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Testing for the mean of random curves : from penalization to

dimension selection.

Andr�e Mas

Universit�e Toulouse III - CREST-INSEE, Paris.

R�esum�e : Soit X1; :::; Xn un �echantillon i.i.d.
de courbes al�eatoires de moyenne m: On propose une proc�edure
asymptotique de test de

H0 : m = m0 contre Ha : m 6= m0:

Cele-ci est bas�ee sur des principes similaires au contexte
�ni-dimensionnel. L'estimation de l'inverse de l'op�erateur de
covariance de l'�echantillon nous am�ene �a r�esoudre un probl
�eme lin�eaire inverse mal pos�e original. On montre que le test
est convergent et on donne un minorant de la puissance sous une alternative g
�en�erale.

Mots-cl�es : Statistique fonctionnelle, op�erateurs de
covariance, probl�eme lin�eaire inverse, distance de Prokhorov.

Abstract : Let X1; :::; Xn be an i.i.d. sample of random
curves (of Hilbert space valued random elements) with mean m. An
asymptotic test of

H0 : m = m0 vs Ha : m 6= m0

is proposed. This procedure is based on the same principles as in the �nite
dimensional case. Inverting the covariance operator leads to a non standard
linear inverse problem. Convergence of the test is obtained as well as a
bound for the power.

Key-words : Functional statistics, covariance operators, linear
inverse problem, Prohorov's metric.
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1. Introduction

1.1. The functional statistics setting. Inference on random curves is undoubt-
edly a soaring area in nonparametric

statistics. Modern computational techniques makes it possible to deal with
"high dimensional random vectors". Data that are obtained from an
underlying continuous-time process, for instance, are extremely common : in
�nance, climatology, medicine amongst many others. Random curves collected
from (independent or not) experiments are also likely to be studied by non
parametric techniques. Some references are Franck and Friedman (1993),
Cavallini et alii (1994), Besse et alii (2000) for applications in
respectively chemometrics, industry and meteorology.
This trend revealed that, conversely to probabilists, statisticians
sometimes lack theoretical results for studying random functions. Many
authors anyway paid attention to these topics, developping methods to link
this rather formal framework with the statistician's "everyday's life".
Amongst these are Ramsay and Silverman (1997) and their famous monograph.
Antoniadis and Beder (1989) focused on the gaussian case. Dauxois, Pousse
and Romain (1982) in an earlier paper investigated the principal component
analysis for Hilbert-valued random variables. Recently several authors
generalized to the functional framework standard models in �nite dimension
: the linear regression model in Cardot, Ferraty, Sarda (1999), the
autoregressive model for time series in Bosq (2000), the in�nite moving
average model in Mas (2002b).
We propose an asymptotic procedure to test for the mean of a random
function. Let X1; :::; Xn be an i.i.d. sample of random curves with
mean m (note that m is also a curve). We should write Xi(!; t)
where for �xed ! Xi(!; :) is a the path of the curve and
where for �xed t Xi(:; t) is a real random variable. But for the sake
of simplicity both indices will be dropped. Estimating the curve m is a
typical non parametric problem (involving techiques like kernel, splines,
wavelets, etc). We refer for instance to Rice and Silverman (1991),
Antoniadis, Gregoir and Mc Keagie (1994) amongst many others.
The test may be written :

�
H0 : m = m0

Ha : m 6= m0:

Although the interest for such a question is crucial in order to validate
the estimate of the preceding step, it seems that it was not adressed in the
literature. In a recent work Cardot et alii (2002) proposed a test for the
regression operator in a linear model with functional inputs. Here, the
procedure under concern is quite di�erent. It remains asymptotic and
truly in�nite dimensional : it does not rely on a �nite
dimensional approximation of m: The limiting distribution is however
extremely simple. Some may view it as goodness of �t test. We will see
further that the main diÆculties arise from the fact that the background
of the test is connected with an inverse linear problem. The studied random
curves will always be seen as random variables with values in an in�nite
dimensional, real and separable Hilbert space H endowed with inner product
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h:; :i and norm k�k : The
Hilbert space setting enables to consider di�erent sorts of basis, makes
computations easier (especially as far as the central limit theorem is
concerned). In the special case when H = L2 ([0; 1]
and for all random functions u and v in H ( u and v are
consequently de�ned on 
� [0; 1] where 

is an abstract probability space) hu; vi is a
random number :

(1.1) hu; vi (!) =
Z 1

0

u(!; t)v(!; t)dt:

Spaces of smooth functions, such as Sobolev spaces, may (and are
often) prefered to L2 spaces for stability reasons. We refer to
Silverman (1996) for developments of this approach. Formally, this does not
change much the inner product de�ned in (1.1) : Lebesgue's measure dt
is replaced with another non-�nite measure d�(t).

