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Abstract : Weak convergence of the empirical copula process has been established in the case

of independent marginal distributions (Deheuvels, 1979, 1981). Van der Vaart and Wellner (1996)

utilize the functional delta method to show convergence in `1([a; b]2) for some 0 < a < b < 1, under

restrictions on the distribution functions.

We extend their results by proving the weak convergence of this process in `1([0; 1]2) under minimal

conditions on the copula function. In addition, we consider smoothed versions of the empirical copula

process, and show that they tend weakly towards the same Gaussian limit. Some applications to

semi-parametric models are considered as well.

R�esum�e : La convergence faible du processus des copules empiriques a �et�e �etablie par P. Deheuvels

dans le cas de distributions marginales ind�ependantes (Deheuvels, 1979, 1981). Van der Vaart et

Wellner (1996) utilisent la delta m�ethode pour montrer la convergence dans `1([a; b]2) pour tous r�eels

0 < a < b < 1, sous des conditions de r�egularit�e.

Nous �etendons ces r�esultats en prouvant la convergence faible de ce processus dans `1([0; 1]2) sous

des hypoth�eses minimales concernant la copule elle-même. De plus, nous �etudions des versions liss�ees

du processus des copules empiriques et nous montrons qu'elles tendent faiblement vers le même pro-

cessus limite gaussien. Des applications aux mod�eles semi-param�etriques sont �egalement consid�er�ees.
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1. Introduction

It is well-known (cf., e.g., Nelsen (1999)) that every multivariate cumulative distribution

function (cdf.) H on Rp can be put in the form

(1.1) H(x1; : : : ; xp) = C(F1(x1); : : : ; Fp(xp));

where F1; � � � ; Fp denote the marginal cumulative distribution functions. The function C

is called the copula or dependence function associated to H, and in itself is a distribution

function on [0; 1]p with uniform margins. The representation (1.1) is unique on the range

of (F1; : : : ; Fp), a result due to Sklar (1959). For some historic notes, we refer to Schweizer

(1991) and the recent surveys by Joe (1997) and Nelsen (1999).

Copulas capture the dependence structure among the components Xj of the random vector

(X1; � � � ;Xp), irrespectively of their marginal distributions Fj . In fact, Lemma 3 below

asserts that we may assume without loss of generality the Xj to be uniformly distributed on

[0,1]. In other words, copulas allow us to model separately the marginal distributions and

the dependence structure, and because of this ability, they have been rediscovered recently,

e.g., to study the joint probability to default of several borrowers in �nance and actuarial

sciences, or more generally some correlated extreme events. See, e.g., Schweizer and Sklar

(1974), Genest and McKay (1986a, 1986b), Genest and Rivest (1993), Genest et al. (1995),

Cap�era�a et al. (1997), Bouy�e et al. (2000), Sch�onbucher and Schubert (2001), and Embrechts

et al. (2002).

In order to simplify our notation and exposition, we will consider only two-dimensional

copulas in this paper (p = 2). The general case, however, can be easily deduced from our

results. Let (X;Y ) be a bivariate random vector with joint cdf. H and marginal cdf.'s F and

G. Its associated copula C is de�ned by, for every real numbers x and y,

(1.2) H(x; y) = C(F (x); G(y)):

If F and G are continuous, then the copula C satisfying (1.2) is unique, and we may write

(1.3) C(u; v) = H(F�(u); G�(v)); 0 � u; v � 1

where F� and G� are the generalized quantile functions of F and G, respectively. Recall

that the generalized inverse of a cdf. F is de�ned as

F�(u) = infft 2 R j F (t) � ug for 0 � u � 1:

Given a sample of independent pairs (X1; Y1); � � � ; (Xn; Yn) with the same distribution H,

there are various ways to estimate the associated copula C of H. They all follow the same
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methodology: �rstly, estimate H and its margins F and G by bH, bF and bG, respectively.
Secondly, compute the (generalized) quantile functions

bF�(u) = infft 2 R j bF (t) � ug and bG�(v) = infft 2 R j bG(t) � vg for 0 � u; v � 1:

Thirdly, invoking identity (1.3), set

bC(u; v) = bH( bF�(u); bG�(v)):
Throughout this paper we will make the blanket assumption that H has continuous marginals.

We will consider mainly three variations on this methodology. The main goal is to state

weak convergence of the process
p
n( bC � C) in a convenient function space. Section 2 con-

siders the empirical copula process based on the ordinary empirical distribution Hn, which

puts mass 1=n at each observation (Xi; Yi), and its marginal distributions Fn and Gn. We

extend the result obtained by Van der Vaart and Wellner (1996) by showing that weak con-

vergence holds true in a larger space under weaker assumptions. In particular, we only impose

restrictions on the underlying copula function, rather than di�erentiability assumptions on

H and its marginals. We show that the needed regularity on C, to wit, C has continuous

partial derivatives, cannot be dispensed with. Statistical applications in hypothesis testing

for independence, asymptotic normality of rank statistics, and the bootstrap are provided.

Section 3 deals with the smoothed empirical copula process that is obtained by taking

kernel estimates for bH; bF and bG in lieu of the ordinary empirical cdf.'s considered in Section

2.

In Section 4 the margins F and G are assumed to be known up to �nite dimensional

parameters, but the copula function is entirely unknown to us. The converse situation where

C is assumed to be known up to a �nite parameter, and the distributions are unknown and

estimated by the empirical cdf.'s has been studied by, e.g., Genest et al. (1995), Klaassen

and Wellner (1997) and Genest and Werker (2000).

In the Appendix, we prove a uniform law of large numbers for the empirical copula process

indexed by a class of functions.

