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1 Introduction

Over the past forty years the theoretical literature on auctions has considerably
expanded (see Klemperer, 1999, for a recent survey). Auctions are relatively
simple and well-defined economic environments, and the theoretical models of-
ten lead to clear-cut predictions. For this reason and because auction data are
readily available, the theory has triggered a vast amount of empirical articles
(see Hendricks and Paarsch, 1995, for a survey on empirical work). Two types
of approaches can be distinguished in the empirical literature. There is first of
all the so-called reduced form approach. In reduced form econometrics little or
no restrictions are imposed on the data generating process. The objective is
typically to provide a descriptive analysis of the auction data, or to test cer-
tain predictions of the theory (such as the well-known Revenue Equivalence
theorem). The second approach is known as the structural econometric form
approach. Structural econometrics consists in methods to estimate the parame-
ters of a particular auction model incorporating all restrictions and constraints
of the theory. This approach is of particular interest when one desires to mea-
sure the effects of a change in auction design on the behavior of bidders and the
revenue of sellers.

Until now the structural econometric literature has focused its attention on
the standard first-price auction of a single indivisible good.1 Various structural
estimation techniques have been developed for this auction model under differ-
ent bidding environments. Donald and Paarsch (1993, 1996), Elyakime, Laffont,
Loisel and Vuong (1994), Laffont, Ossard and Vuong (1995), and Guerre, Per-
rigne and Vuong (2000) consider the Independent Private Value (IPV) paradigm
so that the structural element to be estimated is the distribution of private val-
ues of the buyers. Li, Perrigne and Vuong (1999) consider an affiliated private
value framework so that their objective is to estimate the joint distribution of
private values. Finally, Hendricks, Pinkse and Porter (1999) and Hong and
Shum (1999) consider the common value paradigm and propose methods to es-
timate the joint distribution function of the value of the good and the signals
received by the buyers.

The purpose of this paper is to propose structural econometric methods for
the empirical study of Wilson’s (1979) share auction model. This is a common
value model in which a single and perfectly divisible good is sold to a group of
symmetric and risk-neutral buyers. As in the standard common value auction
model for an indivisible good, the value of the object is unknown at the time of
bidding, and prior to the auction the buyers independently receive signals that
are informative about the value. Unlike the standard model, each potential
buyer not only submits a price but also a share (or fraction) he requests at that
price. Each bidder can submit as many price/share combinations as he wants,
thereby constituting a demand curve for the good. By aggregating the individual
demand curves, the auctioneer can determine the equilibrium price that clears
the market. Given the announced (prior to the auction) allocation mechanism
and pricing rule, the shares are then awarded to the winning bidders, who make
their payments to the seller. Wilson restricts his analysis primarily to two
auction formats: the uniform price auction and the discriminatory auction. In
both auction formats the allocation devise is the same, and consists in awarding

1An exception is the paper by Donald, Paarsch and Robert (1997), who consider the
estimation of sequential ascending-price auctions with multi-unit demand.
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to each bidder the fraction of the good he requested at the equilibrium price.
The payment rule, however, differs in the two auction mechanisms. Roughly
speaking, in the uniform auction, all winners (bidders with positive demand at
the equilibrium price) pay the equilibrium price, whereas in the discriminatory
auction, for each marginal share they receive, winners pay the price at which
the bid was submitted.

Although basically our estimation procedure can be applied to both the dis-
criminatory and uniform share auction model, we only present the methods for
the former auction format. The structural elements of interest are the marginal
distribution function of the value of the good, and the conditional distribution
function of the signal given the value. We specify the two distribution functions
parametrically so that the goal is to estimate a vector of unknown parameters.
This is done via a two-step procedure. In the first step we nonparametrically es-
timate the distribution function of the demand for the good using the observed
price/share bids. This first step enables us to estimate the inverse demand func-
tion for the good. In the second step, the estimated inverse demand function
is inserted into the Euler condition resulting from the bidder’s maximization
program. The Euler condition can be seen as a set of moment restrictions that
depend on the unknown parameters of interest. Minimization of the empirical
counterpart of the moment restrictions then leads to our estimator.

Our method of statistical inference only relies on the Euler condition implied
by the bidder’s maximization problem in the discriminatory auction. Therefore,
although it must be assumed that there exists an equilibrium strategy and that
all bidders behave according to this strategy, the explicit form of the equilibrium
does not need to be known.2 The fact that only the first order condition needs
to be known is a particularly attractive feature of our estimation method since
recent work has shown that, unlike the uniform share auction, it appears difficult
to find explicit optimal strategies in the case of the discriminatory share auction
(Viswanathan, Wang and Witelski (2000) and Hortaçsu (2001) have obtained
explicit solutions for the very specific two-bidder case only).

Our estimator belongs to the class of semiparametric two-step estimators
studied by Newey and McFadden (1994). Drawing on their estimation theory for
this class of models, we show that our estimator is consistent and asymptotically
normally distributed, and we indicate how the asymptotic variance matrix can
be consistently estimated.

The methods are applied to data from Treasury securities auctions. Treasury
securities auctions are often cited as a good example of a share auction (see for
example the recent survey on Treasury auction theory by Das and Sundaram,
1996). Treasury securities auctions are auctions in which huge quantities of
strictly identical goods—i.e. securities—are sold to a group of buyers, generally
large investment institutions. Since these institutions typically require different
amounts of securities at different prices, the Treasury allows them to submit
price/quantity combinations, that is a demand curve for the securities. Nor-
malizing the total amount of securities offered to one, and dividing the quantity
bids by the total volume, a Treasury auction is indeed a good approximation of

2This is an important difference with the first-price auction papers cited above. The
econometric methods developed in those papers all rely on the explicit solution of the optimal
bidding function in the first-price auction model. The estimation procedures for the general
class of game theoretic models proposed by Florens, Protopopescu, and Richard (2001), also
necessitate an explicit solution of the equilibrium strategy.
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a share auction.
Although Wilson did not mention Treasury auctions in his article (may be

because at that time the practice of selling securities at auction was much less
widespread than nowadays, see Bartolini and Cottarelli, 1997), his model and
its underlying assumptions are often regarded as well adapted to the context of
Treasury auctions. For instance, in their discussion about the theoretical litera-
ture on divisible-good auctions, Back and Zender (1993) refer to Wilson’s share
auction model as the most relevant model for Treasury securities. Bikhchandani
and Huang (1993) state that in Treasury securities auctions the common value
assumption is appropriate because the value for each bidder is a common and
unknown resale price. Each investor is presumed to have some private infor-
mation about the resale price of the security (coming from forecasts on interest
movements, and anticipations of future demand for the security). Finally, Das
and Sundaram (1996) argue that bidders in Treasury securities auctions can be
considered as symmetric and risk-neutral.

Our empirical analysis is based on very detailed bidder-level data from
French Treasury securities auctions held in 1995. In France, the Treasury sells
the securities via discriminatory auctions. In the first part of the empirical
analysis our purpose is therefore to estimate the parameters of the discrim-
inatory auction model using the two-step estimation procedure. The second
part is more policy-oriented. Given an explicit optimal strategy in the uni-
form auction model (derived under the same distributional assumptions as in
the discriminatory model), and using the parameter estimates of the discrimi-
natory auction model, we can approximate the hypothetical equilibrium price
that would emerge in the uniform auction, and thereby also the corresponding
revenue. Comparing, for each auction held in 1995, the observed revenue (from
the discriminatory auction) with the hypothetical revenue generated by the uni-
form auction, we can evaluate if the discriminatory auction is revenue-superior
to the uniform auction, or not.

We hereby contribute to a debate that has been going on at least since Fried-
man (1960). He supported the uniform auction format, claiming that collusion
is less likely in this auction system and that for this reason the uniform auction
would be better from the Treasury’s viewpoint than a discriminatory auction.
His article initiated a vast literature on the revenue generating properties of the
uniform and discriminatory auction formats. Although most of the papers in
this literature are theoretical, there are some empirical contributions. The em-
pirical studies on the optimal revenue debate are either based on experimental
data (see for example Smith, 1967, and Abbink, Brandts and Pezanis-Christou,
2001), or on natural experiment-type data (see for example Umlauf, 1993, who
examines the revenue issue by exploiting the fact that the Mexican Treasury
switched from discriminatory pricing to uniform pricing, and Berg, Boukai and
Landsberger, 1998, who exploit the fact that the Norwegian central Bank si-
multaneously applied both auction rules to similar types of securities). Outside
a laboratory setting, and in the absence of natural experiments—France has
never experimented with the uniform auction format—it is necessary to adopt
a structural form approach in order to determine the best auction mechanism
for the French Treasury.

Hortaçsu (2000) is the only paper we are aware of that also addresses the
revenue-issue in a structural way. He proposes a model of strategic bidding
behavior in the discriminatory share auction. His model differs from Wil-
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son’s model because the IPV paradigm is adopted instead of the common value
paradigm, and also because the prices and shares submitted by the bidders are
discrete instead of continuous variables (bidders in his model are constrained to
submit price/share bids on a finite grid). Using the Euler condition, he man-
ages in an ingenious way to estimate the marginal valuations of the bidders.
The estimated marginal valuations enable him to reconstruct the seller’s rev-
enue in the perfectly competitive outcome, which constitutes an upper bound
to revenue from the uniform auction. Using data from the Turkish Treasury
auctions, he finds that the revenue generated by the discriminatory auctions
exceeds the competitive revenue, implying that in Turkey the discriminatory
auction is revenue-superior to the uniform auction format.

The main advantage of Hortaçsu’s approach over our’s is that his method is
distribution-free. In his setup the distribution function of private values does
not need to be specified, whereas we rely on a parametric framework to evaluate
and compare the auction performances. The major disadvantage3 of Hortaçsu’s
approach relatively to our’s is that his methodology does not always allow to
rank the auction institutions in terms of revenue. Indeed, in case the compet-
itive outcome exceeds the revenue from the discriminatory auction, then the
only conclusion that can be drawn is that both the uniform and discriminatory
auctions are inferior to the competitive outcome, but nothing whatsoever can be
concluded about the relative performance of the 2 auction formats. In contrast,
our methodology does not suffer from this drawback since simulations under
the uniform auction rule can be performed under all circumstances, and hence
revenue-comparisons can always be made.

The paper proceeds as follows. Section 2 presents Wilson’s (1979) share
auction model, the estimation method, and the asymptotic properties of the
two-step estimator. Section 3 describes the institutional background of the
French Treasury securities auctions, and contains a descriptive analysis of the
auction data. Section 4 presents the results, and section 5 concludes.

2 Share auction theory and the estimation method

2.1 The share auction model

This subsection presents the theory of share auctions developed by Wilson
(1979). A divisible good is auctioned. There are n ≥ 2 risk-neutral bidders.
The value of the good is the same for all bidders but unknown at the start of
the auction. It is assumed that the value is a realization of a random variable V,
which has the distribution function FV (v) = Pr(V ≤ v).4 Prior to the auction,
each bidder i = 1, ..., n receives a private signal about the value of the good.

3Another disadvantage is that, unlike our setup, the economic fundamental in his model
(the distribution of private values), is unidentified and cannot be estimated. Admittedly, given
the specific policy application in Hortaçsu’s paper, knowledge of the private-value distribution
is not directly relevant. However, in other types of applications, when the goal is to predict
bidders’ behavior under alternative auction rules, it is crucial to be able to identify and
estimate economic fundamentals. Still another disadvantage is that his model is an IPV
model, whereas we believe, as Bikhchandani and Huang (1993), that a common value setting
is more appropriate in the context of Treasury auctions.

4Throughout the paper random variables are distinguished from their realizations by de-
noting the former by upper case letters and the latter by lower case letters.
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The signal received by individual i is assumed to be a realization of the ran-
dom variable Si. As usual in common value-type auction models, the bidder’s
signals S1, ..., Sn are i.i.d. given V . The distribution function of Si given V is
thus the same for all bidders i, and is denoted FS|V (s|v) = Pr(Si ≤ s|V = v).
It is assumed that signal Si is only observed by bidder i, and not by the seller
or the other potential buyers. Furthermore, the number of bidders n, and the
distribution functions FV (·) and FS|V (·|·) are common knowledge.

