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Abstract

We propose a Bayesian nonparametric estimation of level sets on IR2, based on the density
of n iid observations. The prior on the density function puts mass on piecewise constant
functions. The pieces, on which the function is constant, are Voronoi tiles generated by a
spatial point process. The values taken by the function on each tile are driven by a random
Markov �eld. We prove that such a prior leads to a strongly consistent posterior distribution.
This implies in particular that the Bayes estimate of the level set is consistent in terms of
the Lebesgue measure of the symmetric di�erence.

We also give simulation results to study the numerical performances of such an estimate.

R�esum�e

Nous consid�erons une estimation non param�etrique et bay�esienne d'ensembles de niveau
dans IR2. La loi a priori charge les fonctions constantes par morceaux. Ces fonctions sont
constantes sur les cellules d'une tesselation de Voronoi engendr�ee par un processus ponctuel.
Les valeurs prises par la fonction sur les cellules sont issues d'un champ de Markov. Nous
d�emontrons que la loi a posteriori est alors convergente presque sûrement, ce qui implique la
convergence des estimateurs bay�esiens, lorsque la fonction de perte est la mesure de Lebesgue
de la di��erence sym�etrique.

Nous e�ectuons par ailleurs des simulations a�n d'�etudier les performances de ce type
d'estimateurs.
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Voronoi tesselation.
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1 Introduction

In this paper, we are interested in estimating a �{level set of a density or a density �{contour
cluster de�ned as the set where the density is larger than some �xed known positive constant
�. More precisely X(n) = (X1; : : : ;Xn), Xi 2 E, is distributed with respect to an unknown
probability P with density f , where E is a known bounded subset of IR2. This problem has
been widely studied due to its large number of statistical applications; in particular, it is used as
an auxiliary tool in di�erent statistical �elds. It is related to the location of mass concentration
and thus to questions concerning the multi-modality of distributions. For instance by considering
di�erent values of �, level set estimation can be used to determine the number and the positions
of modes. This can also be used in cluster analysis, since the population �-clusters are de�ned
as the connected components of the level set, see Hartigan (1975). Con�dence regions can also
be viewed as level sets and estimated as such. In econometrics, level sets are usually expressed
in terms of regression functions and allow to evaluate the performance of an enterprise in terms
of technical eÆciency.

Hartigan (1987) in the bivariate case and M�uller and Sawistzki (1991a, 1991b) in the uni-
variate case, were the �rst to investigate the estimation level sets using the fact that a �{level
set of a density is the largest set S maximizing the excess mass. The excess mass is de�ned as
P (S)� ��(S), where �(S) denotes the Lebesgue measure of S. Both of them consider the spe-
cial case of level sets de�ned as a �nite collection of convex sets. Nolan (1991) considers, in the
d-dimensional case, level sets estimates belonging to a collection of ellipsoids. In all the papers
cited above, it is assumed that the underlying distribution has a density contour cluster lying
in some speci�ed class C. From another point of view, Polonik (1995) gives some asymptotic
results pointing out the relation between the behaviour of level sets estimates obtained from the
empirical excess mass and the choice of the class C. Tsybakov (1997) introduces new estimates
which are based on the maximisation of local empirical excess masses instead of using, as in the
previous papers, global empirical excess mass; he proves that these estimates are minimax for
some speci�c classes.

Here, we investigate a completely di�erent way to estimate the �{level sets of a density since
we use a Bayesian nonparametric approach. We thus de�ne a class of prior distributions on the
set of all probability distributions on E, which, we think, is appropriate to the problem at hand,
i.e. the estimation of �{level sets of a density. To our knowledge there is hardly any work done
on bayesian nonparametric estimation of �{level sets. The class of prior distributions that we
are using is motivated by Arjas and Gasberra (1994), who used similar prior distributions in
the setup of nonparametric curve estimation. There, curves are de�ned on a �nite interval and
parameterised by function values at a �nite number of points. In their paper, the number and
the locations of these points are random. This leads to an in�nite-dimensional parameter space.
Following from Arjas and Gasberra's paper (1994), there has been a number of papers such
as Green (1995), Arjas and Heikkinen (1997, 1998, 1999), Denison, Mallick and Smith (1998),
Nicholls (1998) and for a more detailed review, see Heikkinen (1998). These papers focus mainly
on the de�nition of the prior distribution and on the implementation of the posterior distribution,
via an MCMC algorithm.

Let us briey state the problem and the framework we focus on : let us denote

G� = fx 2 E : f(x) � �g

the quantity of interest, where � is a given positive number. The main purpose of this paper
is to provide some reasonable Bayesian estimate of G�. Since G� is a subset of IR2, we believe
it is appropriate to construct the prior distribution using some spatial process �, as will be
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detailed in Section 2. The idea is basically the same as in Heikkinen (1998) and in Arjas and
Gasbarra (1994). The prior density puts mass on functions that are piecewise constants on tiles
that are constructed using a Voronoi tesselation generated by �. However this does not mean
that the Bayesian estimates obtained from the above prior are necessarily piecewise constant.
In particular posterior means are usually smoother functions.