1.2. Preliminary facts. Let X1; :::; Xn be an i.i.d. sample of Hilbert-valued ran-
dom variables

with mean m:
We denote � (resp. �n) the covariance operator of X1

(resp. the empirical covariance operator of the sample). These operators are
bounded linear mappings from H to H: They are de�ned this way : for all
x in H;

�(x) = E [hX1 �m;xi (X1 �m)] ;

�n(x) =
1

n

nX
k=1

[hXk �m;xi (Xk �m)] :

In the following, for all u; v in H; u
 v just stands for the
rank-one operator de�ned for all x in H by u
 v(x) = h
u,xv: With these notations, we get :

� = E [(X1 �m)
 (X1 �m)] ;

�n =
1

n

nX
k=1

[(Xk �m)
 (Xk �m)] :

Remind that the notation Yn = OP (tn) means that the
sequence of random variables Ynt

�1
n is bounded in probability.

For any linear operator T de�ned on and with values in H; k
T1 stands for the usual norm of continuous linears
operators i.e. kTk1 = sup kTxk for
x intheunitballofH:Atthispointweenouncethefourfollowing
facts (references to check these points are given below). The �rst one is a
consequence of the central limit theorem for Hilbert space-valued random
variables :

Fact 1 : If E kX1k2 < +1;
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(1.2) Sn =
1p
n

nX
k=1

(Xk �m)
w!

n!+1
G;

where
w! means "converges weakly" or "in

distribution" and G is a centered gaussian random function (a H-valued
random element) with covariance operator �:

Fact 2 : If E kX1k4 < +1;

(1.3) k�n � �k1 = OP

�
1p
n

�
:

Under the moment assumptions on X mentioned just above, it is well-known
that � is a positive selfadjoint compact operator. Once and for all
by �1 � �2 � ::: � 0 we denote the ordered
sequence of its eigenvalues (associated to the eigenvectors
e1; e2; ::::), the series

P
p �p is �nite. We will

always suppose that � is one to one, which means that the sequence
of its strictly positive eigenvalues is in�nite and that the set ker
� = fh 2 H : �h = 0g is empty.

Fact 3 : The random element G may be written :

(1.4) G =

+1X
k=1

�k
p
�kek a:s:

where the �k's are i.i.d. centered normal real random variables
with unit variance.

Fact 4 : The operator �1=2 is de�ned by �
1=2 =

P+1
k=1

p
�k (ek


ek: It is a compact operator. When � is one to one, its
inverse ��1=2 is de�ned on a domain D in H (
DisadensevectorsubspaceofH):Thelinearmapping�
�1=2 is unbounded (i.e. ��1=2 is continuous
point at no
point of D) which also means



��1=2


1 = +1 . As a consequence ��1=2X1 cannot be
considered as a (bounded) random variable.

The proof of the �rst point in Fact 2 may be found for instance in Dauxois,
Pousse and Romain (1982). The well-known Fact 3 is mentioned in Grenander
(1963). More information about Fact 4 may be found in Dunford-Schwartz
(1988).

1.3. Formulating the problem. Now, in order to understand the particularities
of the situation, let us
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consider �rst what happens in the �nite dimensional setting. Let
Y1; :::; Yn be a sample of i.i.d. vectors of Rp with mean y: The
test is the following �

H0 : y = y0
Ha : y 6= y0:

The operator �n is replaced with a square matrix of size p; say
Mn(p); the emprirical covariance matrix of the sample, which is often
supposed to be invertible for n large enough. Then the test statistics
(usually chi-square) is derived from :

Mn(p)
�1=2

 
1p
n

nX
k=1

(Yk � y0)

!

which converges under the null hypothesis to a gaussian random variable
whose covariance matrix is the identity.
In our framework we still have (Fact 1) : Sn
converges weakly
to G but the distribution of G depends on the unknown �i's.
These eigenvalues may be viewed as nuisance parameters. Besides �

n; conversely to Mn is never invertible in H even for large n
since its range (the linear span of X1; :::; Xn) is of �nite

dimension. Considering "�
�1=2
n Sn" makes no sense, as well

as "��1=2G" (Fact 4). Consequently our goal is double.
First we should estimate (approximate would be more accurate here) the

operator ��1=2 by, say, Ln which should be a random linear
and continuous mapping depending on �n. Then we will have to
study weak convergence for LnSn: This approach will be made more
precise in the next section. Anyway we should expect the norm of Ln to
be a non decreasing sequence tending to +1: We could also say that
the sequence of operators Ln is unstable or ill-conditioned.
Finally, copying the �nite dimensional approach to our test procedure leads
us to a non standard ill-posed inverse problem : G will be
approximated by Sn and ��1=2 by Ln but Sn and
Ln are connected via the sample X1; :::; Xn. Fortunately we will
see that it is possible to propose a convergent test procedure and even to
obtain a rate of convergence for this statistic.