2. Weak convergence of empirical copula processes

Let (X;Y ) be a pair of random variables with distribution function H and continuous

marginals F and G. Based on independent copies (X1; Y1); � � � ; (Xn; Yn), we construct the
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empirical distribution function

Hn(x; y) =
1

n

nX
i=1

IfXi�x;Yi�yg; x; y 2 R;

and let Fn(x) and Gn(y) be its associated marginal distributions, that is,

Fn(x) = Hn(x;+1) and Gn(y) = Hn(+1; y); x; y 2 R:

We de�ne the empirical copula function Cn by

Cn (u; v) = Hn

�
F�n (u); G

�
n (v)

�
;(2.1)

where, for every univariate cdf. F , we de�ne the generalized quantile function F� as usual

by

F�(u) = infft : F (t) � ug; 0 � u � 1:

The function Cn has been briey discussed by Frits Ruymgaart in the introduction of his

doctoral thesis (Ruymgaart (1973), pp. 6 { 13). Paul Deheuvels investigated the consistency

of Cn (cf. Deheuvels (1979)), and he obtained the exact law and the limiting process ofp
n(Cn�C)(u; v) when the two margins are independent (cf. Deheuvels (1981a and 1981b)).

Notice that our de�nition slightly di�ers from the one proposed by Genest et al.(1995) who

de�ne

(2.2) Cn(u; v) =
1

n

nX
i=1

IfFn(Xi)�u;Gn(Yi)�vg; u; v 2 [0; 1]:

It is easily seen that Cn and Cn coincide on the grid f(i=n; j=n); 1 � i; j � ng. The subtle
di�erence lies in the fact that Cn is left-continuous with right-hand limits, whereas Cn on

the other hand is right-continuous with left-hand limits. The di�erence between Cn and Cn,

however, is small:

(2.3) sup
0�u;v�1

��Cn(u; v) � Cn(u; v)
�� � max

1�i;j�n

����Cn� i

n
;
j

n

�
� Cn

�
i� 1

n
;
j � 1

n

����� � 2

n
:

As a consequence, all weak convergence results established for Cn hold for Cn as well.

By an elegant application of the functional delta-method, Van der Vaart and Wellner (1996,

p.389) proved the weak convergence of the (ordinary) empirical copula process

Zn(u; v) �
p
n(Cn � C)(u; v); 0 � u; v � 1

to a Gaussian process in `1([a; b]2) when a > 0 and b < 1. More precisely,
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Theorem 1. Let 0 < a < b < 1. Suppose that H(x; y) has some marginal distribution func-

tions F (x) and G(y) that are continuously di�erentiable on the intervals [F�(a)�"; F�(b)+"]
and [G�(a) � ";G�(b) + "] with positive derivatives for some " > 0. Furthermore, assume

that H(x; y) is continuously di�erentiable on the product of these intervals. Then the copula

process fpn(Cn � C)(x; y); a � x; y � bg converges in distribution in `1([a; b]2) to a tight

Gaussian process fG C (x; y); a � x; y � bg.

The next result is another application of the delta-method:

Theorem 2. Let H(x; y) have compact support [0; 1]2, and marginal distributions F (x) and

G(y) that are continuously di�erentiable on its support with strictly positive densities f(x)

and g(y), respectively. Furthermore, assume that H(x; y) is continuously di�erentiable on

[0; 1]2. Then the copula process fpn(Cn � C)(x; y); 0 � x; y � 1g converges in distribution

in `1([0; 1]2) to a tight Gaussian process fG C (x; y); 0 � x; y � 1g.

Proof. As in Van der Vaart and Wellner (1996), page 389, we observe that mapping H into

its copula function can be decomposed as

H 7! (H;F;G) 7! (H;F�; G�) 7! H Æ (F�; G�):
The �rst map and the third map are Hadamard di�erentiable as pointed out in the proof of

Lemma 3.9.28 in Van der Vaart and Wellner (1996). The second map is Hadamard di�er-

entiable as a consequence of Lemma 3.9.23, page 386 in Van der Vaart and Wellner (1996),

which states that the inverse mapping F 7! F� as a mapping D2 � D[0; 1] 7! `1[0; 1] is

Hadamard di�erentiable at F , tangentially to C[0; 1]. Here D2 is the collection of distri-

bution functions of measures that concentrate on [0; 1]. Apply the chain rule to show that

H 7! H Æ (F�; G�) is Hadamard di�erentiable, followed by the delta-method, Theorem 3.9.4

in Van der Vaart and Wellner (1996). �

Both results are unsatisfactory in two respects. Firstly, the weak convergence is in `1([a; b]2)

rather than `1([0; 1]2), unless H(x; y) has compact support. Secondly, H(x; y), F (x) and

G(y) are assumed to have continuous derivatives. This is needed to establish compact di�er-

entiability of the inverse map F 7! F�.

A more direct proof of the weak convergence of the empirical copula process along the lines

of Theorem 10 in Section 3 below, shows that actually fZn(x; y); 0 � x; y � 1g converges

weakly to a Gaussian process in `1([0; 1]2), providedC(x; y) has continuous partial derivatives

only. We do not follow this route since Lemma 3 below allows us to obtain the stronger result

using Theorem 2 directly.
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We �rst introduce some more notation. De�ne the pseudo variables

(X�; Y �) = (F (X); G(Y )) ;

with distribution function

H�(x; y) = IPfX�
1 � x; Y �1 � yg = H(F�(x); G�(y));

and marginal cdf.'s F �(x) = H�(x;+1) and G�(y) = H�(+1; y). Notice that F �(x) and

G�(y) are both uniform distributions on [0; 1]. The copula function associated to H�(x; y)

is denoted by C�(u; v) = H�(F ��u;G��v) for 0 � u; v � 1. Finally, let H�
n(x; y) be the

empirical distribution function based on (X�
1 ; Y

�
1 ); : : : ; (X

�
n; Y

�
n ) with marginal distributions

F �n(x) = H�
n(x;+1) and G�n(y) = H�

n(+1; y), and let C�n(x; y) be its associated empirical

copula function.

Lemma 3. We have

C(x; y) = C�(x; y) = H�(x; y) for all x; y 2 [0; 1]:

Moreover,

Cn

�
i

n
;
j

n

�
= C�n

�
i

n
;
j

n

�
for i; j = 0; 1; : : : ; n:

Remark: The �rst assertion is well-known. The fact that Cn and C�n agree on the grid points

(i=n; j=n) is more surprising.