Each bidder i is required to submit to the auctioneer a tender (sealed, and
written) stating, for each price of the good, the desired share of the good. The
price-share combinations submitted by bidder i constitute bidder’s i demand
function for the good. By aggregating the individual demand functions, the
auctioneer can determine the equilibrium price that clears the market, i.e. the
price for which aggregate demand equals one. Given the pre-announced al-
location devise and pricing rule, the shares are then awarded to the winners,
who pay the owner of the good. In the two auction formats mentioned in the
introduction, the uniform price auction and the discriminatory auction, the al-
location mechanism is the same, and consists in allocating to each bidder the
fraction of the good he requested at the equilibrium price. The payment rule,
however, differs in the two auction formats. In the uniform price auction each
winner simply pays the equilibrium price multiplied by his requested share. In
the discriminatory auction each winner has to pay the area under his inverse
demand curve between zero and his requested share, so that here the payment
is bidder-specific.

Let xi(·, ·) be a strategy of bidder i. A strategy is a function of the price of
the good p and the signal si, such that when bidder i receives signal Si = si, he
submits a demand schedule specifying that at each price p he demands a share
xi(p, si) of the good. In characterizing an optimal strategy, it is assumed that
the n bidders are identical (except for the fact that they can receive different
signals). Furthermore, attention is restricted to symmetric equilibria, so that
xi(·, ·) = x(·, ·) for all i. By optimal strategy is meant a symmetric Bayesian
Nash equilibrium of the auction game. A strategy is thus optimal if no player
can deviate in a profitable way from equilibrium behavior if the other players
adopt the optimal strategy.

The form of an optimal strategy depends, among other things, on the auction
mechanism that is used to sell the good. Consider first the characterization of
an optimal strategy in the case of a uniform auction. Let x(·, ·) now designate
the optimal strategy. Suppose that all bidders except i use the strategy x(·, ·),
and that i uses the strategy y(·, ·). Let p0 denote the equilibrium price, i.e. p0

is the price such that ∑
j 6=i

x(p0, sj) + y(p0, si) = 1. (1)

The above market clearing equation shows that the equilibrium price depends
on the signals received by the competitors of bidder i. Since these signals are
unknown, the equilibrium price is also unknown to bidder i. But since bidder i
knows the distribution function from which the signals Sj , j 6= i, are drawn, and
also the function x(·, ·), he can determine the (conditional) distribution function
of the random variable P 0. That is, he can determine

H(p; v, y) = Pr{P 0 ≤ p|V = v, y(p, si) = y, Si = si}
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= Pr

∑
j 6=i

x(p, Sj) ≤ 1− y|V = v, Si = si


= Pr

∑
j 6=i

x(p, Sj) ≤ 1− y|V = v

 .

When bidder i uses the strategy y(·, ·), and if the value of the good and equi-
librium price are respectively v and p0, his profit is (v − p0)y(p0, si). Bidder’s i
expected profit in a uniform auction is therefore

E

{∫ ∞
0

(V − p)y(p, si)dH(p;V, y(p, si))|Si = si

}
(2)

where, as the notation suggests, the expectation is with respect to V given
Si = si. The strategy x(·, ·) is indeed optimal if the maximum of (2) is attained
at y(·, ·) = x(·, ·). A solution to this maximization problem can be characterized
by applying the principles of calculus of variations. Wilson has shown that
the necessary condition for optimization (the Euler condition) is that for all
p ∈ [0,∞)

0 = E {(V − p)∂H(p;V, y)/∂p+ x(p, si)∂H(p;V, y)/∂y|Si = si} (3)

where the partial derivatives of H with respect to p and y are evaluated at
y = x(p, si).

Next consider the discriminatory auction. Using the same notation as above,
bidder’s i profit in a discriminatory auction, when he adopts the strategy y(·, ·),
and when the value of the good and equilibrium price are v and p0, equals
(v − p0)y(p0, si) −

∫ pmax

p0 y(u, si)du, where pmax is the largest price for which
demand y(·, si) is non-negative. Bidder’s i expected profit is therefore

E

{∫ ∞
0

[
(V − p)y(p, si)−

∫ pmax

p

y(u, si)du

]
dH(p;V, y(p, si))|Si = si

}
. (4)

Wilson (1979) does not derive the Euler condition for the discriminatory
share auction. We show in appendix A that the Euler condition in this case is

0 = E {(V − p)∂H(p;V, y)/∂p−H(p;V, y)|Si = si} (5)

where the distribution H and the derivative of H are evaluated at y = x(p, si),
and the condition must hold for all p ∈ [0,∞). Note that this Euler condition
differs from the uniform-auction Euler condition (3) only in the second term of
the expectation.

Our method of statistical inference is highly facilitated by rewriting the
above Euler equation. Taking the expectation with respect to V, Si, and then
integrating over p, (5) can be rewritten as (see appendix A for the proof)

0 = E
{

(n− 1) · (E (V |S1 = s1, ..., Sn = sn)− p) · 1
{
P 0 ≤ p

}}
−E

{
(p− P 0) · 1

{
P 0 ≤ p

}}
(6)

where the first expectation is with respect to S1, ..., Sn (the random variable P 0

only depends on S1, ..., Sn), the second with respect to V given S1, ..., Sn, the
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third with respect to P 0, and 1 {·} is the indicator function. The condition (6)
must hold for all p ∈ [0,∞).

The Euler condition forms the basis of our estimation method for the discrim-
inatory share auction model. As explained in the next subsection, our estimator
is defined as the minimum of an empirical counterpart of the Euler restriction.
The crucial advantage of the reformulated Euler condition (6) over the Euler
condition (5) is that it is much easier to obtain an empirical counterpart of the
former. This comes from the fact that (6) no longer depends on H(·; ·, ·), the
distribution function of the market clearing price. Indeed this function (and its
derivative with respect to p) is difficult to compute and evaluate because of its
implicit dependence on the equilibrium strategy x(·, ·).

2.2 Estimation

2.2.1 Definition of the estimator

The estimation procedure exploits the fact that the results from several different
auctions are available. Suppose there are L auctions and let l index the l-th
auction. In many applications the goods sold in the different auctions are not
completely identical. Also, the number of bidders typically varies from auction
to auction. To capture this between-auction heterogeneity we introduce the
commonly known vector of variables zl characterizing the good sold at the l-th
auction, and the number of bidders, nl.

It is assumed that the random variables (Nl, Zl), l = 1, ..., L, are indepen-
dently and identically distributed. The value of the good in the l-th auction,
Vl, is assumed to depend on Zl but not on Nl. Similarly, the signal received by
individual i in auction l, Sil, depends on Zl (and on Vl) but not on Nl. Condi-
tionally on Z1, ..., ZL, the values V1, ..., VL are assumed to be independently and
identically distributed. Furthermore, S1l, ..., Snll are independent conditionally
on (Vl, Zl), and the signals Sil and Si′l′ are independent conditionally on Zl and
Zl′ for all l 6= l′. We adopt a parametric framework. The distribution functions
are specified parametrically and are thus known up to a vector of parameters.
The conditional distribution of Vl given Zl = z is denoted FV |Z(·|z; θ1), where
θ1 is a vector of parameters. The conditional distribution function of Sil given
Vl = v and Zl = z is denoted FS|V,Z(·|v, z; θ2), where θ2 is a vector of param-
eters. Given the distribution functions FV |Z(·|·; ·) and FS|V,Z(·|·, ·; ·), we can
determine the distribution function of Sil given Zl = z, denoted FS|Z(·|z; θ),
where θ =

(
θ′1, θ

′
2

)′
.

The objective is now to find an estimator of θ0, the true value of θ. As
mentioned in the introduction, our estimation method only relies on the Euler
condition of the discriminatory auction model. It is therefore not necessary to
dispose of an explicit optimal strategy in the case of a discriminatory auction
model. It must however be assumed that there exists an equilibrium strategy,
and that all agents bid according to this strategy.

Our estimator of the parameter of interest θ0 is a two-step estimator. Let us
start by describing the first step of the estimation procedure. From now on we
explicitly write the optimal strategy as a function of not only the price and the
signal, but also the number of bidders, the vector of auction-characteristics, and
the parameter. That is, x(p, s, n, z; θ0) is the optimal demand for the good at
price p for an individual with signal s, when the auction is attended by n bidders
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and has characteristics z, and when the true value of the parameter equals θ0.
For any given p ∈ [0,∞), let G(·|n, z; p) denote the distribution function of
x(p, Sil, Nl, Zl; θ0) conditionally on Nl = n and Zl = z. We have

G(x|n, z; p) = Pr(x(p, Sil, Nl, Zl; θ0) ≤ x|Nl = n,Zl = z)
= Pr(x(p, Sil, n, z; θ0) ≤ x|Nl = n,Zl = z)
= Pr(Sil ≥ x−1(x, p, n, z; θ0)|Nl = n,Zl = z)
= Pr(Sil ≥ x−1(x, p, n, z; θ0)|Zl = z)
= 1− FS|Z(x−1(x, p, n, z; θ0)|z; θ0)

where5 the fourth equation follows from the assumption that Sil and Nl are
conditionally independent. The third equation holds under the additional hy-
pothesis that the optimal strategy x(·, s, ·, ·; ·) is a strictly decreasing function
in s.6 It follows that

x−1(x, p, n, z; θ0) = F−1
S|Z(1−G(x|n, z; p)|z; θ0). (7)

This inverse demand function will play an important role in our estimation
procedure.

For any given p ∈ [0,∞) the distribution function G(·|·, ·; p) can be estimated
nonparametrically from the observed share bids xilp = x(p, sil, nl, zl; θ0), i =
1, ..., nl, l = 1, ..., L, using kernel estimation methods. A nonparametric estimate
of G(·|·, ·; p) is

Ĝ(x|n, z; p) =

∑L
l=1

1
nl

∑nl
i=1 1 {xilp ≤ x}K

(
n−nl
hN

, z−zlhZ

)
∑L
l=1K

(
n−nl
hN

, z−zlhZ

) (8)

where K(·, ·) is a kernel and hN and hZ are bandwidth parameters (hZ is actu-
ally a vector of bandwidth parameters with the same dimension as z).

To proceed, let us first rewrite once more the Euler condition (6) by incor-
porating the auction-specific notation and variables. For auction l with charac-
teristics zl and with nl bidders, the condition becomes

0 = E
{

(nl − 1) · (E (Vl|S1l = s1l, ..., Snll = snll, Nl = nl, Zl = zl)− p) · 1
{
P 0
l ≤ p

}
|Nl = nl, Zl = zl

}
−E

{
(p− P 0

l ) · 1
{
P 0
l ≤ p

}
|Nl = nl, Zl = zl

}
(9)

where the random variable P 0
l represents the equilibrium price in auction l, and

the first expectation is with respect to S1l, ..., Snll given Nl = nl, Zl = zl. The
condition must hold for all p ∈ [0,∞) and all l = 1, ..., L.

Let us next find an empirical counterpart for the above moment condition.
This is not trivial since the signals s1l, ..., snll appearing in (9) are unobserved

5Note that there is the function x(·, ·, ·, ·; ·), the inverse function x−1(·, ·, ·, ·; ·), and the
scalar x.