One must note that we could use a Bayesian estimate of f , say f̂ , and then estimate G� by
fx; f̂(x) � �g. However this would be suboptimal in terms of decision theory. Thus we consider,
as an estimate of G�, the bayesian estimator associated with a loss function, de�ned as some
speci�c distance between two sets, and with the prior described in Section 2.

Moreover, since we are considering a nonparametric approach, it would be unrealistic to
try to construct a purely subjective prior distribution. Therefore it is necessary to assess the
convergence of the posterior distribution as well as the convergence of the estimate we are
considering, to make sure that the prior we are choosing is reasonable. There has been a certain
number of studies on the convergence of posterior distributions, in a bayesian nonparametric
setup, in the last two decades. Diaconis and Freedman (1986) argue that Bayes estimates
can be inconsistent if the underlying mechanism allows an in�nite number of possible values,
more precisely they prove that in the case of Bayesian inference on some in�nite-dimensional
parameter, even if the prior puts positive mass in weak neighbourhoods of the true parameter,
it does not entail that the posterior mass of every weak neighbourhood of the true parameter
tends to 1. Barron, Schervish and Wasserman (1999) give general conditions on the prior
probability, under which the posterior probability of any Hellinger neighbourhood of the true
density converges to 1 almost surely.

We then use the convergence of the posterior distribution to prove the convergence of the
estimator of G� we are considering.

An outline of the paper is as follows. In Section 2, we de�ne the prior on the parameter and
also the loss function, which gives us an explicit expression for the Bayesian estimate of G�.
The results on the convergence of the posterior distribution and of the estimator are stated in
Section 3. The proofs are postponed in Section 5. Section 4 is devoted to additional remarks
and simulations.

2 De�nition of the Bayesian estimate

2.1 Construction of the prior �0

As we said in the previous section, the construction of the prior is close to Heikkinen's (1998).
Indeed, we use a marked point process to put mass on densities that are piecewise constant.
However, as it is usually the case with bayesian estimation, this does not imply that the Bayes
estimate of f is piecewise constant; in particular, if one considers the posterior mean of f .
Let us de�ne more precisely the prior we use : we parameterise f by its values at some points, say
� = (�1; : : : ; �K) 2 EK , that are realisations of a point process; note thatK is random. Typically,
the point process � would be a Poisson process with intensity function l : E ! [0;1[. In this case,
the number of points K follows the Poisson distribution with expectation L(E) = RE l(x)�(dx),
where � is the Lebesgue measure on IR2, and conditional on K the locations �1; : : : ; �K are i.i.d.
random variables with density l(�)=L(E). As a special case, homogeneous Poisson processes
satisfy l(x) = c, 8x 2 E, where c is a positive constant. Conditional on �, the Voronoi tesselation
generated by those points provides a partition of E whose elements are tiles de�ned as follows :

Vj(�) = fz 2 E : d(z; �j) � d(z; �l);8lg; j = 1; : : : K;
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where d(�; �) denotes the Euclidean distance in IR2. Note that the Vj(�)'s are convex polygons.
This leads to a natural neighbourhood relation between the points �j's by letting pairs of points
having a common boundary be neighbours; denote � this relation, therefore �i � �j means that
�i and �j are neighbours. We then construct f as a piecewise constant function on the Vj(�)'s :

f(z) =

PK
j=1 �j1Iz2Vj(�)PK
j=1 �j�(Vj(�))

: (1)

However, more sophisticated forms of interpolation could also be considered (see Denison et al.

1998).
It then remains to de�ne the prior distribution on � = (�1; :::; �K) conditional on �. Because

our aim is to estimate level sets associated with mainly smooth functions, we consider that,
conditionally on �, � is a locally dependent Markov random �eld, associated with the neigh-
bourhood relation � de�ned previously. In other words, each realisation of f is parameterised
by a marked point pattern

(�1; �1); :::; (�K ; �K):

For simplicity's sake, we consider the following parameterisation for the weights : �j = e�j ; j =
1; : : : ;K and we denote ~� = (�1; : : : ; �K). Also, the conditional distribution of � given � would
be a gaussian Markov random �eld de�ned as follows : �1 = 0 and

�0[�ij�j ; j � i; �] / exp

8<
:� 

Hi

0
@�i �X

j�i

�j
Hidij

1
A

29=
;; i � 2

where

Hi =
X
j�i

1

dij
;

and dij denotes the Euclidean distance in IR2 between �i and �j and  is a hyperparameter.
Then, the joint distribution of � = (�2; : : : ; �K) is given by

�0(�2; :::; �K j�) /
KY
i=1

exp

8<
:�2

X
j�i

(�i � �j)
2

dij

9=
;:

One must note that this distribution is proper due to the restriction that �1 = 0. The propriety
of the prior is an important condition, in Bayesian nonparametric inference. In particular, we
believe that without this restriction, i.e. �1 = 0, the posterior distribution would not converge
almost surely, see Section 3. We could have considered another restriction on ~�, however the
arbitrariness of this restriction should not be of much e�ect, at least any restriction in the
form �i = c, for some i and some c is equivalent to the one we have chosen. We motivate
the introduction of the dij 's in the de�nition of the above prior by the fact that among the
neighbours of �i say, those that are closer should have more inuence than those that are further
away.