Proof. The �rst claim follows from

C(x; y) = H(F�x;G�y)

by de�nition of C

= H�(x; y)

by de�nition of H�

= C�(x; y)

since F � and G� are uniform:

We prove the second display by the following reasoning. Let X(1) < X(2) < � � � < X(n) be the

order statistics of the sample X1; � � � ;Xn. Similarly, Y(1) < � � � < Y(n) are the order statistics

of the sample Y1; � � � ; Yn. De�ne X(0) = Y(0) = �1 and X(n+1) = Y(n+1) = +1, and set



6

in = i=n and jn = j=n. Hence

Cn(in; jn) = Hn(X(i); Y(j))

as Fn(X(i)) = in and Gn(Y(j)) = jn

= Hn(F
�F (X(i)); G

�G(Y(j)))

= H�
n(F (X(i)); G(Y(j)))

since H�
n(x; y) = Hn(F

�x;G�y)

= H�
n(X

�
(i); Y

�
(j))

where X�
(i) = F (X(i)) and Y

�
(j) = G(Y(j))

= C�n(in; jn)

since F �n(X
�
(i)) = in and G�n(Y

�
(j)) = jn.

This concludes the proof of the lemma. �

Combination of Theorem 2 and Lemma 3 immediately yields

Theorem 4. Let the copula function C(x; y) have continuous partial derivatives. Then the

empirical copula process converges weakly to the Gaussian process G C in `1([0; 1]2).

Proof. First notice that for all x; y 2 [0; 1], there exist in; jn such that Cn(x; y) = Cn(in; jn),

which coupled with Lemma 3 yields
p
n(Cn�C)(x; y) = p

n(C�n�C�)(x; y). Since H�(x; y) =

C(x; y) satis�es the conditions of Theorem 2, invoke Theorem 2 to conclude the proof. �

The limiting Gaussian process can be written as

G C (u; v) = BC (u; v)� @1C(u; v)BC (u; 1) � @2C(u; v)BC (1; v);

where BC is a Brownian bridge on [0; 1]2 with covariance function

IE
�
BC (u; v) � BC (u0; v0)

�
= C(u ^ u0; v ^ v0)� C(u; v)C(u0; v0)

for each 0 � u; u0; v; v0 � 1.

Let Cn be the c�adl�ag version of the empirical copula function de�ned in (2.2). Theorem

4 also implies that the related process Zn �
p
n(Cn � C) converges weakly to G C , provided

C has continuous partial derivatives. Invoke inequality (2.3) to see that Zn converges weakly

if and only if Zn converges weakly.

As already mentioned { since the smoothness of derivatives of F;G and H easily implies

the smooth partial derivatives of C { Theorem 4 o�ers another improvement of Theorem
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1 besides the extension from the space `1([a; b]2) to `1([0; 1]2). We argue that this is not

merely a cosmetic improvement. Copulas are designed in order to capture the dependency

structure of the vector (X;Y ) independently of the marginal distributions, which makes it

desirable to state the results with the assumptions on C rather than on the marginal distri-

butions. Lemma 3 supports this approach as well. For example, if X and Y are independent,

C(s; t) = st and this copula has clearly continuous partial derivatives, regardless of degree

of smoothness of marginal distributions. Numerous other statistically interesting cases fol-

low this pattern, where we are interested in the estimation or in testing the hypothesis of a

particular smooth copula function, and where we are not concerned with the smoothness of

marginal distributions. See, for example, Nelsen (1999), Chapter 3.

Regarding the assumption on C, we note that every copula C is Lipschitz and its partial

derivatives exist for almost all points in [0; 1]2 (cf., e.g., Nelsen (1999)). Careful inspection of

the proof for Theorem 4 reveals that we require smoothness of the partial derivatives only in

order to apply the functional delta method (Theorems 1 and 2). This observation, coupled

with the above example for independent X and Y; suggests that one might perhaps be able

to relax this assumption. That would be useful, since there are many statistically relevant

cases where the desired copula function does not have continuous partial derivatives. For

example, let X be any (continuous) symmetric random variable and let vector (X;Y ) =

(X;�X): In this case C(s; t) = max(0; s+ t�1) does not have continuous partial derivatives.

Unfortunately, the following result, which in a sense is the converse of Theorem 4, indicates

that there is actually very little we can do.

Theorem 5. Assume that the inverses F�1 and G�1 exist and that there exists at least one

point (s�; t�) 2 (0; 1)2 for which the four quantities

A1 � lim
h%0

C(s� + h; t�)� C(s�; t�)

h
; A2 � lim

h&0

C(s� + h; t�)� C(s�; t�)

h
;

A1 � lim
h%0

C(s�; t� + h)� C(s�; t�)

h
; A2 � lim

h&0

C(s�; t� + h)� C(s�; t�)

h

are not all equal. Then
p
n(Cn(s; t) � C(s; t)); s; t 2 [0; 1]2 does not converge to a tight

Gaussian process.
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Proof. We have

Zn(s; t)

=
p
n(Cn(s; t)� C(s; t))

=
p
n
�
Hn(F

�
n (s); G

�
n (t))�H(F�1(s); G�1(t))

�
=
p
n
�
(Hn �H)(F�n (s); G

�
n (t))� (Hn �H)(F�1(s); G�1(t))

�
+

+
p
n[H(F�n (s); G

�
n (t))�H(F�1(s); G�1(t))] +

p
n(Hn �H)(F�1(s); G�1(t)):

The �rst term on the right is OP (1) since the process
p
n(Hn�H) is stochastically equicontin-

uous. The third part converges to a normal random variable for every �xed (s; t): Evaluated

at the point (s�; t�) the second part of the above equation is equal to

p
n[C(F Æ F�n (s�); G ÆG�n (t�))� C(s�; t�)]

= A1

p
n(F Æ F�n (s�)� s�)IfF�

n (s�)<F�1(s�)g +
+A2

p
n(F Æ F�n (s�)� s�)IfF�

n (s�)>F�1(s�)g +
+A1

p
n(G ÆG�n (t�)� t�)IfG�

n (t�)<G�1(t�)g +
+A2

p
n(G ÆG�n (t�)� t�)IfG�

n (t�)>G�1(t�)g + OP (1):

Thus, the asymptotic behavior of the previous term depends on the values of the left - and

right hand limits. If one of the four constants A1; A2; A1 or A2 di�ers from the others, the

above expression does not converge for n ! 1. Notice that the events in the indicator

functions occur with a nonzero probability, and as a result the limiting process (if it exists)

is not Gaussian. Moreover, a very similar argument reveals that

Zn(s
� + Æ; t�)� Zn(s

� � Æ; t�)