6Given specific parametric specifications of the distributions functions FV |Z(·|·; ·) and
FS|V,Z(·|·, ·; ·), section (4.2) derives an explicit optimal strategy in the uniform auction model.
This strategy (shown to be the unique equilibrium in a large class of demand functions) turns
out to be strictly decreasing in s. It is quite natural therefore to assume that the optimal
strategy in the discriminatory auction also satisfies this property.
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variables. We know however that sil = x−1(xilp, p, nl, zl; θ0). The inverse de-
mand function x−1(·, ·, ·, ·; ·) is unknown, but the relationship (7) suggests that,
for any given θ, it is natural to replace the inverse demand function by

x̃−1(x, p, n, z; θ) = F−1
S|Z(1− Ĝ(x|n, z; p)|z; θ). (10)

This in turn suggests to replace (for any value of θ) the unobserved signal sil
by x̃−1(xilp, p, nl, zl; θ), and to consider the following empirical counterpart of
the r.h.s. of (9):

m(x11p, ..., xnLLp, n1, ..., nL, p
0
1, ..., p

0
L, z1, ..., zL, p; θ) (11)

=
L∑
l=1

[
(
E
(
Vl|S1l = x̃−1(x1lp, p, nl, zl; θ), ..., Snll = x̃−1(xnllp, p, nl, zl; θ), Nl = nl, Zl = zl

)
− p
)

×(nl − 1)1
{
p0
l ≤ p

}
−
(
p− p0

l

)
1
{
p0
l ≤ p

}
].

Since (9) must hold for all p ∈ [0,∞), there is an infinity of moment condi-
tions of the form (9), and for each of these theoretical moments there exists an
empirical counterpart of the form (11). The question now arises which of the
theoretical moments should be exploited in the method of statistical inference.
One possibility is to use all moments. In this case an appropriate criterion must
be defined that involves all empirical moments, and minimization of the crite-
rion over θ then leads to the estimator. For reasons given in the next subsection,
this is not the course that we shall follow.

Instead, our estimation method is based on a fixed number of moments (T ).
Given T values for p, p1, ..., pT , the estimation method exploits that (9) must
hold at these prices. It is assumed that the true value θ0 is uniquely identified
from the T moments.

The second step of our estimation procedure consists in minimizing over θ
the sum of the T squared empirical moments. More precisely, the second-stage
estimate of θ0 is

θ̂ = Argmin
θ

T∑
t=1

m2(x11pt , ..., xnLLpt , n1, ..., nL, p
0
1, ..., p

0
L, z1, ..., zL, pt; θ). (12)

The next subsection studies the asymptotic properties of the two-step estimator.

2.2.2 Asymptotic properties of the estimator

Newey and McFadden (1994, section 8) consider a class of estimators that are
defined as the solution of a set of equations involving the observables, an un-
known vector of parameters of interest, and a “first-step” estimate of a function.
Since the first-step estimator is a nonparametric estimator of a function rather
than an estimator of a finite-dimensional parameter, this class is referred to as
the class of semiparametric two-step estimators. Newey and McFadden show
that these estimators can converge at a rate equal to the root of the number
of observations, even though the first-step estimator converges at a slower rate.
They also give regularity conditions for asymptotic normality of the second-step
estimator.

By rewriting the criterion function (12) we show in appendix C that our
estimator of θ0 belongs to the class of semiparametric two-step estimators (the
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nonparametric first-step estimate being Ĝ). By verifying in the appendix that
the regularity conditions of Newey and McFadden hold, we show that our esti-
mator is

√
L-consistent, and that it is asymptotically normally distributed. For

the form of the asymptotic variance of the estimator we refer to appendix C, as
it involves a lot of (too much) new notation.

We restrict ourselves to a finite number of moments T to fit into the frame-
work of Newey and McFadden. The extension to a setting where an infinity of
moment conditions is exploited is beyond the scope of this paper (see however
Carrasco and Florens, 1999, for an extension of the GMM to a continuum of
moments).

3 Data

3.1 The institutional setting of the French government se-
curities auctions7

Since 1985 the French government securities are sold through auctions. The
Treasury securities are auctioned via discriminatory auctions.8 The auctions
are organized by the Bank of France, but all decisions regarding the dates the
auctions are held, the characteristics of the securities, the quantities offered, etc.,
are taken by the Treasury. The three main types of French Treasury securities
are:

• The Bons du Trésor à taux Fixe et à intérêts précomptés (the BTFs); these
are tradable fixed-rate short-term discount Treasury bills with maturities
of up to one year.

• The Bons du Trésor à taux Fixe et à intérêts ANnuels (the BTANs);
these are tradable fixed-rate medium-term Treasury notes with interest
paid annually and with maturities of two or five years.

• The Obligations Assimilables du Trésor (the OATs); these are fungible
Treasury bonds with maturities ranging between 7 and 30 years.

Since our empirical analysis is based on the auctions for OATs and BTANs that
were held in 1995, we describe the auction environment for these particular
securities only, and present the auction rules as they prevailed at that time,
even though they may have slightly changed by now.

The Treasury auctions for OATs and BTANs are held once a month—OATs
on the first Thursday of the month and BTANs on the third Thursday. The
scheduling of the auctions is as follows:

• Two business days prior to the auction, the Treasury announces the line
that is to be auctioned, i.e. the Treasury describes the characteristics of
the securities (the nominal yield, the maturity, etc.), and also determines
the amount of securities it plans to sell.

7This subsection draws on the annual report (we use the 1995 version) on the French
Government Securities. For more details see this report.

8Bartolini and Cottarelli (1997) find that 42 out of 77 countries in their sample (including
all G-7 countries) used auctions in 1993 to sell government bills. More than 90% of the 42
countries that relied on auctions adopted the discriminatory auction format.
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• A bid consists of a price/quantity pair. The price is expressed as a per-
centage (of the nominal value of the security), and the quantity is the
amount (in FFr) of the security the bidder wants at the corresponding
price. 9 The minimal amount that bidders may submit is FFr1 million
for the BTANs and FFr50 million for the OATs. Bidders are allowed to
submit as many bids as they wish. Bids can be submitted until 10 minutes
before the start of the auction. Most bids are submitted via TELSAT, a
computerized bidding system, but bidders can also submit their proposals
in sealed envelops directly to the Bank of France. The start of the auction
is at 11 am.

• The Bank of France ranks bids in descending order of price, and immedi-
ately transmits the list of ranked bids to the Treasury without revealing
the identity of the bidders.

• The Treasury determines the amount of securities to be sold at auction,
and calculates the stop-out price (the equilibrium price), i.e. the price
for which aggregate demand equals the amount of securities offered at the
auction. The highest prices are served first, and the allocation of securities
stops when the amount (sold at auction) is reached. Any ties are settled
on a pro rata basis.

• The auction results are announced via TELSAT (and also via some other
information networks). The delay between the deadline for submission
and the release of the results was less than 20 minutes in 1995.

• Delivery and settlement of the OATs take place on the 25th of the month
the auction is held. In the case of 2-year (resp. 5-year) BTANs this occurs
on the 5th (resp. 12th) of the month following the auction.

Most bidders are Spécialistes en Valeurs du Trésor (SVTs).10 The SVTs
are primary dealers selected by the Treasury among the most active players
on the government securities market. On average they account for 90% of the
securities bought at auctions, the remaining 10% being purchased by other large
banks or financial institutions. The mission of the SVTs, set out in a charter, is
roughly speaking to run and maintain the primary and secondary government
debt market and to advise the government on the implementation of its issuance
policy.

France belongs to a small group of countries11 in which bidders have the
possibility to submit Offres Non Compétitives (ONCs). These non-competitive
bids (the competitive bids being the auction bids described until now) can ac-
tually only be submitted by the SVTs. There are two kinds of non-competitive
bids: the ONC1s, which must be submitted at the same time as the competitive
bids, and the ONC2s, which may be submitted once the auction is over and

9For example, a bidder submitting (90%;FFr100 million) states that at the price of 90%
he requests FFr100 million worth of securities. Re-formulated in a more familiar way, assum-
ing the nominal value equals FFr2000, this bidder demands 50000 securities (FFr100 million
divided by FFr2000) when the price per security is FFr1800 (90% of FFr2000).

10On 1 April 1995 there were 19 SVTs.
11According to Bartolini and Cottarelli (1997), only 38% of 40 countries that relied on

auctions accepted non-competitive bids.
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until one day after the auction. The SVTs are not obliged to engage in non-
competitive bidding. Each SVT can not submit more than one ONC1 bid and
one ONC2 bid. Unlike a competitive bid, a non-competitive bid consists only
in an amount (in FFr) of the security the bidder wants. The amount submitted
by a bidder is sealed and may not exceed a certain bidder-specific limit, but
except for this restriction each bidder is guaranteed the quantity he bids for.
The limit may differ for the two types of ONCs, and its height is determined by
the participation of the bidder in the three last auctions. The price at which the
non-competitive bids must be paid is identical for all bidders and corresponds
to the quantity-weighted average price of the awarded competitive bids. Since
ONC1s are submitted before the main auction and ONC2s after the auction
results are revealed, the former are submitted under price-uncertainty and the
latter under price-certainty.

French Treasury securities can not only be bought at auction but also on
two other markets: the so-called when-issued market and the secondary market
(see Bikhchandani and Huang, 1993, for a detailed description of the US-version
of these two market forms). The when-issued market for a security is a forward
market that starts the day when the Treasury announces an auction for that
security, and ends on the settlement date. Once the announcement has been
made by the Treasury, dealers can trade forward contracts on the Treasury
securities that are to be auctioned. Contract sellers and contract buyers commit
themselves to respectively deliver and take delivery of certain specified amounts
of securities at the forward prices. The forward contracts are delivered on the
issue date (=settlement date) of the security, which explains why the market
is called a when-issued market. The BTANs and OATs are also traded on
the secondary market. The secondary market is a permanently active market
where the smaller financial institutions and individual investors can trade in
securities and where the competitive bidders can resale their securities obtained
at auction.

3.2 The link between theory and practice

As mentioned in the introduction, Wilson’s share auction model is often re-
garded as a realistic model of Treasury auctions. From our description of the
institutional setting of the French Treasury auctions it is clear, however, that the
theory deviates in several ways from practice. The purpose of this subsection is
to comment on these deviations.

The first deviation is that, unlike the share auction model, part of the bid-
ders in France—the SVTs—have the possibility to submit ONC1s and ONC2s.
The fact that bidders have this opportunity implies that their maximization
problem differs from the maximization problem (4). If non-competitive bidding
is allowed then agents maximize expected earnings derived from competitive and
non-competitive bidding, and consequently the actual optimal bidding strategies
may differ from those derived in subsection (2.1). The reason why we have not
attempted to extend Wilson’s model to account for non-competitive bidding is
that this phenomenon is not important in France. Indeed, the descriptive statis-
tics in the next subsection (Table 1) indicate that on average ONC1s (ONC2s)
only amount to 1% (8%) of the total amount of securities issued by the Treasury
(that is the amount sold at auction plus the ONC1s plus the ONC2s). Appar-
ently bidders in France do not make much use of non-competitive bidding, and
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the effect of neglecting non-competitive bidding in our analysis is therefore ex-
pected to be negligible.

The second deviation is that unlike most Treasury auctions in the world
(including the BTF auctions in France), the French Treasury does not announce
the precise amount of OATs or BTANs it plans to sell. Instead it announces
an issue interval, wherein the quantity of securities eventually sold at auction
necessarily lies. Ex-ante this induces some uncertainty about the total amount
of securities sold at auction. However, in practice the intervals announced by
the Treasury are quite tight, so that we have not attempted to allow for supply
uncertainty in the model.12

The third deviation is that Wilson’s model describes the main auction as an
isolated market, unaffected by what happens on the when-issued market and the
secondary market. The interdependencies that exist between the three market
forms might affect bidder’s behavior at the auction. However, we feel that it is
beyond the scope of this paper to construct (and estimate) a unified model that
integrates the three markets for Treasury securities.

3.3 Descriptive analysis

Our empirical analysis is based on all French-franc denominated OAT and
BTAN auctions that were held in 1995.13 Table A1 in the appendix gives the
auction dates, the lines auctioned (this column in the table gives for each auc-
tion the nominal yield of the security and the year of maturity), the settlement
dates, and the exact maturity dates. As mentioned in subsection (3.1), OATs
and BTANs were auctioned once per month—OATs on the first Thursday of the
month and BTANs on the third Thursday of the month. There are therefore 24
different auction dates. As table A1 indicates, the Treasury did not necessarily
sell just one line on a given auction date, but often sold two or even three lines
on the same day. If several lines were offered on a given day, they were sold
simultaneously but via strictly separate auctions.14 Six different lines of OATs
and five different lines of BTANs were issued in 1995.