The hyperparameter  indicates our belief in the smoothness of f . Small 's allow for less
smooth densities.

However this approach can be generalised to other types of marked point patterns, as long
as the distribution P of the number K of points satis�es some technical condition that will be
given in Section 3, as long as, conditionally on K, the distribution of � has a density with respect
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to the Lebesgue measure on IR2 and as long as, conditionally on �, the distribution of � does
not allow values, associated with points that are quite closed, be too di�erent. These conditions
will be given explicitly in Section 3.

We now de�ne the loss function we consider and we give the expression of the Bayes estimate
obtained under this loss function.

2.2 Loss function and Bayes estimate

We recall that our quantity of interest is G� = fx 2 E; f(x) � �g, where � is �xed. The loss
function that we consider is the Lebesgue measure of the symmetric di�erence, i.e. if G; Ĝ � E,

L(G; Ĝ) =

Z
E
1IG\Ĝc(x)d�(x) +

Z
E
1IGc\Ĝ(x)d�(x): (2)

This loss function is commonly used in set estimation. We could also consider an asymmetric
loss function in the form :

a1

Z
E
1IG\Ĝc(x)d�(x) + a2

Z
E
1IGc\Ĝ(x)d�(x);

with a1; a2 > 0, depending on the problem at hand. The results would not be signi�cantly
di�erent.

Let � be any prior on the joint distribution of the observations then the Bayes estimate of
G�, associated with the loss function de�ned by (2) and with the prior � has the form :

Ĝ�
� =

n
y 2 E;�[y 2 G�jX(n)] � 1=2

o
:

Indeed, the Bayes estimate minimizes

E�
h
L(G�; Ĝ�)

i
=

Z
Ĝc
�

�[y 2 G�jX(n)]d�(y) +

Z
Ĝ�

�[y 2 Gc
�jX(n)]d�(y):

The minimum is then achieves for fy 2 E;�[y 2 GjX(n)] � �[y 2 GcjX(n)]g = Ĝ�
�.

In other words this is the set of points y such that the posterior probability that f(y) � � is
greater than the posterior probability that f(y) < �. This result is valid for any set estimation
problem, as soon as the loss function is L.

Under the asymmetric loss function, one would have to compare the posterior probability
with a2=(a2 + a1).

3 Main results

In this part, we focus more particularly on the consistency properties of our method. And, �rst,
we present what kind of consistency we consider and the tools we use. Following from the paper
of Barron, Schervish and Wasserman (1999), we give a result on the consistency of the posterior
distribution in Hellinger distance (which is equivalent to the distance of the total variation).

Let us �rst introduce some notations :
Let P be the set of all probability measures that are absolutely continuous with respect to the
Lebesgue measure � on E and denote fQ the Radon-Nikodym derivative of Q 2 P with respect
to �. Denote D(�; �) the Hellinger pseudo-metric on G = ff : f � 0 and

R
fd� < +1g.
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Recall that P 2 P is the true distribution of the i.i.d. random variables X1; : : : ;Xn and f the
corresponding density probability. Let J (�; �) be the Kullback-Leibler information

J (fP ; fQ) =

Z
log

�
fP (x)

fQ(x)

�
fP (x)d�(x);

for fP ; fQ 2 G and the integrand is stated to zero provided fP (x) = 0. Finally for each " > 0,
de�ne

N" = fQ 2 P : J (f; fQ) � "g (3)

A" = fQ 2 P : D(f; fQ) � "g (4)

Let � be a prior on P.
De�nition 1 For " > 0 and C � P, de�ne H(C; ") to be the logarithm of the in�mum of the set

of all k such that there exist nonnegative functions fU1 ; : : : ; f
U
k satisfying :

1.
R
fUi (x)d�(x) � 1 + " for all i,

2. for each P 2 C there exists i such that fP � fUi �{a.s.

We now recall Theorem 1 of Barron et al. (1999), which enables us to prove the strong
consistency of the posterior distribution. To do so, we �rst state the two conditions that have
to be checked in their theorem.

A1 For every " > 0, �(N") > 0.

A2 For every e > 0, there exists a sequence (Fn)1n=1 of subsets of P, and positive, real numbers
c1, c2 c3 and " such that

c3 < ([e �p"]2 � ")=2; " < e2=4;

and such that

(i) �(Fc
n) � c1 exp(�nc2) for all but �nitely many n;

(ii) H(Fn; ") � nc3 for all but �nitely many n.