= A1�
Æ
1IfF�

n (s�+Æ)<F�1(s�+Æ)g +A2�
Æ
1IfF�

n (s�+Æ)>F�1(s�+Æ)g +
�A1�

Æ
2IfF�

n (s��Æ)<F�1(s��Æ)g �A2�
Æ
2IfF�

n (s��Æ)>F�1(s��Æ)g + OP (1);

where

�Æ1 = lim
n!1

p
n(Fn(s

� + Æ)� F (s� + Æ)) and �Æ2 = lim
n!1

p
n(Fn(s

� � Æ) � F (s� � Æ)):

Assume that A1 6= A2. Then the right hand side of the above equation does not converge to

0 as Æ ! 0 and n!1 because

lim
Æ&0

lim inf
n!1

IP
�
F�n (s

� + Æ) < F�1(s� + Æ);F�n (s� � Æ) > F�1(s� � Æ)
	
> 0:
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This implies that the process Zn(s; t) is not stochastically equicontinuous, which establishes

the claim. �

The covariance structure of
p
n(Cn � C)(u; v) might be complicated to estimate, and

the bootstrap methodology provides an attractive alternative to estimate the �nite sample

distribution of Cn. We will show that the bootstrap \works", but �rst we need some additional

notation. Let (X1;B ; Y1;B); � � � ; (Xn;B ; Yn;B) be the bootstrap sample obtained by sampling

with replacement from the original observations (X1; Y1); � � � ; (Xn; Yn). We write Hn;B(x; y)

for the empirical cdf. based on the bootstrap sample, and denote its associated empirical

copula function by Cn;B.

Theorem 6. The conditional distribution of fpn(Cn;B �Cn)(x; y); 0 � x; y � 1g converges

to the same limiting Gaussian process of fpn(Cn � C)(x; y); 0 � x; y � 1g in `1([0; 1]2) in

probability.

Proof. We can invoke the same uniform transformation trick of Lemma 3. We already know

that Cn(in; jn) = C�n(in; jn), and it is easily veri�ed that Cn;B(in; jn) = C�n;B(in; jn) as well,

where C�n;B is the empirical copula function based on (F (Xi;B); G(Yi;B)). Hence

p
n(Cn;B � Cn)(in; jn) =

p
n(C�n;B � C�n)(in; jn):

The conclusion follows by observing that the proof of Theorem 2 is based on an application

of the delta method, by showing that the map H 7! CH is Hadamard di�erentiable, and

hence
p
n(�(Hn;B) � �(Hn)) converges weakly if and only if

p
n(�(Hn) � �(H)) is weakly

convergent by Theorem 3.9.11 in Van der Vaart and Wellner (1996, page 378). �

We mention some consequences of our results. Deheuvels (1981) proposed among other

related procedures the Kolmogorov-Smirnov type statistic

T � sup
0�s;t�1

jpn(Cn �C)(s; t)j

for testing the independence hypothesis H0 : C(s; t) = s � t. He calculated the distribution of

T under this null hypothesis. The results established here are useful to compute the power

of this test under various alternatives.

In the early 1970's there was quite some interest in multivariate rank order statistics (see,

for example, Ruymgaart, Shorack and Van Zwet (1972), Ruymgaart (1974), and R�uschendorf

(1976)). Such statistics are of the form

Rn =
1

n

nX
i=1

J(Fn(Xi); Gn(Yi));



10

and asymptotic normality of Rn has been established under regularity assumptions on J :

[0; 1]2 ! R. However, simply by observing that

1

n

nX
i=1

J(Fn(Xi); Gn(Yi)) =

Z
[0;1]2

J(u; v) dCn(u; v);(2.4)

where Cn is the c�adl�ag version of the empirical copula function de�ned in (2.2), and

IEJ(F (X); G(Y )) =

Z
[0;1]2

J(u; v) dC(u; v);

it follows immediately from Theorem 4 and the functional delta method that

1p
n

nX
i=1

fJ(Fn(Xi); Gn(Yi))� IEJ(F (Xi); G(Yi))g

=
p
n

Z
[0;1]2

J(u; v) d(Cn � C)(u; v)

=

Z
[0;1]2

p
n(Cn � C)(u; v) dJ(u; v)

using integration by parts

D�!
Z
[0;1]2

G C (u; v) dJ(u; v)

for every function J of bounded variation, provided C has continuous partial derivatives.

Since a continuous, linear transformation of a tight Gaussian process is normally distributed,

the limit has a Gaussian distribution and we reach the same conclusion under weak assump-

tions on J . It is interesting to note that Ruymgaart (1973) realized (2.4), more precisely the

relation between Cn (in lieu of Cn) and Rn and wrote (Ruymgaart (1973, page 7)): \It would

be interesting to see whether results comparable to those of Chapters 2 { 4 can be obtained

with [(2.4)] as a starting point. One would have to study the weak convergence of the suitably

standardized processes [Cn] and the rate of growth of these processes near the boundary of the

unit square."

This result is useful in many cases. For instance, Genest et al. (1995) consider a family of

copula densities c� indexed by �, and propose to estimate � by solving Ln(�) = 0, where

Ln(�) � 1

n

nX
i=1

@� log c�(Fn(Xi); Gn(Yi)) =

Z
[0;1]2

@� log c�(x; y) dCn(x; y):

Their analysis requires that Ln(�) is asymptotically normal, which follows from the discussion

above. In the Appendix, we propose regularity conditions on J ensuring a uniform law of

large numbers for Rn.
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3. Weak convergence of smoothed empirical copula processes

The smoothed empirical distribution function bHn(x; y) is de�ned by

bHn(x; y) =
1

n

nX
i=1

Kn(x�Xi; y � Yi):

Here Kn(x; y) = K(a�1
n x; a�1

n y), and

(3.1) K(x; y) =

Z x

�1

Z y

�1
k(u; v) du dv;

for some bivariate kernel function k : R2 7! R, with
R
k(x; y) dxdy = 1, and a sequence

of bandwidths an # 0 as n ! 1. For notational convenience, we have chosen the same

bandwidth sequence for each margin. This assumption can be dropped easily.

