has a wider variation due to the heavy tails of the histogram. (Note on Figure 5 (central
left and center) the artifact induced by the fact that, when K = 1, w; is taken equal to 1.)
The fit by the “plugg-in” estimate

ET[po| X™U([0,1]) + ET[(1 = po) | X"]B (E7[are1|X"], E™[a1 (1 = €1)| X™])

is quite satisfactory, as shown in Figure 6. It does not exhibit the poor tail fit of the average
of the densities, which is due to the fact that the values of ayej and of ay(1 — €;) that are
less than 1 pull the tails up.

In the third case (Figures 7 and 8), the two components are again well identified, the
algorithm allocating approximately the same posterior weight to the cases K =2 and K = 3
(upper left graph of Figure 7) but clearly exhibiting the bimodality of the distribution (lower
central graph of Figure 7 and Figure 8). The same poor fit in the tail of the average of the
densities can be observed in Figure 8, as well as the very good performances of the plugg-in
estimate

Elpo X™U([0,1]) + (1 = Elpo| X"]) { E[p: [ X" B(E[a1&1|X"], Elan (1 — )] X"])
+E[(1 = p1) [X"]B(Elazes| X "], E[az (1 - )| X))} -
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Fig. 4. Histogram of the equidistributed sequence of 1000 points and averaged density estimator.

Average density

o.a o.e

data

1.0




0.6 0.8

0.0 0.2 0.4

40

20

10

000 0.05 010 015 0.20

Number of components

Bayesian Goodness of Fit

Number of components

n

Uniform weight & likelihood

m L
o }
T T T T
0.0 02 0.4 0.6

08

Po

10

20

10

T T T T T
2000 4000 6000 8000 10000

15

10

00 01 02 03 04 05 06

0.6 0.8

0.4

0.2

1.4

12

J

17

ag

ae

Fig. 5. Monitorings of the convergence of the birth and death sampler for a random sample of 1500
points (same legend as Figure 3).

35

30

25

20

15

10

05

0.0

Average density

—
AT ‘\:\x—x
/ N
N
k
T T T T T 1
0.0 0.2 0.4 0.6 0.8 1.0

data

Fig. 6. Histogram of a random sample of 1500 points and averaged density estimators. The curve
with the fatter tails corresponds to the average of the densities over the MCMC simulations and the
curve with the thinner tails corresponds to the plugg-in estimate of the density where the parameters
(pr, e, €1 ) are replaced by their estimates. These two curves are estimated conditional on K = 1.



18 Robert and Rousseau

Number of components Number of components Qg
o
8 ER 8
5
o 0
3
° °
8
S © o
Ei
S
3 "
o 8
o~ S
3 3
= ° 4 =
°© T T T T 1 T T T T T T °© T T T T 1
0 5 10 15 20 0 2000 4000 6000 8000 10000 0 5 10 15 20
k
Uniform weight & likelihood
®n
Q2 o
& N
] 0
-
0
K

0 5 10
05 1.0

Q
T T T T 1 °
0.0 02 0.4 0.6 08 10
Po
a
©
Q<
3
° 3
3 <«
=3
S
o
S ~
=)
“
)
3 o
° r T T T T 1
0 50 100 150 200 250
a € ag

Fig. 7. Monitorings of the convergence of the birth and death sampler for a random sample of 1250
points (same legend as Figure 3).

Average density

30

25
|

15
!
L
)
/
NN

10

0.5

0.0
L

data

Fig. 8. Histogram of a random sample of 1250 points and averaged density estimators conditional
on K = 2 (same legend as Figure 6).



Bayesian Goodness of Fit 19

5. Test of Goodness of Fit

One would like to obtain a test such that, if d(f,F) is small, the parametric model is
chosen. The difficulty is obviously to decide what small means. It could be chosen a priori,
depending on what the statistician wants. In this case the parametric model would be
selected if

H(X™) = E7[d(f, F)|X"] <

where € is fixed a priori. These situations are not always possible and we also believe that
to some extent € should depend on the number of observations. In this respect, one could
compare H(X™) with an approximation of its (frequentist) distribution under Hy. However,
since 6 is unknown, such an approximation is not available, besides this would be a purely
frequentist test, and thus not so entirely satisfying, since it would bypass the prior Bayesian
analysis of the model. We feel that a better approach consists in computing a reference
distribution, characterizing the null hypothesis and being conditional on the observations.