Barron et al. (1999) prove the consistency of the posterior distribution under these two
hypotheses.
Theorem 1 of Barron et al. (1999):

Let A" be de�ned by (4). Under conditions A1 and A2, for every " > 0,

lim
n!1

�(A"jX(n)) = 1 a.s. [P ]:

In our setup conditions A1 and A2 will be satis�ed under the following assumptions :

C1 The distribution of K (the number of points generated in E), satis�es :

P (K = k) > 0;8k � 3; P (K � 2) = 0

and
8� > 0;9� > 0; s:t: P [K � �n= log n] � e�n�:
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C2 Conditionally on K, the distribution of � is absolutely continuous with respect to the
Lebesgue measure on EK .

C3 Conditionally on �, the joint distribution of (�2; : : : ; �K) is absolutely continuous with re-
spect to the Lebesgue measure on IRK�1 and satis�es :

9�; �; r > 0; s:t: P [j�i � �jj > n�d�ij j�] � e�nr; 8i � j;

where �, � and r do not depend on �.

Condition C2 is important to ensure the regularity of the Voronoi tesselation.
We then obtain :

Proposition 1 Under assumptions C1{C3, conditions A1 and A2 are satis�ed and

lim
n!1

�(A"jX(n)) = 1 a:s: [P ] (5)

holds.

Note that (5) implies the almost sure convergence of the posterior mean of f , which is a
common bayesian estimate of f , in terms of the Hellinger distance D.

Now, we obtain a result concerning the Bayes estimate of the level set G�.

Proposition 2 If (5) is satis�ed and if �(@(G�)) = 0,

lim
n!1

L(Ĝ�
�; G�) = 0; a.s.[P ];

where L is de�ned by (2).

The condition �(@G�) = 0 is quite classical and it is assumed in all the papers studying
consistency properties of level set estimates. Section 5.2. enlightens on the necessity of this
hypothesis.

4 Remarks

4.1 Generality of conditions C1-C3.

Conditions C1-C3 are fairly general, in particular the type of priors that we have considered
satis�es these conditions. Let � be a Poisson process with intensity function l. Then

P (K � kn) = e�l(E)
1X

k=kn

l(E)k

k!

� � exp
��kn �log kn + �0

�	
;

where �; �0 are positive constants. When kn = �n= log n and n is large enough,

P (K � kn) � e��n=2;

and assumption C1 is proved. By de�nition of a poisson process C2 is also satis�ed. Now
consider

�0(�2; :::; �K j�) /
KY
i=1

exp

8<
:�2

X
j�i

(�i � �j)
2

dij

9=
;:
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Then, if i � j and (�i � �j)
2=dij > n2�,



2
�tW� =

X
l�t


(�l � �t)

2

dlt
� n2�;

whereW is the inverse of the covariance matrix of �. Therefore �tW� is a �2
K�1 random variable.

Let K � �n= log n, � = 1 and � > 1=2 (independent of K), then there exists r > 0 independent
of K such that

P [�2
K�1 � n2�] � e�nr;

and condition C3 is satis�ed.

4.2 Simulations

For the simulations we use the reversible jump Markov chain Monte Carlo algorithm proposed
by Heikkinen (1998).

Starting with initial parameters �(0) and �(0), with K(0) � 6, we construct an iterative
sequence (�(t); �(t)), t 2 IN in the following way : let (�(t); �(t)) be the current state, with K the
number of generating points. We choose among the three following moves with probability, hK ,
bK and dK respectively. Let Æ; C > 0 be hyperparameters of the sampler :

1. move 1 : K �xed move. We propose �0 = (0; �02; : : : ; �
0
K), where �

0
k � U

[�
(t)
k
�Æ;�

(t)
k

+Æ]
and

�0i = �
(t)
i , i 6= k and where k is uniformly chosen in f2; : : : ;Kg. �0 = �(t).

2. move 2 : birth. We propose �0K+1 � UE and �0K+1 = �(t) + ", with

�(t) =
X

k�K+1

�(Vk(�))� �(V 0k(�
0))

�(VK+1(�0))
�k;

and " 2 IR is distributed according to the density g(") = CeC"=(1 + eC")2.

3. move 3 : death. We select uniformly k in f1; � � � ;Kg. If k = 1 then �0 = (�01; : : : ; �
0
K�1) =

(�
(t)
2 ; : : : ; �

(t)
K ) and ~�0 = (1; �

(t)
3 ; : : : ; �

(t)
K ). If k > 1 then, as in Heikkinen (1998), we re-index

�(t) and �(t) by switching k and K, so that K 0 = K � 1 and �0 = (�
(t)
1 ; : : : ; �

(t)
K�1).

hK , bK , dK and the exact expressions of the acceptance probabilities in each moves are given
in Heikkinen (1998). The program we have run was written in Matlab.