For small enough bandwidths an, the empirical cdf. Hn and the smoothed empirical cdf.bHn are almost indistinguishable:

Lemma 7. Assume that F and G are Lipschitz, an ! 0,Z
R2

(jxj+ jyj) dK(x; y) <1 and sup
x;y

p
n
���IE bHn(x; y)�H(x; y)

���! 0;

then p
n sup

x;y
j bHn(x; y) �Hn(x; y)j P�!0;

and in particular, the smoothed empirical process
np

n( bHn �H)(x; y); x; y 2 R

o
converges

weakly to a tight Brownian bridge in D(R2).

Proof. According to Van der Vaart (1994), we only have to check that

sup
s;t

Z �Z
Ifx+"�s;y+��tg dKn("; �) � Ifx�s;y�tg

�2
dH(x; y)! 0:

This is the case, since

sup
s;t

Z �Z �
Ifx+"�s;y+��tg� Ifx�s;y�tg

�
dKn("; �)

�2
dH(x; y)

� sup
s;t

Z Z �
Ifx+"�s;y+��tg� Ifx�s;y�tg

�2
dKn("; �) dH(x; y)

by Jensen's inequality

� sup
s;t

Z Z �
Ifx2(s�";s]g+ Ify2(t��;t]g

�
dH(x; y) dKn("; �)

using Fubini

= sup
s;t

Z
[F (s)� F (s� anx)] + [G(t)�G(t� any)] dK(x; y)
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which tends to zero as an ! 0 by our assumptions on F;G and K. �

The bias term can be handled by means of some smoothness assumptions on H and regu-

larity of K:

Lemma 8. Assume that H has a bounded p-th derivative, limn!1
p
napn = 0,Z

R2

xkylk(x; y)dx dy = 0; 1 � k + l < p;

and
R jxjkjyjljk(x; y)j dx dy <1, 1 � k + l � p. Then we have

sup
x;y

p
n
���IE bHn(x; y)�H(x; y)

��� = p
napn:

Proof. The claim follows readily after a simple Taylor expansion. �

Next we study the weak convergence of the smoothed empirical copula process

bZn(x; y) = p
n( bCn � C)(x; y); 0 � x; y � 1;

based on the smoothed empirical copula function

bCn(x; y) = bHn

� bF�n (x); bG�n (y)� :
The following lemma establishes asymptotic tightness of the smoothed empirical process.

Lemma 9. Let C(x; y) have continuous partial derivatives and assume that the assumptions

of Lemma 7 hold. Then the process f bZn(x; y) : (x; y) 2 [0; 1]2g is stochastically equicontinu-

ous, that is, for all � > 0

lim
Æ#0

lim sup
n!1

IP

(
sup

jx�x0j�Æ;jy�y0j�Æ

��� bZn(x; y)� bZn(x0; y0)��� > �

)
= 0:

Proof. Observe that

IP

(
sup

ju�u0j�Æ;jv�v0j�Æ
j bZn(u; v) � bZn(u0; v0)j > �

)
� I + II;
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with

I = IP

(
sup

ju�u0j�Æ;jv�v0j�Æ

���pn� bCn( bFn( bF�n u); bGn( bG�n v) )� C( F ( bF�n u); G( bG�n v) ) �
�pn

� bCn( bFn( bF�n u0); bGn( bG�n v0) )� C( F ( bF�n u0; G( bG�n v0) ) ���� > �

2

o
II = IP

(
sup

ju�u0j�Æ;jv�v0j�Æ

���pn� C( bFn( bF�n u); bGn( bG�n v) )� C( F ( bF�n u); G( bG�n u) ) �
�pn

�
C( bFn( bF�n u0); bGn( bG�n v0) )� C( F ( bF�n u0); G( bG�n v0) ) ���� > �

2

o
:

We will deal with the two terms I and II separately. The �rst term can be handled by noticing

that

bCn(x; y) = bHn( bF�n (x); bG�n (y))
= Hn( bF�n (x); bG�n (y)) + OP (n

�1=2)

by Lemma 7

= H�
n

�
F ( bF�n (x)); G( bG�n (y))�+ OP (n

�1=2)

where H�
n(u; v) is the empirical cdf. based on (F (X1); G(Y1)); � � � ; (F (Xn); G(Yn)). There-

fore, the �rst probability can be bounded by

I � IP

(
sup

(x;x0): j bFn(x)� bFn(x0)j�Æ; (y;y0): j bGn(y)� bGn(y0)j�Æ

��pn (H�
n �H�) (F (x); G(y))

�pn (H�
n �H�) (F (x0); G(y0))

�� > �

4

o
+ O(1)

� IP

(
sup

(x;x0): jF (x)�F (x0)j�3Æ; (y;y0): jG(y)�G(y0)j�3Æ

��pn (H�
n �H�) (F (x); G(y))

�pn (H�
n �H�) (F (x0); G(y0))

�� > �

4

o
+

+IP

�
sup
x
j bFn(x)� F (x)j > Æ

�
+ IP

�
sup
y
j bGn(y)�G(y)j > Æ

�
+ O(1)

� IP

(
sup

(u;u0): ju�u0j�3Æ; (v;v0): jv�v0j�3Æ

��pn (H�
n �H�) (u; v) �pn (H�

n �H�) (u0; v0)
�� > �

4

)
+

+IP

�
sup
x
j bFn(x)� F (x)j > Æ

�
+ IP

�
sup
y
j bGn(y)�G(y)j > Æ

�
+ O(1)

which tends to 0 as n!1 and Æ # 0 from the weak convergence of the process n1=2(H�
n�H�).