Apart from the information already given in table A1, we observe for each
auction all competitive bids submitted by all bidders (the non-competitive bids
are not observed in our data), the stop-out price, the amount of securities sold at
auction, and the total amounts of ONC1s and ONC2s awarded by the Treasury.
The auction participants are unidentified in our data, i.e. we cannot tell from
the data which bidder in a given auction corresponds to which bidder in some
other auction.

Table 1 gives some overall information about the auctions. In 1995 a total
of 45 auctions took place: 25 OAT auctions and 20 BTAN auctions. The total

12Note that Wang and Zender (2002) have generalized Wilson’s model by allowing for supply
uncertainty.

13Three other types of French government securities were issued through auctions by the
Treasury in 1995: BTFs, ECU-denominated OATs/BTANs, and OATs for private investors.
We have excluded the data from these auctions for homogeneity reasons. Indeed, the auction
rules under which they were conducted differed from the rules under which the auctions in
our sample were held.

14For example, the investors interested in both lines issued on May 1995—“7.75% April
2005” OATs and “8.5% October 2008” OATs—had to submit their bids separately for the
two auctions, according to the procedures described in subsection (3.1), and at 11 am the two
lines were auctioned independently from each other.
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quantity issued by the Treasury in the 45 auctions is FFr464.579 billion, so
the mean amount of securities sold is FFr10.324 billion per auction. The total
quantity can be split up into the total amount of awarded competitive bids
(FFr 423.72 billion), total amount of awarded ONC1s (FFr4.831 billion), and
total of awarded ONC2s (FFr36.028 billion). A total of 937 “different ” bidders
have participated in the 45 auctions, and the total number of competitive bids
submitted by these bidders is 2677. About 38% of these 2677 bids were served by
the Treasury, 16% were only partially served (because they were at the stop-out
price), and almost half of the bids (46%) were loosing bids.

Table 1. Overall information about the auctions
Number of auctions 45
OAT 25 (56%)
BTAN 20 (44%)
Number of bidders 937
Number of bids 2677
Totally served 1 016 (38%)
Partially served 423 (16%)
Not served 1 238 (46%)
Total amount issued by the Treasury (FFr millions) 464 579
competitive bids (FFr millions) 423 720 (91%)
ONC1 (FFr millions) 4 831 (1%)
ONC2 (FFr millions) 36 028 (8%)

Table 2 presents summary statistics per auction. The average number of
bidders per auction is 20.82. The number of bidders is quite stable across
auctions and is close to the total number of SVTs in 1995. The number of
bids per auction ranges between 28 and 102 bids, and the mean is about 60
bids. The mean of the auction coverage—which is the ratio of the sum of all
submitted competitive bids and ONC1s to the total amount served (the awarded
competitive bids and ONC1s)—is equal to 2.25.

Table 2. Summary statistics per auction
Variables Mean Std. dev. Min Max Obs
Number of bidders 20.82 1.71 15 23 45
Number of bids 59.49 17.41 28 102 45
Amount issued by Treasury (FFr millions) 10 324 5 922 2 052 21 849 45

Winning competitive bids (FFr millions) 9 416 5 335 1 800 19 125 45
ONC1 (FFr millions) 107 121 0 496 45
ONC2 (FFr millions) 801 820 0 2 553 45

Auction coverage 2.25 0.75 1.29 5.18 45
Maturity of security (in days) 3 749 3 227 586 11 231 45
Nominal yield (%) 7.31 0.80 5.75 8.50 45
Secondary market price 98.07 9.29 71.33 108.50 45
Stop-out price 97.94 9.40 70.88 108.16 45
Highest price bid - lowest price bid 0.32 0.13 0.10 0.68 45
Auction scatter (average price - stop-out price) 0.03 0.02 0.00 0.16 45
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The mean of the maturity of the security—defined as the number of days be-
tween the settlement date and the date of maturity—is 3 749 days. The average
nominal yield in the sample is 7.31%. The average of the secondary market
price—defined as the opening secondary market price of the security on the
day of the auction—equals 98.07. The stop-out price varies between 70.88 and
108.16, and has a mean equal to 97.94. The dispersion of the submitted prices—
defined as the highest price minus the lowest price— is on average 0.32. Finally,
the mean of the auction scatter—still another measure of the dispersion of auc-
tion prices, and defined as the difference between the weighted average price of
the winning bids and the stop-out price—equals 0.03.

Table 3 gives summary statistics per bidder or per bid. The number of
submissions per bidder ranges from 1 to 9, and the mean equals 2.86. This is
slightly lower than the mean of 3.2 bids found by Gordy (1999) (based on data
from Portuguese Treasury auctions), but substantially lower than the mean of
6.9 bids found by Hortaçsu (2000) (Turkish Treasury auctions).

Table 3. Summary statistics per bidder or per bid
Variable Mean Std. dev. Min Max Obs
Number of bids 2.86 1.58 1 9 937
Demanded quantity per bid (FFr millions) 326 328 10 2500 2677
Price bid 98.54 7.93 70.54 108.26 2677
Highest price bid - lowest price bid 0.07 0.07 0 0.54 937

In our sample the submitted quantities range from FFr10 million to FFr2.5
billion, and prices from 70.54 to 108.26. The price dispersion per bidder ranges
between 0 (if the bidder has submitted only one bid) and 0.54.

4 Results

4.1 Estimation of the parameters of the discriminatory
model

The secondary market price, the nominal yield and the maturity of the security
(divided by 1000) sold at the l-th auction are the variables included in the vec-
tor zl. The dimension of zl is thus equal to 3, and we denote zl = (z1l, z2l, z3l).
In the first step of our estimation procedure we nonparametrically estimate the
distribution function G(x|n, z; p) using the Epanechnikov kernel. To avoid any
confusion with the vector zl, we denote the 3-dimensional vector of explanatory
variables at which G(·|·, ·; ·) is evaluated, as z = (z1, z2, z3). In expression (8)
we thus have K

(
n−nl
hN

, z−zlhZ

)
= K

(
n−nl
hN

)
K
(
z1−z1l
h1Z

)
K
(
z2−z2l
h2Z

)
K
(
z3−z3l
h3Z

)
where K(u) = 0.75(1−u2)1 {|u| ≤ 1} , and hN , h1Z , h2Z and h3Z are the band-
width parameters. The choice of all bandwidth parameters were chosen accord-
ing to the rule of thumb defining each bandwidth as 2.214 multiplied by the
standard error of the variable multiplied the number of observations (L) to the
power − 1

7 .15 We find hN = 2.2, h1Z = 11.9 (bandwidth of the secondary mar-
15Newey and McFadden (1994, pp. 2203-2210) impose conditions on the choice of the kernel

and the convergence rate of the bandwidth parameters. To satisfy these conditions, we chose
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ket price), h2Z = 1.0 (nominal yield), and h3Z = 4.1 (maturity of the security
divided by 1000).

To proceed with the second step, we have to choose parametric specifications
for the distribution functions of the signal and the value. For the revenue
comparison in the next subsection, the specifications should be chosen such
that explicit optimal strategies can be obtained in the uniform share auction
model. Bearing this in mind, we assume that the value Vl given Zl = zl has the
distribution function

FV |Z(v|zl; θ1) =
∫ v

0

γuγ−1 βαll
Γ(αl)

uγ(αl−1) exp [−βluγ ] du (13)

where
αl = (1, zl) · α
βl = (1, zl) · β

and Γ(·) is the gamma function, α and β are vectors (of dimension 4 by 1) of
parameters, and γ is a scalar parameter. Note that if γ = 1 then the above dis-
tribution function corresponds to the gamma distribution function with param-
eters αl and βl, i.e. in this case Vl follows a gamma distribution with conditional
mean αl/βl and conditional variance αl/β2

l ; if γ 6= 1 then V γl is distributed as
a gamma distribution with parameters αl and βl; if αl = 1 then Vl follows a
weibull distribution with parameters γ and βl. Note also that θ′1 = (α′, β′, γ).

We furthermore assume that the signal Sil given Vl = vl and Zl = zl follows
an exponential distribution:

FS|V,Z(s|vl, zl; θ2) = 1− exp [−svγl ] (14)

where γ is the scalar parameter that also appears in the conditional distribution
function of Vl. Note that the conditional expectation and variance of Sil are
assumed to be independent of zl. Note also that θ2 = γ, so the complete vector
of parameters is therefore θ′ = (α′, β′, γ).

In the second step of the estimation procedure we estimate θ0, the true
value of θ. The estimate of this parameter is defined by (12), where, given the
specifications (13) and (14), the conditional expectation of Vl appearing in the
empirical moment m(.) is:

E
(
Vl|S1l = x̃−1(x1lp, p, nl, zl; θ), ..., Snll = x̃−1(xnllp, p, nl, zl; θ), Nl = nl, Zl = zl

)
=

Γ(nl + αl + 1/γ)
Γ(nl + αl)

1(
βl +

∑nl
i=1 βl

[
1

Ĝ1/αl (xilp|nl,zl;p)
− 1
])1/γ

. (15)

We choose T = 45, i.e. the number of moments equals the number of auctions
in the sample, and the prices p1, ..., pT are equal to the observed stop-out prices.

The second-step estimates are presented in Table 4, together with the es-
timated standard errors (using the estimated asymptotic variance matrix of θ̂
given in the appendix).
the Epanechnikov kernel (m = 2 in the notation of Newey and McFadden’s lemma 8.10, p.

2206), and the convergence rate L−
1
7 . Furthermore in this formula, the factor 2.214 is the

constant associated with the Epanechnikov kernel.

17



Table 4. Second-step estimate of θ (est. standard error)
Estimate of α :
Constant -15848.93 (320.72)**
Secondary market price 66.67 (3.48)**
Nominal yield 1617.29 (8.76)**
Maturity of security (in days/1000) 142.24 (6.96)**

Estimate of β :
Constant 8596.67 (114.87)**
Secondary market price -104.30 (1.24)**
Nominal yield 340.41 (6.77)**
Maturity of security (in days/1000) -2.04 (1.57)

γ 12.28 (0.0085)**
Note: Actual estimates and standard errors in β are very
small, and those reported in the table are multiplied by 1024.

All parameters are significantly different from zero at the 5% level, except the
parameter corresponding to the maturity of the security in β. Given the estimate
θ̂ and using (13), we can calculate E(Vl|Zl = zl), and the derivative of this
expectation with respect to each variable in zl. Evaluated at the empirical
mean of the explanatory variables (i.e. we replace zl by the averages reported
in Table 2), we find that the conditional mean of the value equals 99.79, which
is above the average secondary market price (98.07) and the average stop-out-
price (97.94). The derivative with respect to the nominal yield, the secondary
market price and the maturity are 1.06, 1.18 and 0.40 respectively. All these
variables thus have a positive effect on the expected value of the security, as
intuition suggests. Table A2 in the appendix gives for all auctions l = 1, ..., 45,
the estimated expectations E[Vl|S1l = ŝ1l, ..., Snll = ŝnll, Zl = zl] (with the
estimated signal ŝil = F−1

S|Z(1 − Ĝ(xilp0
l
|nl, zl; p0

l )|zl; θ̂), and zl the value of the
characteristics of the security at the l-th auction) and E[Vl|Zl = zl], the stop-
out-price, and the secondary market price.

4.2 Revenue comparison

In this subsection we compare the actual income of the French Treasury with
the hypothetical income the Treasury would have earned had it adopted the
uniform share auction mechanism. The actual revenue from a given discrimi-
natory auction simply equals the sum, over all winning bids in the auction, of
awarded quantities multiplied by the associated prices. The total actual income
earned by the Treasury is then the sum, over the 45 auctions held in 1995, of
these actual revenues. In 1995 the total actual income thus calculated amounts
to FFr421.543 billion.

The calculation of the hypothetical total income under the uniform auction
format is less straightforward. First we need to determine an explicit optimal
bidding strategy in the uniform auction format. Given our parametric specifi-
cations of the distribution functions (13) and (14), we show in appendix B that
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an optimal strategy in the uniform auction is (i.e. a solution of (3))16

x(p, sil, nl, zl; θ) =
[
1−

{
βl
nl

+ sil

}{
Γ(nl + αl)

Γ(nl + αl + 1/γ)
1 + γ

γ
p

}γ]
/ (nl − 1) .