1.4. The Prokhorov metric for probability measures. In the sequel we will
need a metric de�ned on spaces of measures. This

(Prokhorov) metric, in many cases, metrizes the topology of weak convergence
for probability measures on a metric space E: It will be denoted �E
. For the de�nition and main properties, we refer to Billingsley (1968),
Dudley (1968) and Araujo and Gin�e (1980). We will make use of the two
following results keeping the notations and assumptions made above.

Theorem 1. (Yurinski, 1977, p.244) If �k = O
�
k�(1+")

�
for some " > 0; then

�H (Sn; G) = O
�
n�"=(6+8") logn

�
:
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For further purpose we may propose an analogous result in the case of an
exponential decay of the eigenvalues :

Proposition 1. If �k = O (exp (��k))
for some � > 0 then

�H (Sn; G) = O

 
(logn)3=4

n1=8

!
:

This proposition will be proved, following Yurinskii's method, at the end of
the article.

2. Main result

2.1. Pseudo-inverse estimators. The literature coping with ill-posed linear prob-
lems or inverse linear

problems is especially rich. The problem of approximating inverses of
selfadjoint compact operators is absolutely not new. It is adressed in
Nashed and Wahba (1974), Tikhonov and Arsenin (1977), Groetsch (1993)
amongst many others. The main point is always to regularize a matrix M
(resp. an operator S) which is invertible but "not by much" (resp.
unbounded). This property implies that for any vector x; Mx (resp. Sx)
may have large variations even when x does not vary much. Numerous
procedures were proposed. We will keep two of them since they are suited to
our problem and may be easily implemented.
In the basis of eigenvectors of � we may write :

��1=2 = diag
�
�
�1=2
1 ; �

�1=2
2 ; :::; �

�1=2
k ; ::::

�
:

As mentioned above, we denote D the domain of this operator i.e.
the set of points x in H for which ��1=2x has a �nite norm.
Clearly if x is expressed in the basis ei, x =

P
xkek. We

have :

D =

(
x 2 H :

X
k

x2k
�k

< +1:

)
:

We recall that we are aiming at approximating ��1=2. A �rst idea
consists in deleting all the terms for large k: Indeed let us �x an
integer p: In the basis ei we set

��1=2p = diag
�
�
�1=2
1 ; �

�1=2
2 ; :::; ��1=2p ; 0; 0; ::::

�
:

It is clear that �
�1=2
p is a bounded operator with norm

�
�1=2
p : We will say that �

�1=2
p is the S.C.

estimator of order p of ��1=2 (S.C. stands for Spectral Cut).
Another well-known approximation is given by the penalized operator

(� + �I)
�1=2

= diag
�
(�1 + �)

�1=2
; (�2 + �)

�1=2
; :::; (�k + �)

�1=2
; ::::
�
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in the basis of eigenvectors of �: The penalization term is �
I where� is a strictly postive real number and I is the
identity operator on H: This operator is continuous for all strictly
postive � with norm 1=�:
Note that both operators depend on a parameter : p for the �rst one and
� for the second. In the sequel p will increase whereas �
will tend to zero and the norm of these operators will go to in�nity. We

could easily prove that for all x in D, ��1=2p x

as well as (� + �I)
�1=2

x both tend to �
�1=2x in H. We should expect the parameters to be indexed by n; the
size of the sample, if � is replaced with �n.

2.2. Scheme of the proof. Let us set �
�1=2
p be the S.C. approximation of ��1=2

de�ned in the basis of eigenvectors of � by :

��1=2p = diag
�
�
�1=2
1 ; �

�1=2
2 ; :::; ��1=2p ; 0; 0; ::::

�
:

It is easily seen that �
�1=2
p G is a gaussian random function

with a degenerated covariance operator namely �p (i.e. the
projection operator on the p �rst eigenvectors of �): Now in
view of (1.4) :




��1=2p G



2 = pX

k=1

�2k:

Applying the central limit theorem on the real line for i.i.d variables, the
�2ks, we get

(2.1)




��1=2p G



2 � p

p
p

w!
p!+1

N (0; 2) :