The goodness of fit test is based upon a quantity that is intrinsically difficult to scale.
We thus resort to a bootstrap approximation of its distribution. Let

b1 ~ mo (0] X", V"~ f(Y7"61)
92 ~ 7T0(0|Xn) 5 Y'QTL ~ f(anQ)
On ~ mo(0]X™), Yy~ f(Y"|0n)

be iid copies from the posteriorx predictive distribution. Then
Y~ mo(YX™) = / FY™16)m(do| X ™).

For each Y;* we can calculate H (Y™) and thus get a sample from the predictive distribution
of H(Y) under the parametric model. If the null model is quite wrong then Y" is very
different from X™ and therefore, H(Y™) will be very different from H(X"). If the null
model is correct, then Y is similar to X™ and so would be H(Y™) to H(X™). We then
compare H(X™) with the quantiles of the predictive distribution of H(Y"). This predictive
distribution is calculated under the parametric model. To make these statements more
rigorous we now give the following asymptotic results.

We assume that fp satisfies the usual regularity conditions to obtain a first order Laplace
expansion of the posterior density (under the parametric model), see for instance Johnson
(1970).

THEOREM 4. Under Hy, 3B € X*° such that Po(B) = 1 and VX € B, ANx such that
Vn > N, H(X™) > d(fo,F)/2 and

PH(Y™) > H(X")|X"] < PIH(Y") > d(fo, F)/2|X"] = 0.

Under Hy, P[H(Y™) > H(X™)|X™] does not converge to zero. Up to a relative error of
order n='/2, we have:

2 k2 PR [H(Y™) > H(X™)|X"] < P[H(Y™) > H(X")|X"] < PR[H(Y™) > H(X")|X"].

Proof. We proved that H(X™) — d(fo,F), as n goes to infinity, fy a.s. We now have the
following lemma.
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LEMMA 1. For all X™, H(Y™) — 0, as n goes to infinity, m(.|X™) a.s

Proof. Let e > 0, V6
d(fogy(Fy), F) < d(gy,1).
Conditionally on €, Y is independent of X" and is distributed from fy.

HY™) = /@E’T[d(f,}')l(fz)c|Y”,6]dﬂ(0|Y”)
+/ Eﬁ[d(f,f)][(fo)ﬁN€|Yn,9]d7T(0|Yn)

/E f: ]Tg)ﬂNg
—nr+6+P7r[NC|Yn]

Y™, 0)dr(6]Y™)

Therefore, conditionally on 8, H(Y"™) — 0 P a.s. Moreover, m(Y"|X™) is a.c. wrt f(Y™|0),
m(df)X™) a.s., for all X™. This implies that H(Y™) — 0, m(Y™|X") a.s. for all X™. O

Under H; i.e. when fo ¢ F, we have: H(X™) — d(fo,F) > 0. Therefore, Lemma 1
implies the first part of theorem 4.
Under H,,

PH(Y™) > H(X")|X"] = /P[H(Y”) > H(X™)|8, X"]mo(8|X™)d6

—u'J(z)u/2
- /| COPIE?
PLH(Y™) > H(X™)|fy + u/vi, X"Jdu(1 + O(n™1),
for any h > 0, where J(z) is the empirical Fisher information matrix associated with X".

J(x) converges to I(6p).
Let Z} =n~'/2Dlog fs,(Y™). The first term of the rhs can then be expressed as:

—u'J(z)u/2
PH(Y" H(X™)|0 X"d
/|u<na (27T)k/2|1]($)|71/2 [ ( ) > ( )| 0 +U/\/ﬁ, ] Uu

—u' J(z)u/2 Vv
= /][H Y7)>H(X™) /I ‘ e s J(y)u/2+R"(y’u)duf(YnWO)dYn
u|<ne

(2m)k/2|T (z)| /2
/
/

Conditionally on 6y Y and X are iid, so |.J(x)+J(y)| /% = |1(6)| /% /2*/?>+Op(n~1/?)
and |J(y)|~"/? = |1(8y)|="/? + Op(n —1/2) This implies that

e ZY) (J(@)+I W) T 2 /2) (1) + J(y)|~1/2 B
][H Y?)>H(X™) |J($)|_l/2( ) (y)| f(Yn|00)dyn(].+OP(n 1/2))

J(x)+ J Y —1/2 n . B
][H(Y")>H(X")| (|?]($)|(—1)/|2 F(Y™60)dY " (14 Op(n~1/?)).