(16)

As mentioned in subsection 2.2.1, this optimal bidding function is decreasing
in the signal sil (it is also decreasing in p). In appendix B we also show that given
our distributional assumptions, (16) is actually the unique equilibrium strategy
in the class of demand functions of the form x(p, sil, nl, zl; θ) = a(p, nl, zl; θ) +
b(p, nl, zl; θ)si. There are no restrictions on the functions a(·, ·, ·; ·) and b(·, ·, ·; ·)
except that they must be such that x(·, ·, ·, ·; ·) is decreasing in p and sil.

The strategy (16) is a generalization of the equilibrium strategy derived in
Wilson (1979, example 1). Wilson assumes that Vl follows a gamma distribution
with parameters αl and βl, and that Sil is exponentially distributed with pa-
rameter vl. His setup thus corresponds to the special case where the parameter
γ appearing in the distribution functions (13) and (14) is equal to 1. When
γ = 1, (16) reduces to

x(p, sil, nl, zl; θ) =
[
1− 2p

βl + nlsil
nl(nl + αl)

]
/ (nl − 1) (17)

which is the optimal bidding function given by Wilson.17

Now that an optimal bidding strategy has been determined, a possible way
to calculate the hypothetical income under the uniform auction format is as
follows. Given the two-step estimate θ̂ and using (10), define, for each bidder
i and auction l, the estimated signal ŝil = F−1

S|Z(1 − Ĝ(xilp|nl, zl; p)|zl; θ̂). Re-

placing, in (16), θ by θ̂, and for all i sil by ŝil, gives the estimated uniform
demand functions for all bidders i in auctions l. The estimated stop-out price
in the l-th uniform auction can then be determined by equating estimated ag-
gregate demand and total supply (i.e. the amount of securities sold at the l-th
discriminatory auction). The hypothetical revenue from auction l is then the
product of total supply and the estimated stop-out price, and the total hypo-
thetical income under the uniform auction follows from summation over all 45
auctions in the sample.

We will however calculate the hypothetical total income in a different and
more direct way by exploiting the fact that for our uniform share auction model
there is an explicit solution for the stop-out price. Under the assumption that
agents bid according to the optimal demand function (16), it can be shown that
the stop-out price in the l-th uniform auction satisfies

p0
l =

1
1 + 1/γ

E (Vl|S1l = s1l, ..., Snll = snll, Zl = zl) (18)

=
1

1 + 1/γ
Γ(nl + αl + 1/γ)

Γ(nl + αl)
1

(βl +
∑nl
i=1 sil)1/γ

.

16Of course, as with the Euler condition of the discriminatory model, the auction-specific
notation and variables should be incorporated in the uniform Euler condition (3).

17In Wilson (1979) the numerator is βl−nlsil instead of βl+nlsil. But this simply reflects
a difference in the choice of the conditional distribution function of the signal. In Wilson the
conditional distribution function is FS|V,Z(sil|vl, zl; θ2) = evlsil for sil ≤ 0.
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The equation for the stop-out price given by Wilson (1979, page 682) corre-
sponds to (18) with γ = 1.18

In order to calculate the hypothetical uniform revenue we construct, as
above, the estimated signals ŝil. The estimated stop-out price in auction l can
be obtained directly on replacing θ and sil by their estimates in (18). The
hypothetical income in auction l and the total hypothetical income are then
calculated as above.19

The hypothetical uniform revenue we calculate in this manner equals FFr400.421
billion. Therefore, had the French Treasury adopted the uniform auction format
instead of the discriminatory auction format, it would have earned FFr21.122
billion less (5% of total income in the discriminatory auctions). In calculating
the variance of the above estimate, we use the fact that the hypothetical revenue
is simply the sum over all auctions l of p0

l times the amount of securities sold in
the l-th auction. Hence, the estimated hypothetical revenue is some function of
θ̂ and (via the estimated signals ŝil) Ĝ(.), so its variance can be calculated by
applying the delta method. In applying the delta method we ignore the variance
in Ĝ(.), i.e. we consider it as fixed. The estimated standard error we find is
FFr1.11 billion, and the 95% confidence interval for the hypothetical revenue is
[FFr398.210 billion; FFr402.632 billion], implying that the difference in revenue
between the discriminatory and uniform auction is significant at the 5% level.

When we restrict γ = 1, the results are very different: the estimated revenue
under the uniform auction drops to FFr 215.462 billion, implying a substantial
loss in income of FFr206.081 billion (almost 49%). However, since the hypothesis
γ = 1 is rejected by the data (see Table 4), these last figures have no statistical
justification, and cannot therefore be treated without much suspicion. They
merely show that Wilson’s model is too restrictive for the analysis of our data,
and leads to overly negative conclusions regarding the performance of the uni-
form auction format.

As in Hortaçsu (2000), we find that the discriminatory auction is revenue-
superior to the uniform auction. Our estimated revenue loss of 5% is smaller
though than the revenue loss obtained by Hortaçsu using Turkish Treasury
auctions. He reports counterfactual revenue comparisons for each of the 25
auctions in his sample. His ex-ante revenue differences vary between 0.12%
and 27%, and on average the uniform auction generated 14% less than the
discriminatory auction.

5 Conclusion

This paper has proposed structural econometric methods for the empirical study
of Wilson’s share auction model. We have shown how the parameters of this
model, i.e. the joint distribution function of the value of the good and the signals
received by the bidders, can be estimated via a two-step estimation procedure.
Using the estimation theory for semiparametric two-step estimators developed
by Newey and McFadden (1994), we have established the asymptotic properties

18Except that the denominator in the last term equals βl−
∑nl

i=1
sil instead of βl+

∑nl
i=1

sil.
19The total hypothetical income has been calculated in two ways. First by estimating the

signals as ŝil = F−1
S|Z(1− Ĝ(xilp0

l
|nl, zl; p0

l )|zl; θ̂), and second by estimating the signals as an

average ŝil = 1
L

∑L

l′=1
F−1
S|Z(1− Ĝ(xilp0

l′
|nl, zl; p0

l′ )|zl; θ̂). The estimated hypothetical income

is not affected by the manner in which the signals are estimated.
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of our estimator. A crucial feature of the method of statistical inference is that
it only relies on the first-order condition of the bidder’s maximization problem.
Our estimation method seems therefore potentially of interest whenever one
wants to estimate game theoretic models for which no explicit strategies can be
found.

The methods have been applied to Treasury auctions held in France. Our
results suggest that the Treasury’s revenue in the discriminatory share auction
is 5% higher than in the uniform share auction, which is a relatively high figure
given the enormous amounts of money at stake. This result can be seen as
an ex-post justification for the fact that the majority of countries rely on the
discriminatory auctions to sell their Treasury securities.

21



References

[1] Abbink, K., J. Brandts and P. Pezanis-Christou (2001), “The Spanish auc-
tion for Government securities: a laboratory analysis, ” mimeo, University
of Pompeu Fabra

[2] Back, K. and J.F. Zender (1993), “Auctions of divisible goods: on the
rationale for the Treasury experiment,” Review of Financial Studies, 6,
733-764.

[3] Bartolini, L. and C. Cottarelli (1997), “Treasury bill auctions: issues and
uses,” in M. Blejer and T. Ter-Mminassian, eds., Macroeconomic dimen-
sions of public finance, 267-336, London: Routledge.

[4] Berg, S.A., B. Boukai and M. Landsberger (1998), “Bidding for Treasury
securities under different auction rules: the Norwegian experience,” mimeo,
Haifa University.

[5] Bikhchandani, S. and C. Huang (1989), “Auctions with resale markets: an
exploratory model of Treasury bill markets,” Review of Financial Studies,
2, 311-339.

[6] Bikhchandani, S. and C. Huang (1993), “The economics of Treasury secu-
rities markets,” Journal of Economic Perspectives, 7, 117-134.

[7] Carrasco, M. and J.-P. Florens (1999), “Generalization of GMM to a con-
tinuum of moment conditions,” Econometric Theory, 16, 797-834.

[8] Chiang, A.C. (1992), Elements of dynamic optimization. New York:
McGraw-Hill International Editions.

[9] Das, S.R. and R.K. Sundaram (1996), “Auction theory: a survey with
applications to Treasury Markets,” Financial Markets, Institutions and In-
struments, 5, 1-36.

[10] Donald, S. and H. Paarsch (1993), “Piecewise pseudo-maximum likelihood
estimation in empirical models of auctions,” International Economic Re-
view, 34, 121-148.

[11] Donald, S. and H. Paarsch (1996), “Identification, estimation, and testing
in parametric models of auctions within the independent private values
paradigm,” Econometric Theory, 12, 517-567.

[12] Elyakime, B., J.J. Laffont, P. Loisel and Q. Vuong (1994), “First-price
sealed-bid auctions with secret reservation prices,” Annales d’Economie et
Statistique, 34, 115-141.

[13] Florens, J.-P., C. Protopopescu and J.-F. Richard (2001), “Identifica-
tion and estimation of a class of game theoretic models”, mimeo, IDEI-
GREMAQ, University of Toulouse.

[14] French Government Securities, 1995 Annual Report, published by the Min-
istry of the Economy, Finance and Industry. Available on the Internet:
http://www.oat.finances.gouv.fr.

22



[15] Friedman, M. (1960), A program for monetary stability. New York: Ford-
ham University Press.

[16] Guerre, E., I. Perrigne and Q. Vuong (2000), “Optimal nonparametric es-
timation of first-price auctions,” Econometrica, 68, 525-574.

[17] Gordy, M.B. (1999), “Hedging winner’s curse with multiple bids: evi-
dence from the Portuguese Treasury bill auction,” Review of Economics
and Statistics, 81, 448-465.

[18] Hendricks, K. and H.J. Paarsch (1995), “A survey of recent empirical work
concerning auctions,” Canadian Journal of Economics, 28, 403-426.

[19] Hendricks, K., J. Pinkse and R.H. Porter (1999), “Empirical implications
of equilibrium bidding in first-price, symmetric, common value auctions,”
mimeo, University of British Columbia.

[20] Hong, H. and M. Shum (1999), “Competition and the winner’s curse in
procurement auctions,” mimeo, Princeton University.
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APPENDIX

A The Euler condition for the discriminatory
auction model

First we rewrite the expected profit (4). We have

E

{∫ ∞
0

[
(V − p)y(p, si)−

∫ pmax

p

y(u, si)du

]
dH(p;V, y(p, si))|Si = si

}

= E

{
−
∫ ∞

0

[−y(p, si) + (V − p)yp(p, si) + y(p, si)]H(p;V, y(p, si))dp|Si = si

}
= E

{∫ ∞
0

[−(V − p)yp(p, si)H(p;V, y(p, si))] dp|Si = si

}
where the first equality follows from an integration by parts, and yp is the
derivative of y with respect to p. The expression in brackets can be written as a
function g(p, y(p, si), yp(p, si), V ). We want to stress that there is no connection
at all between this function g and the distribution function G defined in the
main text. Using this notation, the expected profit can be rewritten as

E

{∫ ∞
0

[g(p, y(p, si), yp(p, si), V )] dp|Si = si

}
. (19)

The necessary condition for y(·, si) to maximize (19) is that for all p ∈ [0,∞)

0 = E

{
∂g

∂y
− d

dp

∂g

∂yp
|Si = si

}
(20)

(see Chiang, 1992, p. 46). Given the specific form of the function g, we have

∂g

∂y
= −(V − p)yp(p, si)

∂H(p;V, y(p, si))
∂y

and

d

dp

∂g

∂yp
= H(p;V, y(p, si))−(V−p)

{
∂H(p;V, y(p, si))

∂p
+ yp(p, si)

∂H(p;V, y(p, si))
∂y

}
so that (20) can be rewritten as

0 = E

{
−H(p;V, y(p, si)) + (V − p)∂H(p;V, y(p, si))

∂p
|Si = si

}
.