We have considered the following density f de�ned on E = [0; 1]2 : using the transformation
g(z) = ez=(1 + ez), we have considered Z = (g(x); g(y)) � f , where x and y are independent
and are distributed according to :

� x � N (0; 1) and y � N (1; 4). We have estimated the level sets associated with � =
0:2; 0:5; 1:5; 2.

For each graph, we have run 750 000 iterations with n = 1000 observations and where the
hyperparameters are : Æ = 0:8 in move 1, C = 5 in move 2,  = 0:1 in the de�nition of the prior
and the parameter of the Poisson distribution is 30.

The results are reported in �gures 1, 2 and 3. Figure 1 shows the true density and the
estimated one using the posterior mean. Figure 2 and 3 show the true level sets and our Bayes
estimators for di�erent levels : � = 0:2; 0:5; 1:5; 2.
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These simulations show an important feature of level set estimation that was already given
in Proposition 2, namely that the estimation is not good when the Lebesgue measure of the set
ff(x) = �g is positive. Indeed, whereas for � = 0:2; 1:5; 2 the estimation is rather good, when
� = 0:5 the estimation is quite poor. By looking at the true density, we realize the the density
is very at around the level 0:5, whereas it is quite steep around the other two levels. It thus
shows that it is diÆcult to estimate the at parts of f . We had also tested other levels and the
results where quite as good as for � = 0:2; 1:5; 2.
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Figure 1: Left side: true density and Right side : estimated density
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Figure 2: (a) Top left : estimated level set, � = 0:5, (b) Top right : true level set, � = 0:5, (c) Bottom
left : estimated level set, � = 2, (d) Bottom right : true level set, � = 2
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Figure 3: (a) Top left : estimated level set, � = 0:2, (b) Top right : true level set, � = 0:2, (c) Bottom
left : estimated level set, � = 1:5, (d) Bottom right : true level set, � = 1:5

5 Proofs

5.1 Proof of Proposition 1

This proof is reduced to verify that both assumptions A1 and A2 are satis�ed. Throughout
the proof, C will denote any positive constant and k � k will denote the Euclidean norm in the
spaces IRl, l � 2. We will also denote f�;�(x) densities in the form (1), i.e.

f�;�(x) =

KX
i=1

e�i1Ix2ViPK
i=1 e

�i�i
;

where �i denotes the Lebesgue measure of Vi, K > 2, and Vi = Vi(�) is de�ned as previously.
1. Assumption A1 :
Set �i = exp(�i) so that �i > 0 for all i.

� We �rst assume that there exist (�; �) such that f(x) = f�;�(x). Set N�
" (f�;�) = ff�0;�0 :

J (f�;�; f�0;�0) � "g and de�ne �(A;B) = ff�0;�0 : for all i = 1 : : : ;K; j�i� �0ij � A�i; k�0i� �ik �
B; �0i 2 Vig: To prove that �(N�

" ) > 0, we prove �rst that for any " > 0, there exist A;B > 0
such that �(A;B) � N�

" . Then, since, conditionally on K, the prior is absolutely continuous
with respect to Lebesgue measure, �[�(A;B)jK] > 0 and assumption A1 is established.

Let f�0;�0 in �(A;B),

J (f�;�; f�0;�0) =
X
i;j

�iPK
i=1 �i�i

log

 
�iPK

l=1 �l�l

PK
l=1 �

0
l�
0
l

�0j

!
�(Vi \ V 0j );
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where �0l = �(V 0l ) for l = 1; :::;K. Note that

x 2 Vi \ V 0j ,
� kx� �ik � kx� �lk l 6= i
kx� �0jk � kx� �0lk l 6= j:

This implies that

�(Vi \ V 0j ) � �(fx 2 Vi : kx� �jk � kx� �lk+ 2B; l 6= jg): (6)

Two cases occur :
- If j 6= i, following from (6), there exists C(�) <1, such that for all B > 0

�(Vi \ V 0j ) � C(�)B;

since k�l � �0lk � B, 8l = 1; : : : ;K.
- If j = i,

�(Vi) � �(Vi \ V 0i ) = �(Vi)�
X
j 6=i

�(Vi \ V 0j ) � �(Vi)� (K � 1)C(�)B

and �0i � �(Vi \ V 0i ) + (K � 1)C(�)B. So the Kullback-Leibler divergence satis�es

J (f�;�; f�0;�0) �
X
i

�iPK
i=1 �i�i

log

 
�iPK

i=1 �i�i

PK
j=1 �

0
j�
0
j

�0i

!
�i +

X
i;j;i6=j

�iPK
i=1 �i�i

log

 
�iPK

i=1 �i�i

PK
j=1 �

0
j�
0
j

�0j

!
c(�; �)B

� C(�; �)(A+B);

where C(�; �) is a positive constant; the last inequality holds provided A and B are small enough.
So we can choose A and B such that J (f�;�; f�0;�0) is less than ".