>

PH(Y™) > H(X™)|X"] > 27F2pp[H({Y™) > H(X™)|X"](1+ Op(n~'/?)).
Using the Schwarz inequality, we also have

PH(Y") > H(X™)|X"] < Pg[H(Y"™) > HX")|X"]|(1+ Op(n='/?)).
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In other words the distribution of H(Y™) gives us, asymptotically a lower bound and an
upper bound, up to a constant, to the frequentist distribution of H(X™). This test procedure
is therefore asymptotically equivalent to using a p-value, up to a constant. Note that the
order of approximation here is a O(n~'/?) which is a lot smaller than the nonparametric
rate of convergence of E™[d(f, fo]X™). O

To simplify the computation of the test procedure, which is quite heavy, we can use
G(X™) = E™[d(gy,1)|X"] (and G(Y™)) instead of H(X™) (and H(Y™)). Indeed G(X™)
and G(Y™) have the same properties as H(X") and H(Y"). We have,

G(X™) = E"[d(fou, fo)|X"]
> d(fo,F) — E™[d(fo, fo.u)| X"] (17)
and
G(X™) < E7[d(fo, fo)|X"] + E™[d(fo, fo,u)| X"] (18)

Hence, if d(fo,F) = € > 0, i.e. under H;, using (17) and the consistency of the posterior,
we obtain that G(X") is asymptotically almost surely greater than e. If fo € F, then both
E™[d(fo, fo)|X™] and E™[d(fo, fo,4)|X™] go to 0 as n goes to infinity almost surely. H and
G have therefore the same asymptotic behaviour and we can build the same test procedure
with G as with H.

Such a simplification, is however not entirely satisfying since it forgets the width of
F, it is somehow, like reducing F to f;, where 6 is for instance the maximum likelihood
estimator.

6. Discussion

If we go back to the three samples introduced in Section 4.2, we can see on Figure 9 that, in
the first case of the equidistributed sequence, the Hellinger distance d(g,1) = 2(1 — [ ,/g)
is well-concentrated around zero. (Since the computation of [ \/9 is not possible in closed
form, this integral was replaced by a simple trapezoidal approximation.) This property
remains true when conditioning on values of K larger than 0, as shown by the histograms
on the right. Figures 10 and 11 exhibit much larger values for the two other samples. Note
once more on Figure 11 that conditioning on the value of K does not significantly modify
the distribution of the distance d(g,1), a fact we can relate to the weak identifiability of
the mixture parameters and which argues in favour of a parameter free approach as the
one we favour. On the opposite, the Bayes factor will suffer to some extent from this weak
identifiability and will be more sensitive to the choice of the prior.
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A. A theorem of Barron, Schervish and Wasserman

Let P be the set of probabilities on X. For ¢ > 0 and C C P, define £(C,e) to be the
logarithm of the infimum of the set of all £ such that there exist nonnegative functions
U, ..., fV such that

(a) [ fV(x)du(z) <1+ e for all i,
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(b) for each P € C there exists i such that fp < fV p-a.s.

We now recall Theorem 1 of Barron et al. (1999), which enables us to prove the strong
consistency of the posterior distribution. To do so, we first state the two conditions that
have to be checked in their theorem:

A1l For every € > 0, m(N;) > 0.

A2 For every e > 0, there exist a sequence (F,)5, of subsets of P, and positive, real
numbers ¢, ¢o ¢3 and € such that

c3 < ([e— Vel —e)/2, e<ée?/4,
and such that

(1) 7(F5) < 1 exp(—nce) for all but finitely many n;
(ii) &(Fn,e) < neg for all but finitely many n.

Barron et al. (1999) prove the consistency of the posterior distribution under these two
hypotheses

Theorem 1 of Barron et al. (1999): Let A. be a Hellinger neighbourhood of fo the true
density, which is defined in Section (3.1). Under conditions A1 and A2, for every e > 0,

lim 7(A|X™)=1P as.
n—oo