The strategy x(·, ·) is optimal if the above condition is satisfied for y(·, si) =
x(·, si), which gives the Euler condition (5).

Next we show that the Euler condition (5) can be rewritten as (6). We have

H(p; v, y) =
∫
...

∫
sj ;j 6=i

1

∑
j 6=i

x(p, sj) ≤ 1− y

∏
j 6=i

fS|V (sj |v)dsj
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where fS|V (·|·) is the density associated with FS|V (·|·). Defining xjp = x(p, sj),
the above expression can be written as

H(p; v, y) =
∫
...

∫
xjp;j 6=i

1

∑
j 6=i

xjp ≤ 1− y

∏
j 6=i

∂x−1(p, xjp)
∂xjp

fS|V (x−1(p, xjp)|v)dxjp

so that (because the integrand is symmetric in all the xjp)

∂H(p; v, y)
∂p

= (n− 1)
∫
...

∫
xjp;j 6=i

1

∑
j 6=i

xjp ≤ 1− y


× ∂

∂p

[
∂x−1(p, x1p)

∂x1p
fS|V (x−1(p, x1p)|v)

]
dx1p

×
∏
j 6=i
j 6=1

∂x−1(p, xjp)
∂xjp

fS|V (x−1(p, xjp)|v)dxjp.

Now define H(p; v) = Pr(P 0 ≤ p|V = v) and H(p) = Pr(P 0 ≤ p). We have

H(p; v) =
∫
...

∫
1


n∑
j=1

x(p, sj) ≤ 1


n∏
j=1

fS|V (sj |v)dsj

=
∫
...

∫
1


n∑
j=1

xjp ≤ 1


n∏
j=1

∂x−1(p, xjp)
∂xjp

fS|V (x−1(p, xjp)|v)dxjp.

So, again by symmetry, we have

dH(p; v)
dp

= n

∫
...

∫
1


n∑
j=1

xjp ≤ 1

 ∂

∂p

[
∂x−1(p, x1p)

∂x1p
fS|V (x−1(p, x1p)|v)

]
dx1p

×
n∏
j=2

∂x−1(p, xjp)
∂xjp

fS|V (x−1(p, xjp)|v)dxjp.

After some straightforward calculations it follows that

E

{
∂H(p; v, x(p, Si))

∂p
|V = v

}
=

∫
∂H(p; v, x(p, si))

∂p
fS|V (si|v)dsi

=
(n− 1)
n

dH(p; v)
dp

and therefore

E

{
∂H(p;V, x(p, Si))

∂p

}
=

(n− 1)
n

dH(p)
dp

.

We also have

E

{
V
∂H(p;V, x(p, Si))

∂p

}
=

(n− 1)
n

∫
vfV (v)

dH(p; v)
dp

dv

=
(n− 1)
n

d

dp

∫ vfV (v)
∫
...

∫
1
{
P 0 ≤ p

} n∏
j=1

fS|V (sj |v)dsjdv


=

(n− 1)
n

d

dp

[
E
(
E (V |S1 = s1, ..., Sn = sn) · 1

{
P 0 ≤ p

})]
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where fV (·) is the density associated with FV (·). Finally we have E {H(p;V, x(p, Si))} =
H(p).

Therefore, taking the expectation with respect to V, Si, the Euler condition
(5) can be rewritten as

0 = E

{
V
∂H(p;V, x(p, Si))

∂p

}
− pE

{
∂H(p;V, x(p, Si))

∂p

}
− E {H(p;V, x(p, Si))}

=
(n− 1)
n

d

dp

[
E
(
E (V |S1 = s1, ..., Sn = sn) · 1

{
P 0 ≤ p

})]
−p (n− 1)

n

dH(p)
dp

−H(p).

Integrating over p gives

C = E
{

(n− 1) · (E (V |S1 = s1, ..., Sn = sn)− p) · 1
{
P 0 ≤ p

}}
−E

{
(p− P 0) · 1

{
P 0 ≤ p

}}
where C is the integration constant. We now assume that Pr(P 0 ≤ 0) = 0.
Replacing p = 0 in the above expression, it follows then that C = 0, which gives
the condition (6).

B An optimal strategy for the uniform auction
model

In this appendix we prove the claim that (16) is the unique equilibrium strat-
egy belonging to the class of demand functions of the form x(p, sil, nl, zl; θ) =
a(p, nl, zl; θ) + b(p, nl, zl; θ)sil.

First we derive the conditional expectation E(Vl|S̃l = s̃l, Sil = sil) where
S̃l ≡

∑
j 6=i Sjl. In this section of the appendix a density function (marginal,

joint, or conditional) is represented by the letter g. Again, there is no connection
between this function g and the distribution function G defined in the main text.
We have

E(Vl|S̃l = s̃l, Sil = sil)

=
∫ ∞

0

vlg(vl|s̃l, sil)dvl

=

∫∞
0
vlg(s̃l|vl)g(sil|vl)g(vl)dvl∫∞

0
g(s̃l|vl)g(sil|vl)g(vl)dvl

=

∫∞
0
vl
v
γ(nl−1)
l

Γ(nl−1) s̃
nl−2
l e−v

γ
l
s̃lvγl e

−vγ
l
sil β

αl
l

Γ(αl)
v
γ(αl−1)
l e−βlv

γ
l γvγ−1

l dvl∫∞
0

v
γ(nl−1)
l

Γ(nl−1) s̃
nl−2e−v

γ
l
s̃lvγl e

−vγ
l
sil β

αl
l

Γ(αl)
v
γ(αl−1)
l e−βlv

γ
l γvγ−1

l dvl

=

∫∞
0
v

1+γ(nl+αl−1)
l e−(s̃l+βl+sil)v

γ
l γvγ−1

l dvl∫∞
0
v
γ(nl+αl−1)
l e−(s̃l+βl+sil)v

γ
l γvγ−1

l dvl

=

∫∞
0
v
nl+αl−1+1/γ
l e−(s̃l+βl+sil)vldvl∫∞

0
vnl+αl−1
l e−(s̃l+βl+sil)vldvl
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=
Γ(nl+αl+1/γ)

(s̃l+βl+sil)
nl+αl+1/γ

∫∞
0

(s̃l+βl+sil)
nl+αl+1/γ

Γ(nl+αl+1/γ) v
nl+αl−1+1/γ
l e−(s̃l+βl+sil)vldvl

Γ(nl+αl)

(s̃l+βl+sil)
nl+αl

∫∞
0

(s̃l+βl+sil)
nl+αl

Γ(nl+αl)
vnl+αl−1
l e−(s̃l+βl+sil)vldvl

=
Γ(nl + αl + 1/γ)

(s̃l + βl + sil)nl+αl+1/γ

(s̃l + βl + sil)nl+αl

Γ(nl + αl)

=
Γ(nl + αl + 1/γ)

Γ(nl + αl)
1

(s̃l + βl + sil)1/γ
.

The second equality follows from the assumption that the signals S1l, ..., Snl are
independent given Vl = vl. The third equality follows from the assumption that
V γl follows a gamma distribution with parameters αl and βl, and Sil|Vl = vl an
exponential distribution with parameter vγl , and the well-known fact that the
sum of nl − 1 i.i.d. exponential variables (with mean 1/vγl ) follows a gamma
distribution with parameters vγl and nl − 1.

Let us now simplify somewhat the notation by suppressing nl, zl and θ in
x(·), a(·) and b(·). Since we are looking for equilibria of the form x(p, sil) =
a(p) + b(p)sil, we have

H(p; vl, y) = Pr

∑
j 6=i

x(p, Sjl) ≤ 1− y|Vl = vl, Sil = sil


= Pr

∑
j 6=i

[a(p) + b(p)Sjl] ≤ 1− y|Vl = vl, Sil = sil


= Pr

{
S̃l ≥

1− y − (nl − 1)a(p)
b(p)

|Vl = vl, Sil = sil

}
= 1− Pr

{
S̃l ≤

1− y − (nl − 1)a(p)
b(p)

|Vl = vl, Sil = sil

}
where the last equation follows from the fact that the functions a(·) and b(·) are
such that x(·, ·) is decreasing in p and sil. Letting s̃l = [1−y− (nl−1)a(p)]/b(p)
we have

Hp(p; vl, y) = −g(s̃l|vl, sil)
∂s̃l
∂p

Hy(p; vl, y) = −g(s̃l|vl, sil)
∂s̃l
∂y

and therefore

E {(Vl − p)Hp(p;Vl, y) + yHy(p;Vl, y)|Sil = sil}

= E

{
−(Vl − p)g(s̃l|Vl, sil)

∂s̃l
∂p
− yg(s̃l|Vl, sil)

∂s̃l
∂y
|Sil = sil

}
= E

{
−(Vl − p)|S̃l = s̃l, Sil = sil

}
g(s̃l|sil)

∂s̃l
∂p
− yg(s̃l|sil)

∂s̃l
∂y

= −
(

Γ(nl + αl + 1/γ)
Γ(nl + αl)

1
(s̃l + βl + sil)1/γ

− p
)

×g(s̃l|sil)
−(nl − 1)a′(p)b(p)− b′(p)[1− y − (nl − 1)a(p)]

b2(p)
− yg(s̃l|sil)

−1
b(p)

.
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The Euler condition (3) (including the auction-specific notation and variables)
amounts to evaluating the above expression at y = x(p, sil) = a(p) + b(p)sil and
then equating the expression to zero:

0 = E {(Vl − p)Hp(p;Vl, y) + x(p, sil)Hy(p;Vl, y)|Sil = sil}

=

Γ(nl + αl + 1/γ)
Γ(nl + αl)

1

(βl + 1−nla(p)
b(p) )1/γ

− p

(− (nl − 1)a′(p)
b(p)

− b′(p)
b(p)

s̃l

)

−1− (nl − 1)a(p)− b(p)s̃l
b(p)

where we have used that s̃l = [1 − nla(p) − b(p)sil]/b(p) so that s̃l + sil =
(1 − nla(p))/b(p). The above equality must hold for all values of sil and hence
for all values of s̃l. Therefore it must be that

(
Γ(nl+αl+1/γ)

Γ(nl+αl)
1

(βl+
1−nla(p)
b(p) )1/γ

− p
)(
− (nl−1)a′(p)

b(p)

)
− 1−(nl−1)a(p)

b(p) = 0

−
(

Γ(nl+αl+1/γ)
Γ(nl+αl)

1

(βl+
1−nla(p)
b(p) )1/γ

− p
)
b′(p)
b(p) + 1 = 0

⇔


(

Γ(nl+αl+1/γ)
Γ(nl+αl)

(−b(p))1/γ

(−βlb(p)−1+nla(p))1/γ − p
)

((nl − 1)a′(p)) + 1− (nl − 1)a(p) = 0(
Γ(nl+αl+1/γ)

Γ(nl+αl)
(−b(p))1/γ

(−βlb(p)−1+nla(p))1/γ − p
)
b′(p)− b(p) = 0.

(21)
The two equalities imply that

− b(p)
b′(p)

=
1− (nl − 1)a(p)

(nl − 1)a′(p)

⇔ −(nl − 1)a′(p)b(p) + (nl − 1)a(p)b′(p) = b′(p)

⇔ (nl − 1)
(
a(p)b′(p)− a′(p)b(p)

b2(p)

)
=
b′(p)
b2(p)

⇔ (nl − 1)
a(p)
b(p)

=
1
b(p)

+ C1

⇔ a(p) = (1 + C1b(p))/(n− 1).

where C1 is the integration constant. Inserting this expression for a(p) into the
second equality of (21) givesΓ(nl + αl + 1/γ)

Γ(nl + αl)
(−b(p))1/γ(

−βlb(p)− 1 + nl
nl−1 + nlC1b(p)

nl−1

)1/γ
− p

 b′(p)− b(p) = 0

⇔ b′(p)

[
Γ(nl + αl + 1/γ)

Γ(nl + αl)
(−b(p))1/γ −

((
C1n

nl − 1
− βl

)
b(p) +

1
nl − 1

)1/γ

p

]
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−
((

C1nl
nl − 1

− βl
)
b(p) +

1
nl − 1

)1/γ

b(p) = 0.