Therefore for such A and B's, �(A;B) � N�
" .

� We now consider any function f > 0 de�ned on E and such that
R
E f(x)d�(x) = 1. Then,

for all " > 0, there exists �; � such that J (f; f�;�) � "=2. Therefore, N�
"=2(f�;�) � N�

" (f)

� Finally, �(N�
" (f�;�)) > 0 and N�

"=2 � N"(f), where N"(f) is de�ned by (3) and assumption
A1 is satis�ed.

2. Assumption A2 :
Let � > 0 and kn = �n= log n, set

Fn =
n
f�;�;K � kn;8i; j � K; j�i � �jj � n�d�ij

o
;

where � and � are de�ned in assumption C3.
We now prove that �(Fc

n) � e�nr1 , for some r1 > 0 :
C1-C3 imply that

�(Fc
n) � P [K � kn] +

knX
k=3

P (K = k)
X
i<j

�
h
j�i � �jj > n�d�ij

���K = k
i

� e�n� + e�nr
knX
k=3

k(k � 1)=2

� e�n� + e�nrCk3n

� e�nr1 ;

12



with r1 < min (�; r=2), when n is large enough.
It thus remains to prove part (ii) of Assumption A2.

Let e > 0 and c3; " > 0 such that " < e2=4 and c3 < ([e�p"]2 � ")=2 . Let Fn(k) be the set
of f�;� 2 Fn such that the number of points �i is equal to k. Then, Fn = [knk=3Fn(k).

Let (�1; �1; :::; �k; �k) be a parameter in (E � IR)k satisfying the conditions of Fn(k) and
Æ; Æ0 > 0. The idea of the proof is to construct an upper bound fU and to obtain conditions on
Æ and Æ0 such that for any (�01; �

0
1; :::; �

0
k; �

0
k) satisfying k�i � �0ik � Æ and j�i � �0ij < Æ0,

f 0(x) = f�0;�0(x) � fU(x) and

Z
E
fU(x)d�(x) � 1 + ";

where fU depends on �; �. Then, we count the number of balls fj�0 � �j � Æ0; k�0i � �ik � Æ; i =
1; :::; kg that is needed to cover Fn(k) and we prove that it is small enough for A2 to be satis�ed.

We denote d1 = n�h0 , with h0 > 0 some positive constant which we will �x later on. We
divide �1; :::; �k into groups, say (�i1 ; :::; �ini ), i = 1; :::; q and n1+ :::+ nq = k. These groups are
de�ned by
- (i) dilil+1

� d1, l = 1; :::; ni � 1, i = 1; :::; q.
- (ii) 8i 6= j � q, 8l � ni; l

0 � nj diljl0 > d1.
Let V1; :::; Vk be the Voronoi tesselation associated with (�1; :::; �k). We denote �Vi = [nil=1Vil ,

the union of the tiles corresponding to the group i. Then �Vi is connected, i.e. �i1 ; :::; �ini is a
sequence of neighbours. We denote �Bi an h neighbourhood of the boundary of �Vi denoted by
@ �Vi:

�Bi = fz; d(z; @ �Vi) � hg;
with h > 0. Denote ��i =maxf�il ; l = 1; :::; nig and �i = minf�il ; l = 1; :::; nig.

We have :

f(x) = f�;�(x) =

kX
i=1

e�i1Ix2ViPk
j=1 e

�j�j
:

We then build the following upper bound for f :

fU(x) =

Pk
i=1 e

��i+Æ0
�
1I �Vi(x) + 1I �Bi

(x)
�

Pk
i=1 e

�i�Æ
0
�
�( �Vi)� �( �Bi)

� : (7)

Now let (�01; �
0
1; :::; �

0
k; �

0
k) be such that k�j � �0jk � Æ and j�j � �0jj < Æ0. We determine the

relation between Æ and h such that

f 0(x) =
kX
i=1

e�
0

i1Ix2V 0

iPk
j=1 e

�0j�0j
� fU(x): (8)

We have,

f 0(x) =

Pq
i=1

Pni
l=1 e

�0il

�
1IV 0

il
\ �Vi

(x) + 1IV 0

il
\ �V c

i
(x)
�

Pq
i=1

Pni
l=1 e

�0il

�
�(V 0il \ �Vi) + �(V 0il \ �V c

i )
�

�
qX

i=1

e
��i+Æ0

�
1I �Vi(x) +

Pq
j 6=i 1I �V 0

i \
�Vj
(x)
�

Pq
i=1 e

�i�Æ
0

�
�( �Vi)�

Pq
j 6=i[�(

�Vj \ �V 0i )]
�

= e2Æ
0

qX
i=1

e
��i
�
1I �Vi(x) +

Pq
j 6=i 1I �V 0

i \
�Vj
(x)
�

Pq
i=1 e

�i

�
�( �Vi)�

Pq
j 6=i[�(

�Vj \ �V 0i )]
� :

13



To prove (8), we will determine in the following lemma, h so that for all i = 1; ::; q :
- (1) :

Pq
j 6=i 1I �V 0

i \
�Vj (x) � 1I �Bi

(x)

- (2) :
Pq

j 6=i[�(
�Vj \ �V 0i )] � �( �Bi).