The second term II can be made arbitrarily small by invoking that C has continuous partial



14

derivatives so thath
C (u; v) �C

�
F bF�u;G bG�v�i� h

C
�
u0; v0

�� C
�
F bF�u0; G bG�v0�i

= �C 0u;v
�
( bF � F ) bF�u; ( bG�G) bG�v�+ C 0u0;v0

�
( bF � F ) bF�u0; ( bG�G) bG�v0�

+O(k bF � Fk1 + k bG�Gk1)
= C 0u;v

�
( bF � F ) bF�u0 � ( bF � F ) bF�u; ( bG�G) bG�v0 � ( bG�G) bG�v�

+
�
C 0u0;v0 � C 0u;v

� �
( bF � F ) bF�u0; ( bG�G) bG�v0�+ O(k bF � Fk1 + k bG�Gk1)

= C 0u;v

�
( bF � F ) bF�u0 � ( bF � F ) bF�u; ( bG�G) bG�v0 � ( bG�G) bG�v�+

O(k bF � Fk1 + k bG�Gk1)

for u! u0; v ! v0. Next, observe that

IP

(
sup

ju�u0j�Æ

p
n
���( bF � F ) bF�u0 � ( bF � F ) bF�u��� > �

)

= IP

(
sup

x;x0: j bFx� bFx0j�Æ

p
n
���( bF � F )x0 � ( bF � F )x

��� > �

)

� IP

(
sup

x;x0: jFx�Fx0j�3Æ

p
n
���( bF � F )x0 � ( bF � F )x

��� > �

)
+ IP

n
kF � bFk1 > Æ

o
� IP

(
sup

x;x0: jFx�Fx0j�3Æ

p
n
��(Fn � F )x0 � (Fn � F )x

�� > �

2

)
+

+IP
n
kF � bFk1 > Æ

o
+ IP

np
nk bFn � Fnk1 >

�

4

o
= IP

(
sup

ju�u0j�3Æ

p
n
��(F �n � F �)u0 � (F �n � F �)u

�� > �

2

)
+

+IP
n
kF � bFk1 > Æ

o
+ IP

np
nk bFn � Fnk1 >

�

4

o
! 0; as n!1; Æ # 0

by the weak convergence of the uniform empirical process and Lemma 7. Similarly, we can

show that

lim
Æ#0

lim sup
n!1

IP

(
sup

jv�v0j�Æ

���( bG�G) bG�v0 � ( bG�G) bG�v��� > �

)
! 0:

Hence, II is asymptotically negligible as well, and the proof is complete. �

We have obtained the following result :
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Theorem 10. Under the assumptions of Lemma 7 and provided C has continuous partial

derivatives, the smoothed empirical copula process f bZn(u; v); 0 � u; v � 1g converges weakly

to the Gaussian process fG C (u; v); 0 � u; v � 1g in `1([0; 1]2).

Proof. In view of Lemma 9, we only have to show the �nite dimensional convergence of the

process f bZn(u; v); 0 � u; v � 1g. Take x; y 2 R arbitrarily, and set u = F (x); v = G(y) andbu = bF (x) and bv = bG(y). Note that bu P�!u and bv P�!v by Lemma 7, and argue that

bZn(u; v)
= bZn(bu; bv) + OP (1)

since bZn is stochastically equicontinuous and bu P�!u and bv P�!v

=
p
n( bHn �H)(x; y) +

p
n
h
C(u; v)� bC(bu; bv)i+ OP (1)

=
p
n( bHn �H)(x; y) +

p
n
h
(F � bF )(x)@1C(u; v) + (G� bG)(y)@2C(u; v)i+ OP (1)

since C has continuous partial derivatives

=
p
n(Hn �H)(x; y) +

p
n [(F � Fn)(x)@1C(u; v) + (G�Gn)(y)@2C(u; v)] + OP (1)

by Lemma 7

= Zn(u; v) + OP (1):

The required �nite dimensional convergence of the process follows from Theorem 4. �

Note that we could not prove the last result in the same way as for the empirical copula

process Zn. Indeed, the transformation of Lemma 3 works no longer for smoothed empirical

cdf.'s. In contrast, we can repeat the same arguments leading to Theorem 10 to prove

Theorem 4.

Smoothing the empirical copula function Cn itself provides another way to build smooth

estimates of C. Set eCn(x; y) = Z
K

�
x� u

an
;
y � v

an

�
dCn(u; v);

where K is the previous integrated kernel (3.1), and an & 0. The associated copula process

is now eZn(x; y) � p
n( eCn � C)(x; y):

We have the following result:

Theorem 11. If k is bounded and compactly supported and if na2n ! 0, then

kpn( eCn � C)�pn(Cn � C)k1 = OP (1):
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In particular, provided C has continuous partial derivatives, the process
p
n( eCn � C) tends

weakly to the Gaussian process G C in `1([0; 1]2).

Proof. Observe that

eZn(x; y) =
p
n( eCn � C)(x; y)

=
p
n

Z
(Cn � C)(x� anu; y � anv)k(u; v) du dv +

+
p
n

Z
(C(x� anu; y � anv)� C(x; y))k(u; v) du dv;

and

eZn(x; y)� Zn(x; y)

=
p
n

Z
[(Cn � C)(x� anu; y � anv)� (Cn � C)(x; y)] k(u; v) du dv +

+
p
n

Z
(C(x� anu; y � anv)� C(x; y))k(u; v) du dv:

Since C is Lipschitz continuous, and k is bounded and compactly supported, the second

term on the right is of order O(pnan). Moreover, invoking the equicontinuity of the process

Zn, the �rst term on the right tends to zero in probability since the kernel k is compactly

supported. �

4. Semi-parametric estimation procedures

The marginal distributions are often better known than the dependence function. For

instance, X and Y are the asset values of two �rms, being evaluated by their equity prices

and their short and long term debts. Usually, these processes are assumed to be di�usions,

which implies that the margins are Gaussian random variables. Therefore, it is common to

model the margins in a parametric way. In contrast, the dependence structure between two

�rms does not seem to be obvious a priori. No well stated empirical �ndings nor theoretical

models allow us to formulate a natural parametric family for the copulas. That is why it is

relevant to assume that F (resp. G) belongs to some parametric family F = fF�; � 2 �g
(resp. G = fG�; � 2 �g), whilst to leave the copula C unspeci�ed.

The parameters � and � are estimated by b� and b�, respectively, at a �rst stage. Let �0

and �0 be the \true values" of the parameters. We then can construct the process

p
n( bC

b�;b�
� C) � p

n(Hn(F
�

�̂
; G��̂ )�H(F�; G�)):
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More generally, we could study the case of misspeci�ed models: even if the marginal distribu-

tions are misspeci�ed, viz., if the true marginal cdf.'s do not belong to F and G, the process
could still converge. For instance, if the parameters are estimated by pseudo-maximum like-

lihood (Gouri�eroux et al.. (1984)), �̂ and �̂ converge to some pseudo-values ��0 and �
�
0 under

suitable regularity assumptions. In such a case, the relevant process is no longer the one

de�ned above, but rather

p
n(Hn(F

�

�̂
; G��̂ )�H(F���

0

; G���
0

)):

Our result could be extended easily in this direction. Nonetheless, since H(F���
0

; G���
0

)) is no

longer a copula function, we exclude this case.