Defining C2 = C1nl
nl−1 − βl the last equation becomes

b′(p)

[
Γ(nl + αl + 1/γ)

Γ(nl + αl)
(−b(p))1/γ −

(
C2b(p) +

1
nl − 1

)1/γ

p

]
−
(
C2b(p) +

1
nl − 1

)1/γ

b(p) = 0

which can be rewritten as (using the transformation u = b(p), so that p(u) =
b−1(p))

1
p′(u)

[
Γ(nl + αl + 1/γ)

Γ(nl + αl)
(−u)1/γ −

(
C2u+

1
nl − 1

)1/γ

p(u)

]
−
(
C2u+

1
nl − 1

)1/γ

u = 0

or as

p′(u)
(
C2u+

1
nl − 1

)1/γ

u+p(u)
(
C2u+

1
nl − 1

)1/γ

=
Γ(nl + αl + 1/γ)

Γ(nl + αl)
(−u)1/γ .

(22)
The solution of the differential equation

p′(u)
(
C2u+

1
nl − 1

)1/γ

u+ p(u)
(
C2u+

1
nl − 1

)1/γ

= 0

is p(u) = C3/u where C3 is an integration constant. The solution of the differ-
ential equation (22) is therefore necessarily of the form p(u) = C(u)/u where
C(·) is some function of u. Inserting this solution into (22) gives

C ′(u)
u

(
C2u+

1
nl − 1

)1/γ

u =
Γ(nl + αl + 1/γ)

Γ(nl + αl)
(−u)1/γ

so that

C ′(u) =


Γ(nl+αl+1/γ)

Γ(nl+αl)

[
−u

C2u+ 1
nl−1

]1/γ

if C2 6= 0
Γ(nl+αl+1/γ)

Γ(nl+αl)
[−(nl − 1)u ]1/γ if C2 = 0

so that

C(u) =


Γ(nl+αl+1/γ)

Γ(nl+αl)

∫ 0

u

[
−t

C2t+
1

nl−1

]1/γ

dt+ C4 if C2 6= 0

−Γ(nl+αl+1/γ)
Γ(nl+αl)

[(nl − 1) ]1/γ γ
1+γ (−u)(1+γ)/γ + C5 if C2 = 0

where C4 and C5 are integration constants. Since p(u) = C(u)/u the solutions
are therefore

p(u) =

 Γ(nl+αl+1/γ)
Γ(nl+αl)

∫ 0

u

[
−t

C2t+
1

nl−1

]1/γ

dt

u + C4
u if C2 6= 0

Γ(nl+αl+1/γ)
Γ(nl+αl)

[(nl − 1) ]1/γ γ
1+γ (−u)1/γ + C5

u if C2 = 0.

(23)
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Now recall from the main text that the functions a(p) and b(p) must be such
that x(p, sil) = a(p)+b(p)sil is decreasing in p and sil. This implies in particular
that b(p) < 0 and b′(p) < 0, which in turn implies that p(u) ≥ 0 for all u < 0
and p′(u) < 0 for all u < 0. Now consider the case C2 = 0, i.e. C1 = nl−1

nl
βl.

The condition p(u) ≥ 0 for all u < 0 then implies C5 ≤ 0, and the condition
p′(u) < 0 for all u < 0 implies C5 ≥ 0. Thus C5 = 0, which from (23) implies
that

b(p) = −
[

Γ(nl + αl)
Γ(nl + αl + 1/γ)

1 + γ

γ

]γ
pγ

nl − 1

and

a(p) =
(1 + C1b(p))

nl − 1
=

1
nl − 1

− βl
nl(nl − 1)

[
Γ(nl + βl)

Γ(nl + αl + 1/γ)
1 + γ

γ

]γ
pγ .

Inserting these expressions into x(p, sil) = a(p) + b(p)sil gives (16). One can
show that there does not exist a solution that verifies the conditions for the case
C2 6= 0.

C Asymptotic properties of the estimator

This appendix extensively uses chapter 8 of Newey and McFadden (1994, pp.
2194-2215). The results in this appendix cannot be read independently without
consulting Newey and McFadden.

In deriving the asymptotic properties of our estimator (12), we suppose,
for simplicity, that nl = n for all l, and T = 1. The proofs are similar but
more involved when the number of bidders is allowed to vary from auction to
auction. The proof for T = 1 corresponds to what has to be done component
by component for T > 1.

Some notations are specific to this appendix, and do not necessarily refer
to the notations in the main body of the paper. We do this to facilitate the
apprehension of this appendix, which heavily relies on Newey and McFadden
and their notations. To avoid any possible confusion, all notations that have
different meanings in the appendix and the main text, are redefined.

We first show that our estimator (12) belongs to the class of semiparametric
two-step estimators considered by Newey and McFadden (1994), with the first-
step estimator being a kernel estimator (section 8.3). Our estimator (12) solves
the equation:

1
L

L∑
l=1

m(p0
l , zl; θ; γ̂(x.lp, zl); p) = 0 (24)

where x.lp = (x1lp, ..., xnlp). As we restrict ourselves to the case T = 1, p
corresponds in fact to p1 in the main text. γ̂(., .), evaluated at the vector
xp = (x1p, ..., xnp) and the vector z, is a vector of dimension n + 1, where the
i-th component, with i = 1, ..., n, is given by:

γ̂i(xp, z) =
1
L

∑
l

1
n

∑
j

1(xjlp ≤ xip)KhZ (z − zl)
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and the (n+ 1)-th component is given by:

γ̂n+1(xp, z) =
1
L

∑
l

KhZ (z − zl)

where KhZ (z − zl) = K( z−zlhZ
).

Finally, the function m(.) is defined by:

m(p0, z; θ; γ̂(xp, z); p)

=

{
(n− 1)(E[V |S1 = F−1

S|Z(1− γ̂1(xp,z)

γ̂n+1(xp,z)
|z; θ), ..., Sn = F−1

S|Z(1− γ̂n(xp,z)

γ̂n+1(xp,z)
|z; θ), z]− p)

−(p− p0)

}
×1(p0 ≤ p).

Note that this function m(.) is not exactly the function (11) defined in the main
text.20

Thus, the equation that defines our estimator, (24), can be viewed as a
special case of equations (8.1) and (8.7) in Newey and McFadden. To apply
their theorems 8.11, 8.12, and 8.13, we introduce the following three additional
functions.

First of all, ν(p0, z, xp; θ0; p) which is a vector of dimension (n + 1), where
the i-th component, with i = 1, ..., n, is given by

νi(p0, z, xp; θ0; p)
=

−
{
∂E[V |S1, ..., Sn, Z]

∂Si
(F−1
S|Z(1− γ0

1(xp, z)
γ0
n+1(xp, z)

|z; θ0), ..., F−1
S|Z(1− γ0

n(xp, z)
γ0
n+1(xp, z)

|z; θ0), z)
}

×(n− 1)F−1′

S|Z (1− γ0
i (xp, z)

γ0
n+1(xp, z)

|z; θ0)
1(p0 ≤ p)
γ0
n+1(xp, z)

g0(xp, z)

and where the (n+ 1)-th component is given by

ν(n+1)(p0, z, xp; θ0; p)
=

n∑
i=1

{
∂E[V |S1, ..., Sn, Z]

∂Si
(F−1
S|Z(1− γ0

1(xp, z)
γ0
n+1(xp, z)

|z; θ0), ..., F−1
S|Z(1− γ0

n(xp, z)
γ0
n+1(xp, z)

|z; θ0), z)
}

×(n− 1)F−1′

S|Z (1− γ0
i (xp, z)

γ0
n+1(xp, z)

|z; θ0)
γ0
i (xp, z)1(p0 ≤ p)(
γ0
n+1(xp, z)

)2 g0(xp, z).

Second, µ(z, xp; θ0; p) which is a vector of dimension n where the i-th term
is given by:

µi(z, xp; θ
0; p) =

∫
νi(p0, z, (y1p, ..., y(i−1)p, xip, y(i+1)p, ..., ynp); θ

0; p)dy1p...dy(i−1)pdy(i+1)p...dynp

20Note also that the function G(.) in the main text corresponds in the appendix to ratios

of the form
γ̂i(xp,z)

γ̂1+n(xp,z)
.
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Third, λ(z; θ0; p) which is a scalar given by

λ(z; θ0; p) =
∫
ν(n+1)(p0, z, (y1p, ..., ynp); θ0; p)dy1p...dynp.

In our context, under their hypotheses, Theorem 8.12 of Newey and McFad-
den can written as:
Theorem 1

√
L(θ̂ − θ0)→ N(0, (M ′θMθ)−1M ′θΩMθ(M ′θMθ)−1)

where

Mθ = E[∇θm(P 0, Z; θ0; γ0(Xp, Z); p)]
and

Ω = V ar[m(P 0, Z; θ0; γ0(Xp, Z); p) + δ(Z,Xp; θ0; p)]

and where δ(z, xp; θ0; p) is a scalar given by:

δ(z, xp; θ0; p) =
1
n

n∑
j=1

n∑
i=1

∫ +∞

xjp

µi(z, yp; θ
0; p)dyip + λ(z; θ0; p).

Proof. Newey and McFadden have introduced the function δ in their theorems
8.11 and 8.12. What has to be proved is that this function δ takes in our
context the specific form given in our theorem. For this we follow, step by step,
the reasoning of Newey and McFadden (pp. 2207-2208).

The first step consists in linearizing the functionm(p0, z; θ0; γ(xp, z); p) around
the true value γ0(xp, z). This development allows us to findM(p0, z; θ0; γ(xp, z); p),
the linearization of m(.). Here M(.) is a function given by :

M(p0, z; θ0; γ(xp, z); p)
=

−
n∑
i=1

{
∂E[V |S1, ..., Sn, Z]

∂Si
(F−1
S|Z(1− γ0

1(xp, z)
γ0
n+1(xp, z)

|z; θ0), ..., F−1
S|Z(1− γ0

n(xp, z)
γ0
n+1(xp, z)

|z; θ0), z)
}

×(n− 1)F−1′

S|Z (1− γ0
i (xp, z)

γ0
n+1(xp, z)

|z; θ0)
1(p0 ≤ p)
γ0
n+1(xp, z)

γi(xp, z)

+
n∑
i=1

{
∂E[V |S1, ..., Sn, Z]

∂Si
(F−1
S|Z(1− γ0

1(xp, z)
γ0
n+1(xp, z)

|z; θ0), ..., F−1
S|Z(1− γ0

n(xp, z)
γ0
n+1(xp, z)

|z; θ0), z)
}

×(n− 1)F−1′

S|Z (1− γ0
i (xp, z)

γ0
n+1(xp, z)

|z; θ0)
γ0
i (xp, z)1(p0 ≤ p)(
γ0
n+1(xp, z)

)2 γn+1(xp, z).

The next step is to calculate the function ν(p0, z; θ0; p) defined by∫
z

∫
xp

M(p0, z; θ0; γ(xp, z); p)g0(xp, z)dxpdz =
∫
z

∫
xp

ν(p0, z, xp; θ0; p)γ(xp, z)dxpdz

where g0(xp, z) is the joint distribution of x1p, ..., xnp and z. This is equation
8.12 of Newey and McFadden. The function ν(.) that solves this equation is the
function ν(.) defined previously.
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Finally, we have to calculate the function δ(.). For this purpose, we rely on
equation 8.14 of Newey and McFadden, and define δ(.) as the solution of the
following equation:

∫
z

∫
xp

M(p0, z; θ0; γ̂(xp, z)−γ0(xp, z); p)g0(xp, z)dxpdz =
∫
z

∫
xp

δ(z, xp; θ0; p)ĝ(xp, z)dxpdz

(25)
where, as in Newey and McFadden, the integral of a function a(z, xp) over dĝ
is equal to 1

L

∑L
l=1

∫
a(z, x.lp)KhZ (z − zl)dz. Given the functions µ(.) and λ(.)

introduced previously, we obtain:

∫
z

∫
xp

ν(p0, z, xp; θ0; p)γ̂(xp, z)dxpdz =
1
L

∑
l

1
n

∑
j

∑
i

∫
dz

∫ +∞

xjlp

µi(z, xp; θ
0; p)KhZ (z − zl)dxip

+
1
L

∑
l

∫
λ(z; θ0; p)KhZ (z − zl)dz

and

∫
z

∫
xp

ν(p0, z, xp; θ0; p)γ0(xp, z)dxpdz =
∫
z

∫
xp

{ ∑
i νi(p

0, z, xp; θ0; p)γ0
i (xp, z)

+ν(n+1)(p0, z, xp; θ0; p)γ0
n+1(xp, z)

}
= 0.