Let M = supx;y2E kx� yk <1, we have the following result :

Lemma 1 Choose h0 > (� + 1)=� and h � 2ÆM=d1, with Æ � "d21=8M then f 0(x) � fU (x)
whenever k�i � �0ik � Æ and j�i � �0ij � Æ0, i = 1; � � � k.

If Æ � "d21=192M , Z
fU(x)d�(x) � 1 + ":

The proof of Lemma 2 is given in the appendix.
When k is �xed, the number of such balls needed to cover Fn(k) (i.e. the number of such

upper bounds fU ), is equal to :

Nk = N �
k �N �

k ;

where N �
k �

�
3n�+1M�

"

�k�1
is an upper bounds for the number of possible moves of length "=3

for the �i's, i = 2; :::; k, N �
k � [C=Æ2]k, and

Nk � Ck"�3kn4h0k+k(�+1):

Since the number of upper bounds can be bounded by knNkn ,

H(Fn; ") � kn logC � 3kn log "+ (4h0kn + kn(� + 1)) log n+ log kn

=
�n

logn
(logC � 3 log "+ (4h0 + � + 1) log n) + log (�n= log n)

� 2�n(4h0 + � + 1);

when n is large enough. Choose � < c3=[2(4h0 + � + 1)], then H(Fn; ") � nc3 and assumption
A2 is satis�ed.

5.2 Proof of Proposition 2

Recall that,
Ĝ�
� = fy;�[y 2 G�jX(n)] � 1=2g:

For clarity's sake, we denote f0 the true density and G0 the true level set, throughout the proof.
Then,

L(Ĝ�
�; G0) =

Z
G0\(Ĝ�

�
)c
d�(y) +

Z
Ĝ�
�
\Gc

0

d�(y)

=

Z
1If0(y)=�1I(Ĝ�

�)
c(y)d�(y) +

Z
1If0(y)>�1I(Ĝ�

�)
c(y)d�(y) +

Z
1If0(y)<�1IĜ�

�
(y)d�(y):

If �(ff0 = �g) = 0, the �rst term of the right hand side of the above equality is equal to zero
and

lim
Æ!0

Z
�<f0<�+Æ

d� = lim
Æ!0

Z
�>f0>��Æ

d� = 0:

14



Set GÆ
0 = fy; f0(y) � �+ Æg and G�Æ0 = fy; f0(y) � �� Æg for Æ > 0. Let " > 0,then there exists

Æ > 0 such that

L(Ĝ�
�; G0) � "+

Z
GÆ
0\(Ĝ

�
�)

c

d�(y) +

Z
G�Æ
0 \Ĝ�

�

d�(y):

Since on (Ĝ�
�)

c, �[y 2 Gc
�jX(n)] � 1=2,Z

GÆ
0\(Ĝ

�
�
)c
d�(y) � 2

Z
GÆ
0

�[y 2 Gc
�jX(n)]d�(y)

= 2E�

"Z
GÆ
0

1If(y)<�d�(y)

�����X(n)

#
:

Similarly, Z
G�Æ
0 \Ĝ�

�

d�(y) � 2

Z
G�Æ
0

�[y 2 G�jX(n)]d�(y)

= 2E�

"Z
G�Æ
0

1If(y)��d�(y)

�����X(n)

#
:

Moreover, when f0(y) > �+ Æ and f(y) < �,

(
p
f0(y)�

p
f(y))2 � �

 r
1 +

Æ

�
� 1

!2

= �1

and when f0(y) � �� Æ and f(y) � �,

(
p
f(y)�

p
f0(y))

2 � �

 
1�

r
1� Æ

�

!2

= �2:

Thus Z
GÆ
0\(Ĝ

�
�
)c
d�(y) � 2

�1
E�

"Z
GÆ
0

(
p
f0(y)�

p
f(y))2d�(y)

�����X(n)

#

� 2

�1
E�[D(f; f0)jX(n)];

and Z
G�Æ
0 \Ĝ�

�

d�(y) � 2

�2
E�[D(f; f0)jX(n)]:

Following from Proposition 1, the above quantities go to zero as n goes to in�nity, P0 a.s. and
Proposition 2 is proved.