Theorem 12. Assume that C has continuous partial derivatives,

(4.1) kF
b�
� Fk1 + kG

b� �Gk1 P�!0

and that the vector

(4.2)
� p

n(F
b�
� F )(x);

p
n(G

b� �G)(y);
p
n(Hn �H)(x; y)

�
converges jointly to a Gaussian limit for almost all 0 � x; y � 1. Then

p
n
� bC

b�;b�
� C

�
(u; v); 0 � u; v � 1

converges weakly to a Gaussian process in `1([0; 1]2).

Proof. Observe that since

bC
b�;b�
(x; y) = Hn(F

�1
b�
x;G�1

b� y) = H�
n(FF

�
b�
x;GG�

b� y);

we can proceed exactly as in the proof of Lemma 9 and establish stochastic equicontinuity ofp
n( bC

b�;b�
� C). At this point we need to invoke assumption (4.1).

Next let x; y 2 R be arbitrary, and observe that for all u = F (x), bu � F
b�
(x), v = G(y) andbv � G

b�(y), we �nd following the same reasoning as in the proof of Theorem 10

p
n( bC

b�;b�
� C)(u; v)

=
p
n(Hn �H)(x; y) +

p
n
�
(F � F

b�
)(x)@1C(u; v) + (G�G

b�)(y)@2C(u; v)
�
+ OP (1):

The �nite dimensional convergence of the process is an immediate consequence of (4.2). �

The delta method could be used to show that both
p
n(F

b�
�F ) and pn(G

b��G) converge
to a Gaussian limit. Clearly if the mapping � 7! F� is continuously di�erentiable for all x,

asymptotic normality of
p
n(b� � �0) carries over to

p
n(F

b�
� F )(x). Alternatively, we can
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assume Hellinger di�erentiability (see, e.g., LeCam 1986, Chapter 17.3) of the corresponding

densities instead, and as a byproduct obtain (4.1) as well.

Lemma 13. Let fp� : � 2 � � R
kg be a family of probability densities on R, which are

Hellinger di�erentiable at �0 2 �, that is, there exists a function �(�) 2 L2 such that

p
1=2
� (x) = p

1=2
�0

(x) + (� � �0)
t�(x) + r�;�0(x);

where
R
r2�;�0(x) dx = O(k�� �0k2) as � ! �0. Let H be a class of uniformly bounded measur-

able functions on R. Then

(i) the map � 7! P�h � R
h(x)p�(x) dx from � to `1(H) is di�erentiable at �0 with

derivative 2
R
h(x)p

1=2
�0

(x)�(x) dx.

(ii) for any sequence
p
n(�̂ � �0)! N (0;�) weakly with � > 0, the process�p

n(P�̂h� P�0h); h 2 H
	
converges weakly to a tight Gaussian process in `1(H).

Proof. Since H is uniformly bounded, we assume without loss of generality that khk1 � 1.

Observe that the remainder can be written as

P�h� P�0h� 2(� � �0)
t

Z
hp

1=2
�0

� = 2

Z
hp

1=2
�0
r�;�0 +

Z
h
h
p
1=2
�0

� p
1=2
�

i2
:

The remainder is small { it is of order O(k� � �0k) uniformly in h 2 H { since by the

Cauchy-Schwarz inequality

sup
h2H

����Z hp
1=2
�0
r�;�0

���� � �Z
r2�;�0 �

Z
p�0

�1=2

= O(k� � �0k);

and

sup
h2H

����Z h
h
p
1=2
�0

� p
1=2
�

i2���� � Z h
p
1=2
�0

� p
1=2
�

i2
= O(k� � �0k2):

The second assertion follows from the delta method. �

Applying the preceding Lemma 13 with H =
�
I(�1;x](�); x 2 R

	
, and combined with

Theorem 12 immediately yields

Corollary 14. Assume that F� and G� have Hellinger di�erentiable densities at �0 and �0,

respectively, that C has continuous partial derivatives, and that the vector� p
n(b� � �0);

p
n(b� � �0);

p
n(Hn �H)(x; y)

�
(4.3)

converges jointly to a Gaussian limit for almost all 0 � x; y � 1. Then

p
n
� bC

b�;b�
� C

�
(u; v); 0 � u; v � 1

converges weakly to a tight Gaussian process in `1([0; 1]2).
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We end this section by examining an important case where b� and b� are Z-estimators solving

generalized score equations

�n(�) �
Z
 (x; �) dFn(x) = 0 and e�n(�) � Z e (y; �) dGn(y) = 0;(4.4)

where  (x; �) ( e (y; �)) are continuous functions in � F -almost surely (G-almost surely), and

 (�; �) 2 L2(F ) for all � ( e (�; �) 2 L2(G) for all �). Under suÆcient regularity of  the Z-

functional T : C (�) ! � which selects a zero { e.g., T (�n) = b� { is Hadamard di�erentiable

at � =
R
 dF , cf. Rieder (1994). Here C (�) is the space of all bounded, continuous, real-

valued functions on the parameter space � � Rk , equipped with the sup-norm. We introduce

the functions

�(�) =

Z
 (x; �) dF (x) and e�(�) = Z e (y; �) dG(y):

Theorem 15. Assume that

(i) � (e�) is a bounded, continuous function, locally homeomorphic at �0 (�0), and has

bounded continuous partial derivatives at �0 (�0) and �(�0) = 0 (e�(�0) = 0);

(ii) f (�; �); � 2 �g is an F -Donsker class and f e (�; �); � 2 �g is a G-Donsker class;

(iii) F� (G�) has a Hellinger di�erentiable density at �0 2 � � RK (�0 2 � � RL);

(iiii) C has continuous partial derivatives.

Then
p
n
� bC

b�;b�
� C

�
(u; v); 0 � u; v � 1

converges weakly to a tight Gaussian process in `1([0; 1]2).