This fact (which is nothing but the classical chi-square approximation when
the degree of freedom tends to in�nity) is the starting point for our test
procedure. The �rst idea consists in replacing G by Sn: The next

step would consist in replacing �
�1=2
p by its S.C.

approximation based on �n: But it turns out that the penalized
estimator of �n is more appropriate for at least three reasons :

� The S.C. estimator is based on the functional Principal Component
Analysis of �n. It is necessary to estimate the eigenvectors and
eigenvalues of this random operator before projecting the sample

X1 �m; :::;Xn �m on these eigenvectors (to obtain principal components
as a by-product). The estimation procedure is consequently not that simple
and usually entails serious stability problems. Estimating the penalized
estimate just requires a nonrandom basis, (e.g. spline or
sinusoidal).

� As it may be seen in Cardot et alii (1999), and Bosq (2000),
convergence rates of estimates steming from the S.C. procedure always depend
on the speed of decay of the (unknown) eigenvalues of �: Assumption
are usually made, restricting the generality of the results.
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� Speed of convergence of estimates involving the S.C. estimator are
usually not good, due to the very slow rate of uniform convergence of the
empirical eigenvectors of �n to the eigenvectors of �:
Also note that, conversely to the S.C. estimator, the norm of the penalized
one ( 1=�n) is nonrandom and does not depend on the rate
of decay of the eigenvalues of �.

Suppose that kn is an increasing sequence of real numbers. The test
statistic to be considered should then be :

1p
kn

�


(�n + �nI)
�1=2

Sn




2 � kn

�
where we set once and for all :

Sn =
1p
n

nX
k=1

(Xk �m0)

and we aim at proving that such a statistics converges weakly to a N (
0,2 distribution under the null hypothesis. The proof takes the
following steps :

First step : We prove that

(2.2)
1p
kn

�


(�n + �nI)
�1=2

Sn




2 � 


(� + �nI)
�1=2

Sn




2� P! 0:

The deterministic operator � replaces the random operator �n.

Second step : We prove that the limit in distribution of

1p
kn

�


(� + �nI)
�1=2

Sn




2 � kn

�

is the same as the limit in distribution of
1p
kn

(


(� + �nI)
�1=2

G





2 � kn:

Third step : We prove that

1p
kn

�


(� + �nI)
�1=2

G



2 � 


��1=2kn

G



2� P! 0:

The weak convergence of the test statistic to a N(0; 2) distribution will
then follow from (2.1).

Remark 1. : This last step links the penalization approximation of ��1=2

with its S.C. estimate, which explains the title of the article.

Before giving the main results, we recapitulate the assumptions made above :
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H1 : E kX1k4 < +1:
H2 : � is one to one.

The following subsection both contains a main theorem, followed by the
consistence of this test. These results are made more precise when the rate
of decay of the eigenvalues of � is known or estimated.

2.3. Weak convergence and consistence. The �rst result announces the exis-
tence of the test procedure. It remains

formal since no information is available on the choice of the penalization
and dimension parameters. But it should be stressed that it is given
-conversely to many areas dealing with inverse problems (deconvolution,
image anlaysis, etc.)- under very mild assumptions on the Xi's
(their distribution is unknown) as well as on the spectrum of the compact
operator �:

Theorem 2. : Under H1 and H2 there exists sequences
kn (of integers) and �n (of nonnegative numbers) respectively
increasing to in�nity and decreasing to zero such that under the null
hypothesis m = m0 :

Tpen (n) =
1p
kn

�


(�n + �n)
�1=2 Sn




2 � kn

�
w!

n!+1
N (0; 2) :

Remark 2. :
In fact the proofs even yield a more precise result : an explicit bound
for the Prokhorov distance between the distributions of Tpen and
N(0; 2). This bound is made of three terms (corresponding to
the three steps mentioned above) all depending on kn and �n:
Hopefully, it is possible to �nd compatible conditions, connecting both
parameters, so that this bound tends to zero.

Proposition 2. : The test, described above and based on the computation of
Tpen, is consistent.

It turns out that, when the rate of decay of the eigenvalues �k
is known, �n and kn may be explicitely computed.