The function δ that solves (25) is thus defined by

δ(z, xp; θ0; p) =
1
n

n∑
j=1

n∑
i=1

∫ +∞

xjp

µi(z, yp; θ
0; p)dyip + λ(z; θ0; p)

as stated in our theorem.
This allows us to obtain the analogue of Newey and McFadden’s equation

8.15, that is:

∫
z

∫
xp

δ(z, xp; θ0; p)ĝ(xp, z)dxpdz −
∫
z

∫
xp

δ(z, xp; θ0; p)g̃(xp, z)dxpdz

=
1
L

∑
l

1
n

∑
j

∑
i

∫ +∞

xjlp

{∫
µi(z, xp; θ

0; p)KhZ (z − zl)dz − µi(zl, xp; θ
0; p)

}
dxip

+
1
L

∑
l

{∫
λ(z; θ0; p)KhZ (z − zl)dz − λ(zl; θ0; p)

}
where g̃(xp, z) is the empirical distribution of (xp, z), and ĝ(xp, z), defined previ-
ously, corresponds to the distribution of (xp, z) where the empirical distribution
of z has been replaced by a smoothed version 1

L

∑
lKhz (z − zl), exactly as in

Newey and McFadden. This equation is important to verify the condition (iv) of
theorem 1 (page 2196) in Newey and McFadden, which is a necessary condition
to apply theorems 8.11 and 8.12.

33



It has been shown that our problem fits exactly in the framework of Newey
and McFadden, and we have defined in our context all the functions introduced
in their general case.

Newey and McFadden also study the estimation of the asymptotic variance-
covariance matrix. By introducing the three following functions:

M̂θ =
1
L

L∑
l=1

∇θm(p0
l , zl; θ̂; γ̂(x.lp, zl); p)

λ̂(z; θ̂; γ̂; p) =
1
L

∑
l

∑n
i=1

{
∂E[V |S1,...,Sn,Z]

∂Si
(F−1
S|Z(1− γ̂1(x.lp,zl)

γ̂n+1(x.lp,zl)
|zl; θ̂), ..., F−1

S|Z(1− γ̂n(x.lp,zl)

γ̂n+1(x.lp,zl)
|zl; θ̂), zl)

}
×(n− 1)F−1′

S|Z (1− γ̂i(x.lp,zl)

γ̂n+1(x.lp,zl)
|zl; θ̂) γ̂i(x.lp,zl)1(p0

l≤p)

(γ̂n+1(x.lp,zl))2 KhZ (z − zl)

ρ̂ij(z, xp; θ̂; γ̂; p) =
1
L

∑
l

{
∂E[V |S1,...,Sn,Z]

∂Si
(F−1
S|Z(1− γ̂1(x.lp,zl)

γ̂n+1(x.lp,zl)
|zl; θ̂), ..., F−1

S|Z(1− γ̂n(x.lp,zl)

γ̂n+1(x.lp,zl)
|zl; θ̂), zl)

}
×(n− 1)F−1′

S|Z (1− γ̂i(x.lp,zl)

γ̂n+1(x.lp,zl)
|zl; θ̂) 1(p0

l≤p)
γ̂n+1(x.lp,zl)

1(xjp ≤ xilp)KhZ (z − zl)

we obtain, under the hypotheses of Newey and McFadden, the analogue of their
theorem 8.13:

Theorem 2

(M̂ ′θM̂θ)−1M̂ ′θΩ̂M̂θ(M̂ ′θM̂θ)−1 → (M ′θMθ)−1M ′θΩMθ(M ′θMθ)−1

where

Ω̂ =
1
L

L∑
l=1

[m(p0
l , zl; θ̂; γ̂(x.lp, zl); p)+δ̂(zl, x.lp; θ̂; γ̂; p)][m(p0

l , zl; θ̂; γ̂(x.lp, zl); p)+δ̂(zl, x.lp; θ̂; γ̂; p)]′

and

δ̂(z, xp; θ̂; γ̂; p) =
1
n

n∑
j=1

n∑
i=1

ρ̂ij(z, xp; θ̂; γ̂; p) + λ̂(z; θ̂; γ̂; p).

Proof. The function δ̂(z, xp; θ; γ; p) itself has to be estimated (whereas in Newey
and McFadden the function δ(.) is assumed to be known; see their equation
8.17). This is not a problem as shown by the following decomposition:

‖ δ̂(z, xp; θ̂; γ̂; p)−δ(z, xp; θ0; γ0; p) ‖ ≤ ‖ δ̂(z, xp; θ̂; γ̂; p)− δ̂(z, xp; θ0; γ0; p) ‖
+ ‖ δ̂(z, xp; θ0; γ0; p)− δ(z, xp; θ0; γ0; p) ‖ .

The first term of the decomposition is of the type considered by Newey and
McFadden, and converges to zero under their hypotheses. The second term is a
standard one, and converges to zero as expectations are estimated by empirical
means.

Finally, for the previous asymptotic results to be valid, the distribution
functions FV |Z(.) and FS|V,Z(.) should be chosen such that the conditions of
our theorems 1 and 2 (i.e. the hypotheses of Newey and McFaddens’ theorems)
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are verified. It can be shown that for our particular choices of the distribution
functions (see the specifications 13 and 14), this is indeed the case. The calcula-
tions that these verifications entail are lengthy and fastidious and are therefore
omitted. They are based on first -and second order developments, and can be
obtained from the authors upon request.
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Table A1. The auctions
Type of auction Auction date Line auctioned Settlement date Maturity date

OAT 5 Jan 95 7.5% 2005 25 Jan 95 25 Apr 05
OAT 5 Jan 95 6% 2025 25 Jan 95 25 Oct 25
OAT 2 Feb 95 7.5% 2005 27 Feb 95 25 Apr 05
OAT 2 Feb 95 8.5% 2008 27 Feb 95 25 Oct 08
OAT 2 Feb 95 6% 2025 27 Feb 95 25 Oct 25
OAT 2 Mar 95 7.5% 2005 27 Mar 95 25 Apr 95
OAT 2 Mar 95 8.5% 2008 27 Mar 95 25 Oct 08
OAT 6 Apr 95 7.75% 2005 25 Apr 95 25 Apr 05
OAT 4 May 95 7.75% 2005 26 May 95 25 Apr 05
OAT 4 May 95 8.5% 2008 26 May 95 25 Oct 08
OAT 1 Jun 95 8.5% 2002 26 Jun 95 25 Nov 02
OAT 1 Jun 95 7.75% 2005 26 Jun 95 25 Apr 05
OAT 1 Jun 95 6% 2025 26 Jun 95 25 Apr 25
OAT 6 Jul 95 7.75% 2005 25 Jul 95 25 Oct 05
OAT 6 Jul 95 8.5% 2008 25 Jul 95 25 Oct 08
OAT 6 Jul 95 6% 2025 25 Jul 95 25 Oct 25
OAT 3 Aug 95 8.5% 2002 25 Aug 95 25 Nov 02
OAT 3 Aug 95 7.75% 2005 25 Aug 95 25 Oct 05
OAT 3 Aug 95 8.5%2008 25 Aug 95 25 Oct 08
OAT 7 Sep 95 7.75% 2005 25 Sep 95 25 Oct 05
OAT 7 Sep 95 6% 2025 25 Sep 95 25 Oct 25
OAT 5 Oct 95 7.25% 2006 25 Oct 95 25 Apr 06
OAT 2 Nov 95 7.25% 2006 27 Nov 95 25 Apr 06
OAT 2 Nov 95 6% 2025 27 Nov 95 25 Oct 25
OAT 7 Dec 95 7.25% 2006 26 Dec 95 25 Apr 06

BTAN 19 Jan 95 7.75% 2000 13 Feb 95 12 Apr 00
BTAN 16 Feb 95 6.5% 1996 6 Mar 95 12 Oct 96
BTAN 16 Feb 95 7.75% 2000 13 Mar 95 12 Apr 00
BTAN 16 Mar 95 7.25% 1997 5 Apr 95 12 Aug 97
BTAN 20 Apr 95 7.25% 1997 5 May 95 12 Aug 97
BTAN 20 Apr 95 7.75% 2000 12 May 95 12 Apr 00
BTAN 18 May 95 7.25% 1997 6 Jun 95 12 Aug 97
BTAN 18 May 95 7.75% 2000 12 Jun 95 12 Apr 00
BTAN 15 Jun 95 7.25% 1997 5 Jul 95 12 Aug 97
BTAN 15 Jun 95 7.75% 2000 12 Jul 95 12 Apr 00
BTAN 20 Jul 95 7% 2000 11 Aug 95 12 Oct 00
BTAN 17 Aug 95 7.25% 1997 5 Sep 95 12 Aug 97
BTAN 17 Aug 95 7% 2000 12 Sep 95 12 Oct 00
BTAN 21 Sep 95 7.25% 1997 5 Oct 95 12 Aug 97
BTAN 21 Sep 95 7% 2000 12 Oct 95 12 Oct 00
BTAN 19 Oct 95 7.25% 1997 6 Nov 95 12 Aug 97
BTAN 19 Oct 95 7% 2000 13 Nov 95 12 Oct 00
BTAN 16 Nov 95 5.75% 1998 5 Dec 95 12 Mar 98
BTAN 21 Dec 95 5.75% 1998 5 Jan 96 12 Mar 98
BTAN 21 Dec 95 7% 2000 12 Jan 96 12 Oct 00
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Table A2. Expected value of V , stop-out price, and secondary market price
E[Vl|S1l, ..., Snll, Zl] Stop-out price E[Vl|Zl] Secondary market Price

96.28 93.96 96.40 94.17
71.75 70.88 72.09 71.33
97.75 95.72 97.80 95.86
104.37 102.26 104.40 102.39
75.15 72.94 75.41 73.35
98.72 96.56 98.77 96.91
105.65 103.28 105.67 103.45
101.98 99.68 101.99 99.65
102.36 99.74 102.39 99.75
107.63 104.70 107.65 104.80
111.79 106.74 111.80 106.80
105.84 101.76 105.82 102.37
80.70 77.46 80.55 78.07
103.97 101.20 103.94 101.21
110.49 106.46 110.51 106.25
79.27 76.18 79.22 76.80
115.56 107.96 115.57 107.91
107.03 102.80 106.99 103.00
118.80 108.16 118.80 108.50
106.71 102.72 106.68 102.85
79.92 77.22 79.84 77.50
99.87 97.78 99.88 98.16
102.01 99.62 102.02 99.75
80.20 77.80 80.05 77.80
108.32 102.60 108.27 102.80
101.07 99.41 101.10 99.50
97.69 99.21 97.81 99.01
101.87 100.19 101.86 100.14
99.90 99.21 99.99 99.24
101.02 99.97 101.02 99.95
102.83 100.90 102.81 100.88
104.03 101.47 104.02 101.54
106.77 103.27 106.74 103.21
103.25 101.30 103.23 101.24
106.08 102.80 106.04 102.87
101.59 99.90 101.61 100.06
104.90 101.96 104.85 102.02
102.98 100.78 102.95 100.75
105.29 102.13 105.24 102.19
104.76 101.47 104.72 101.53
103.94 101.61 103.90 101.60
102.56 100.60 102.54 100.57
99.58 100.36 99.31 100.42
105.56 100.73 105.29 100.78
115.78 103.91 115.72 104.08
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