Proof. In view of Corollary 14 and assumptions (iii) and (iiii), we only need to verify the �nite

dimensional convergence (4.2). Invoking assumption (i), Theorem 1.4.2 in Rieder (1994, page

10) guarantees that there exists a neighborhood V of � in C (�) and a functional T : V ! �

such that f(T (f)) = 0 for all f 2 V . Observe that � 2 V by assumption (i), and �n

is with probability tending to one in such a neighborhood by assumption (ii). Moreover,

Rieder's result implies that every such functional T is Hadamard di�erentiable at � with

derivative T 0�(f) = � [�0(�0)]
�1 f(�0). The same holds for e�, and denote the corresponding

functional which assigns a zero by eT , that is, eT (e�) = �0. Note that assumption (ii) implies

that (
p
n(�n � �);

p
n(e�n � e�);pn(Hn �H) ) converges weakly to a Gaussian process in

C (�) � C (�) �D(R2), whence

p
n
� b� � �0; b� � �0;Hn �H

�
=
p
n
�
T (�n)� T (�); eT (e�n)� eT (e�);Hn �H

�
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converges weakly to a tight Gaussian process in R
K �R

L �D(R2 ) after an application of the

functional delta-method, which is actually a stronger assertion than the required (4.2). �

Appendix

Let Cn be the c�adl�ag version of Cn de�ned in (2.2). A consequence of Theorem 4 is that

Cn(x; y)
P�!C(x; y), uniformly in 0 � x; y � 1. We generalize this convergence by describing

classes of functions � : [0; 1]2 ! R for which

sup
�

�����
Z
[0;1]2

�(x; y) d(Cn � C)(x; y)

����� a.s.�! 0:(4.5)

We will formulate the result in terms of bracketing numbers NB(Æ; L1(C);A). Recall that for
any Æ > 0, a Æ-bracket in L1(C) is a pair of functions [�L; �U ] such that �L � � � �U andR j�U � �Lj dC � Æ, and the Æ-bracketing number NB(Æ; L1(C);A) is the minimal number of

Æ�brackets needed to cover A.

Theorem 16. Let A be a class of functions � : [0; 1]2 ! R, and assume that for every Æ > 0

NB(Æ; L1(C);A) <1 for every Æ > 0:

Then the uniform law of large numbers (4.5) holds true.

Proof. We �rst rewrite
R
�(x; y) d(Cn � C)(x; y). For this matter, observe that, using the

same notation as in Lemma 3,Z
[0;1]2

�(x; y) dCn(x; y) =

Z
R2

�(Fnx;Gny) dHn(x; y) =

Z
[0;1]2

�(F �nx;G
�
ny) dH

�
n(x; y)

and, similarly,Z
[0;1]2

�(x; y) dC(x; y) =

Z
R2

�(Fx;Gy) dH(x; y) =

Z
[0;1]2

�(x; y) dH�(x; y):

Hence Z
[0;1]2

�(x; y) d(Cn � C)(x; y)

=

Z
[0;1]2

�(x; y) d(H�
n �H�)(x; y) +

Z
[0;1]2

[�(F �nx;G
�
ny)� �(F �x;G�y)] dH�

n(x; y):

Since by assumption A has �nite bracketing numbers, it is an H�-Glivenko-Cantelli class

(recall C = H� by Lemma 3), so

sup
�2A

�����
Z
[0;1]2

�(x; y) d(H�
n �H�)(x; y)

����� a.s.�! 0:
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Fix Æ > 0, and let f(�l; �U )g be a �nite set of Æ-brackets covering A in L1(H
�). Note that the

envelope A � sup�2A j�j 2 L1(H
�), and we can take without loss of generality the functions

(�L; �U ) to be continuous as the set of bounded continuous functions on [0; 1]2 is dense in

L1(H
�; [0; 1]2). Now observe that

sup
�2A

�����
Z
[0;1]2

[�(F �nx;G
�
ny)� �(F �x;G�y)] dH�

n(x; y)

�����
� max

(�L;�U )

�����
Z
[0;1]2

�U (F
�
nx;G

�
ny)� �L(F

�x;G�y) dH�
n(x; y)

�����
� max

(�L;�U )

Z
[0;1]2

j�U (F �nx;G�ny)� �U (F
�x;G�y)j dH�

n(x; y) +

+ max
(�L;�U )

�����
Z
[0;1]2

�U (F
�x;G�y)� �L(F

�x;G�y) dH�
n(x; y)

�����
� max

(�L;�U )
sup

0�x;y�1
j�U (F �nx;G�ny)� �U (F

�x;G�y)j+

+ max
(�L;�U )

Z
[0;1]2

j�U (F �x;G�y)� �L(F
�x;G�y)j dH�(x; y) +

+ max
(�L;�U )

�����
Z
[0;1]2

�U (F
�x;G�y)� �L(F

�x;G�y) d(H�
n �H�)(x; y)

�����
Note that we only have �nitely many (�L; �U ) by assumption. Use the Glivenko-Cantelli

theorem and the fact that each �U is uniformly continuous on [0; 1]2 to show that the �rst

term tends to zero. The second term is bounded by Æ by the construction of the Æ-cover.

The third term is small by the strong law of large numbers and since each (�L; �U ) is H
�-

integrable. This concludes our proof. �

The previous result can be used in the context of semiparametric estimation of dependence

parameters. Assume that � is a �nite dimensional parameter and

M(�) �
Z
[0;1]2

��(x; y) dC(x; y)

has a unique, well-separated maximum at �0. For instance, consider a collection of copula's

C� with densities c�, and let �� � log c� (cf. Genest et al. (1995)). Based on independent

observations (X1; Yn); � � � ; (Xn; Yn), estimate �0 by b�, which maximizes

Mn(�) � 1

n

nX
i=1

�� (Fn(Xi); Gn(Yi)) =

Z
[0;1]2

��(x; y) dCn(x; y)
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over �. Under the conditions of the preceding theorem on the class A,

sup
�2A

j
Z
[0;1]2

��(x; y) d(Cn � C)(x; y)j a.s.�! 0;

and consequently b� P�!�0. This reasoning is common to establish consistency, see Van der

Vaart (1998).
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