Theorem 3. : When H1 and H2 hold and when the
eigenvalues decay at a geometric rate, say �k = mk�(

1+" for some positive constant m and "
>� > 0; then one can take

�n = n�1=4 and kn = n�(1+")
�2=4:

Theorem 4. : When H1 and H2 hold and when the
eigenvalues decay at an exponential rate, say �k = c exp (
-Æk for some positive constant c and Æ > � > 0; then
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�n = n�1=4 and kn =
�

4Æ2
logn:

Remark 3. :
In the special case when the curves are gaussian random functions, it is
easily seen that the second step mentioned in the previous section always
holds (as well as assumption H1) since the distribution of Sn
is, for all n similar to the distribution of G: But this does not change
the �nal results. Indeed, it turns out that the condition obtained at this
stage is weaker than the one obtained at the �rst step.

2.4. Test procedure and bounds for the power. For the sake of completeness,
the test procedure is given below :

� Fix m0 and compute Tpen where Sn = n�1=2
Pn

k=1

(Xk �m0) and

�n =
1

n

nX
k=1

(Xk �m0)
 (Xk �m0) :

� Fix a level of signi�cance � anc compute u� such
that P (jN (0; 1)j � u�)
=1-�

� If jTpenj �
p
2u� H0 is

accepted otherwise, it is refused.

Although a thorough study of the power of this test or of local alternatives
goes beyond the scope of this article (since it involves, for instance,
large or moderate deviations techniques on in�nite dimensional spaces), it
seems of a real intest to give an easily obtained lower bound. This bound
will precise the rate of convergence to one of the power.
Before stating the following Proposition, note that if m 6= m0 it is
always possible to �nd an integer j such that h
m,ej 6= hm0; eji :

Proposition 3. : When H1 and H2 hold and Ha is true :

P
�
jTpenj >

p
2u�

�
�
�
1� c

�2nn
3=2

�

where c is some constant.

Remark 4. :
This bound is obtained, as H1 holds, by elementary (Chebyshev and
Markov) inequalities. When the assumptions of Theorems 3 and

expo hold �2nn
3=2 = n:
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3. Proofs

The proof of Theorem 2 relies, as announced on the forthcoming
propositions.

Proposition 4. : (First step) We have :

(3.1)
1p
kn

����



(�n + �nI)

�1=2
Sn




2 � 


(� + �nI)
�1=2

Sn




2
���� = OP

�
1

�2n
p
nkn

�
:

Proof of the Proposition :

1p
kn

����


(�n + �nI)
�1=2 Sn




2 � 


(� + �nI)
�1=2 Sn




2����
=

1p
kn

���D(�n + �nI)
�1

Sn; Sn

E
�
D
(� + �nI)

�1
Sn; Sn

E���
=

1p
kn

���D�(�n + �nI)
�1 � (� + �nI)

�1
�
Sn; Sn

E���
� 1p

kn




�(�n + �nI)
�1 � (� + �nI)

�1
�
Sn




 kSnk
=

1p
kn




�(� + �nI)
�1 (�� �n) (�n + �nI)

�1
�
Sn




 kSnk
� 1

�2n
p
kn

k�� �nk1 kSnk2 = OP

�
1

�2n
p
nkn

�
:

which is the intended result. We used Cauchy-Schwarz inequality from line
three to four and Fact 2 for the last inequality.

Proposition 5. (Second step) : It is possible to �nd a sequence
�n such that the limiting distribution of

T 0n =
1p
kn

�


(� + �nI)
�1=2

Sn




2 � kn

�
is the same (if it exists) as the limiting distribution of

TG;n =
1p
kn

�


(� + �nI)
�1=2

G



2 � kn

�
:

In terms of the Prokhorov metric the distance between the distributions of

these random variables is bounded by ��1n k
�1=2
n �n

where �n is a sequence of positive numbers tending to zero. This
sequence depends only on the Prokhorov distance between the distribution of
Sn and G.

Proof of the Proposition :
The proof of this lemma is based on a recent result by Mas (2002a). It
should be �rst stressed that calculations show that T 0n
cannot be written as a sum of n random variables. Consequently, it appears
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that it is not possible to prove the weak convergence of T 0n
by standard methods. The famous theorems of preservation of weak convergence
by mappings (e.g. Billingsley, 1968 p.30 and 31) cannnot be applied either.
Reformulating the Proposition and identi�ying a random variable on H
with the measure it induces we will get the desired result if

�R (T 0n; TG;n)! 0:

Or equivalently

1p
kn

�R

�


(� + �nI)
�1=2 Sn




2 ; 


(� + �nI)
�1=2G




2�! 0:

First we rewrite k(� + �nI)
�1=2S2

n as tr ((� + �nI)
�1Sn 
 Sn: Now let us de�ne the sequence of
functions �n : H ! R by

�n(h) = tr
�
(� + �nI)

�1 h
 h
�
:

We have

�R (T 0n; TG;n) =
1p
kn

�R (�n(Sn 
 Sn); �n(G
G)) :

Remind that we know that � (Sn; G)! 0: Mas
(2002a) proved that it is possible to bound �R (T 0n
,TG;n by a function of �H (Sn; G) : This
function depends on the modulus of continuity of the function �n on
the balls (centered at zero) of H: More precisely we obtain successively :

�R (�n(Sn 
 Sn); �n(G
G)) � ��1n �R

�
kSnk2 ; kGk2

�
� c��1n �H (Sn; G)

p
� ln [�H (Sn; G)]:

The �rst inequality stems from the fact that tr(Sn

Sn) = kSnk2 and that �n is a linear mapping
(see also Whitt (1974)). The last inequality is true for n large enough
and is precisely the one given in Case 1 of paragraph 4.1 in Mas (2002a). We
will denote

�n = �H (Sn; G)
p
� ln [�H (Sn; G)]

and �nally

�R (T 0n; TG;n) = O

�
�n

�n
p
kn

�
:

which is the expected result.

Proposition 6. (Third step) : There exists a function '
de�ned and with values on the set of positive real numbers such that
'(0) = 0 and ' is continuous on a neighborhood of 0 with
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1p
kn

E

����



(� + �nI)

�1=2G



2 � 


��1=2kn

G



2
���� = oP (

' (�n)

�kn
p
kn

):

Remark 5. The rate of decay to 0 of the function ' depends on the speed
of decay to zero of the (unknown) �p's, as will be shown in the
proofs. Note anyway that, since �n does not depend on kn;
the rate of convergence to zero of the baove expression just depends on the
choice of an accurate �n.

Proof of the Proposition :
We have successively :

Rn =
1p
kn

E

����



(� + �nI)

�1=2
G



2 � 


��1=2kn

G



2
����

=
1p
kn

E
���D(� + �nI)

�1G;G
E
� 
��1knG;G�

���
=

1p
kn

E
���D�(� + �nI)

�1 � ��1kn

�
G;G

E���
=

1p
kn

E
���D�I � ��1kn (� + �nI)

�
(� + �nI)

�1=2
G; (� + �nI)

�1=2
G
E��� :

The last inequality is due to the fact that ��1kn and

(� + �nI)
�1 commute. By Cauchy-Schwarz

inequality we obtain :

Rn � 1p
kn



I � ��1kn (� + �nI)



1
E



(� + �nI)

�1=2
G



2

=
�n

�kn
p
kn

+1X
p=1

�p
�p + �n

E�2p

=
�n

�kn
p
kn

+1X
p=1

�p
�p + �n

:(3.2)

We know that there exists a nondecreasing sequence ap such that ap
goes to in�nity and

P+1
p=1 �pap < +1: We

write :

(3.3)

+1X
p=1

�p
�p + �n

=

+1X
p=1

ap�p
ap(�p + �n)

:

We are aiming at applying Lebesgue's dominated convergence theorem to the
previous series. First we need the following lemma :

Lemma 1. :
Let M (�n) = a�1p (�p + �

n)
�1; M (�n) is strictly positive and �
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nM (�n) tends to zero as n tends to in�nity for
any sequence �n tending to zero. In the previous Proposition we
took ' (�n) = �nM (�

n

Proof of the Lemma :
Suppose that the positive sequence �nM(�n) does not tend
to zero. For some " > 0; one can �nd a subsequence, say
n0; such that �n0M(�n0
)>" which may be rewritten

sup
p

�n0

ap(�p + �n0)
> "

which implies the existence of some p(n0) such that

�n0

ap(n0)(�p(n0) + �n0)
> "=2:

Next we must consider two cases. First suppose that the sequence
p(n0) is bounded by M then

�n0

ap(n0)(�p(n0) + �n0)
� �n0

a1(�M + �n0)
! 0

as n0 tends to infninty which contradicts the previous
inequality. Let us turn now to the case when the sequence p(n0)
is not bounded. This implies the existence of another subsequence n0

0 such that p(n00) tends to in�nity. Then

�n00

ap(n00)(�p(n00 ) + �n00)
� 1

ap(n00)
! 0:

This proves that the sequence �nM(�n) tends to zero and
enables us to de�ne ' (t) = tM (t) as
enounced above which �nishes the proof of the lemma.

Now we rewrite (3.3)

M(�n)

+1X
p=1

1

M(�n)

ap�p
ap(�p + �n)

:

Applying Lebesgue's dominated convergence we get

1

M(�n)

+1X
p=1

ap�p
ap(�p + �n)

! 0

as n tends to in�nity since for �xed p (M(�

n)ap (�p + �n)
�1

tends to
zero. At last :

Rn = oP

�
'(�n)

�kn
p
kn

�
:
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Proof of Theorem 2 :
By (3.1) the �rst step is achieved if �2n

p
nkn

! +1 and so does the second if �n
p
kn�

�1
n ! +1 (see Proposition 5). Both
conditions are ful�lled if we set

(3.4) ��n = min
�
n�1=4; �n

�
:

At last, choosing kn such that ' (��n
= �k�

n

in Proposition 6 entails the
convergence to zero of the last term. Note that clearly ��n
tends to zero whereas k�n goes to in�nity. This �nishes the
proof of Theorem 2.

Remark 6. :
Note for further reference that one may also easily prove that kn=n
tends to zero.

Proof of Proposition 2 :
It suÆces to prove that, whenever EX1 = m 6= m0; for all
" > 0

lim
n!+1

P (jTpenj > ") = 1:

But

P (jTpenj > ") � P

�


(�n + �nI)
�1=2

Sn




2 > "
p
kn + kn

�

� P

�


(�n + �nI)
�1=2 Sn




2 > 2kn

�

for a suÆciently large n since kn goes to in�nity. Denoting

Un =



(�n + �nI)

�1=2
Sn





2 and Vn = k(� + �nI)
�1=2S2

n; we may write (mn is a non decreasing
sequence of postive real numbers) :

P

�


(�n + �nI)
�1=2

Sn




2 � 2kn

�
= P (Un � Vn + Vn � 2kn)

� P (Un � Vn + Vn � 2kn; jUn � Vnj � mn)

+P (Un � Vn + Vn � 2kn; jUn � Vnj > mn)

� P (Vn � 2kn +mn) + P (jUn � Vnj > mn)(3.5)

Taking mn = kn; the second term on the right clearly tends to 1 and
the �rst is bounded below by P (Vn � 3kn) :
Consequently we just need to prove that
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P

�


(� + �nI)
�1=2 Sn




2 � 3kn

�
! 0

under the alternative hypothesis. But note that since EX1 = m 6= m0;
one may pick an eigenvector ej such that h
m,ej 6= hm0; eji : Then

P

�


(� + �nI)
�1=2

Sn




2 � 3kn

�

� P

�D
(� + �nI)

�1=2 Sn; ej

E2
� 3kn

�

= P
�
hSn; eji2 � 3 (�j + �n) kn

�

= P

0
@
"
1

n

nX
k=1

hXk; eji � hm0; eji
#2

� 3 (�j + �n)
kn
n

1
A :(3.6)

Now kn=n tends to zero (see Remark at the end of the proof of Theorem
2). The weak law of large numbers on the real line ensures that

1

n

nX
k=1

hXk; eji tends in

probability to hm; eji which is enough to
conclude that the above probability tends to zero and that the proposed test
is consistent.

Corollary 1. : If �p =
m

p1+"
; for all

0<� < ";

(3.7)
1p
kn

����



(� + �nI)

�1=2
G



2 � 


��1=2kn

G



2
���� = oP

�
��=(1+")n k1=2+"n

�
:

Proof of the Corollary :
Calculations below aim, in fact, at computing the functions M and '
mentionedabove:Obviously :

+1X
p=1

�p
�p + �n

=
+1X
p=1

m

p1+"
1

m

p1+"
+ �n

:

We take ap = p� where 0 < � < ": Note thatP+1
p=1 ap�p < +1: We have to �nd :

sup
p

1

p�(
m

p1+"
+ �n)

= sup
p

p1+"��

m+ p1+"�n

� sup
x�1

x1+"��

m+ x1+"�n
:

The argmax of the above quantity is x�n = K0�
�1=(1+")
n with
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K0 =

�
m
1 + "� �

�

�1=(1+")

:

Elementary algebra yields :

sup
p

1

p�(
m

p1+"
+ �n)

� K1�
�1+�=(1+")
n =M (�n)

with K1 depending on m and K0: By (3.2) we �nd

Rn = oP

�
�
�=(1+")
n

k
1=2+"
n :

Corollary 2. : If �p = c exp (�Æp) and
0<� < Æ

(3.8)
1p
kn

����



(� + �nI)

�1=2
G



2 � 


��1=2kn

G



2���� = oP

�
k�1=2n ��=Æn exp (Ækn)

�
:

Proof of the Corollary :
This time

+1X
p=1

�p
�p + �n

=
+1X
p=1

c exp (�Æp)
c exp (�Æp) + �n

:

We take ap = exp (�p) and we have to �nd

sup
p

exp (��p)
c exp (�Æp) + �n

� sup
x�1

exp (��x)
c exp (�Æx) + �n

:

This supremum is obtained for x�n = K � Æ�1 log�n
(with K = Æ�1 log (c (Æ=�)� 1)).
We get

sup
x�1

exp (��x)
c exp (�Æx) + �n

= K���=Æ�1n =M (�n) ;

where K� depends on K; Æ; �: We get the desired reult
once more by (3.2).

Proof of Theorem 3 :
By Theorem 1 we know that

�n = n�"=(6+8") logn �
q
� log

�
n�"=(6+8") logn

�
= O

�
n�"=(6+8") (logn)

3=2
�

and since n�"=(6+8") (logn)
3=2 � n�1=4; we are sure that, at least for a suÆciently large
n, ��n = min

�
n�1=4; �n

�
= n�1=4

by (3.4). Consequently, the �nal condition (on Rn), namely

equation (3.7), is n�=(4+4")

=k1+"n hence
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�n = n�1=4;

kn = n�(1+")
�2=4:

Proof of Theorem 4 :
The scheme of the proof is very imilar to the previous Theorem. We �rst
invoke Proposition 1 to get

�n = O

 
(logn)

5=4

n1=8

!

and again ��n = min
�
n�1=4; �n

�
=n�1=4: At last, by(3.8) we get :

�n = n�1=4;

kn =
�

4Æ2
logn:

Proof of Proposition 3 :
We refer to the proof of Proposition 2, especially to (3.5).
This time we keep a general mn since we hope to �nd an an accurate
sequence balancing both terms in this equation.

P
�
jTpenj >

p
2u�

�
� 1� P (Vn � 2kn +mn) + P (jUn � Vnj > mn) :

It was shown (see Proposition 4 above) that the second term may be
bounded.

(3.9) P (jUn � Vnj > mn) = O

�
1

�2nmn
p
n

�
:

The �rst term may also be bounded copying the arguments of the above proofs :

P (Vn � 2kn +mn) � P
�
hSn; eji2 � (�j + �n) (2kn +mn)

�
� P

�
1

n�j
hSn; eji2 � (4kn + 2mn) =n

�

and the last inequality holds for a suÆciently large n : (�

j + �n)=�j was bounded by 2:
Now we set xk = xk;j =p
�j and hj = hm�m0; eji :

Note that xk is a centered real random variable with unit variance.
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P

�
1

n�j
hSn; eji2 � (4kn + 2mn) =n

�

= P

 ����� 1n
nX

k=1

xk +
hjp
�j

����� � (4kn + 2mn) =n

!

� P

 �����
����� 1n

nX
k=1

xk

������
����� hjp

�j

�����
����� � (4kn + 2mn) =n

!

� P

 ����� 1n
nX

k=1

xk

����� � jhj jp
�j

� (4kn + 2mn) =n

!

Then applying Markov inequality at order 4 (remind that the xk's are
i.i.d. with �nite fourth moment by H1) with mn = n j
hj=

�
4
p
�j
�
and for some constant c :

P (Vn � 2kn +mn) � c

n2

for a suÆciently large n.
Finally, comparing the last inequality with (3.9) the bound for the
power is given by,

P
�
jTpenj >

p
2u�

�
� 1� c0

�nn3=2

where c0 is another constant.

Proof of Proposition 1 :
We �rst refer to Theorem 1 p.236 of Yurinskii (1977) which provides the
Prokhorov distance between the sum of n independent random vectors in
Rk and an associated gaussian vector. Straightforward calculations lead

to ck1=4n�1=8 (logn)
1=2

: The link with Hilbertian
identically distributed random elements is made more explicit at the
beginning of the second section p.244. These random variables are �rst
projected on the k �rst eigenvectors of their common covariance operator.
The Prokhorov distance between the initial (in�nite dimensional) vectors
and their projections is then computed. Chebyshev's inequality yields

P (kSn ��kSnk > 
) � 1


2

+1X
i=k+1

�i � c
0


2
exp (��k) :

By Theorem 1 in Dudley (1968), which implies that

�H (X;Y ) � inf f" > 0 : P (kX � Y k > ") � "g ;
we �nally obtain

�H (Sn;�kSn) � c
00

exp (��k=3) :
Combining both previous estimates provides an optimal k satisfying

exp (��k=3) = ck1=4n�1=8 (logn)
1=2

:
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Choosing k =
3

8�
logn leads to �H (Sn; G)

=O
�
n�1=8 (logn)

3=4
�
which is the desired

result
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