When �(@G�) > 0, the term Z
1If0(y)=�1I(Ĝ�

�
)cd�(y)

is not necessarily equal to zero, and might not converge to zero. Indeed even if f̂ , the posterior
mean of f , converges to f0, on the set of points y such that f0(y) = �, f̂(y) can be quite close
to � but it can be still strictly less than �. In this case y =2 ~G = fx; f̂(x) � �g. This is only a
heuristic argument and ~G probably does not behave as well as Ĝ�

�, however it enlightens on the
fact that when �(@G�) > 0 the above term cannot be controlled easily and might not converge
to zero. However, note that only this part, i.e. fx; f0(x) = �g might be badly estimated.
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6 Appendix : Proof of Lemma 2

For simplicity's sake, we �rst assume that q = k, in other words that 8i 6= j � k, dij > d1.
To begin with, consider �i and �j , neighbours, that are changed into �0i, �

0
j respectively, such

that k�i � �0ik � Æ and k�j � �0jk � Æ. Let Lij be the bisector (see Boots et al. p 47-48) of �i; �j
and L0ij the bisector of �0i, �

0
j. We bound (V 0i \ Vj) [ (Vi \ V 0j ) by the union of the symmetric

di�erence between V 0i and Vj and V 0j and Vi. To do so, we consider h(y) the length of [y; y0],
when y 2 Lij and y0 2 L0ij is such that y is the projection of y0 on Lij . By obtaining an upper
bound on h(y), say h, we will be able to construct an h neighbourhood of the boundaries of Vi
such that :

(V 0j \ Vi) [ (V 0i \ Vj) � Bi:

We now calculate h(y) :
We consider the orthonormal coordinate system de�ned as follows : �j is the origine, the x

coordinate is on the axe de�ned by the line parallel to Lij going through �j and the y coordinate
is on the line (�j; �i). Note that by de�nition of Lij , the axes are orthogonal. The coordinates
of �i are then (0; dij). Denote �1 and �2, �

0
1 and � 02 real numbers such that the coordinates of �0i

are : (�1; dij + �2), and those of �0j are (�
0
1; �

0
2). Then Æ2 � �21 + �22 and Æ2 � (� 01)

2 + (� 02)
2.

Let O be the middle point of [�i; �j] and O0 be the middle point of [�0i; �
0
j ]. Let O" be the

projection of O0 on Lij . Then

O =
�i + �j

2
= (0; dij=2)

and

O0 =
�0i + �0j

2
= (

�1 + � 01
2

;
dij + �2 + � 02

2
):

Let 
 be the intersection between Lij and L0ij. Then, from Thales, we obtain :

h(y)

jO0O"j =
j
yj
j
O"j : (9)

Let A be the intersection between �i�j and �0i�
0
j. Suppose, without lack of generality, that

jA�j j > jA�ij and denote � the angle between [�j; �i) and [�
0
j; �

0
i). Then � is also the angle between

[
00) and [
O"), so that

j tan(�)j =
jO0O"j
j
O"j =

j� 01j
jA�j + � 02j

� j� 01j
dij=2

: (10)

From (9) and(10), we obtain an upper bound for h(y)

h(y) � 2ÆM=dij :

Since dij > d1, h(y) � 2ÆM=d1 = h. We can apply this argument, to any neighbours of �i, for
all i = 1; :::; k. Let Bi be the set :

fz : d(z; @Vi) � hg;

the convex structure of Vi and the above calculations imply that Bi contains

[j�i
�
(Vj \ V 0i ) [ (V 0j \ Vi)

�
:
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To obtain an upper bound for f 0 in the form (7), we must make sure that for all i, �i��(Bi) > 0.
We have,

�i =
X
j�i

Lijdij
2

; �(Bi) = 2h
X
j�i

Lij ;

therefore

�i � �(Bi) �
X
j�i

Lij

�
d1
2
� 2h

�
:

Since 2ÆM=d1 = h, if we choose Æ � d21
8M , for all i = 1; � � � k, �i � �(Bi) > 0.

Moreover, since the Vi's are polygons, when �j and �i are not neighbours, V
0
j\Vi = V 0i \Vj = ;

under the above condition on Æ. Thus, when Æ � d21
8M ,

f 0(x) �
kX
i=1

e�
0

i (1Ix2Vi + 1Ix2Bi
)Pk

j=1 e
�0j [�j � �(Bj)]

� e2Æ
0

kX
i=1

e�i (1Ix2Vi + 1Ix2Bi
)Pk

j=1 e
�j [�j � �(Bj)]

= fU(x):

Now, let determine the condition on Æ; Æ0 needed to obtainZ
fU(x)d�(x) � 1 + " (11)

,X
i

e�i�(Bi)[1 + e�2Æ
0

(1 + ")] � [e�2Æ
0

(1 + ")� 1]
X
i

e�i�i

thus if we choose Æ0 � "=3 and Æ � "
d21

48M , we have

�(Bi) � "

6
�i

and (11) is satis�ed.
We now consider the general case. In each group i, i = 1; :::; q, by de�nition of Fn,

j�il � �it j � n�d�ilit � n�d�1 ; when il � it; l; t � ni:

In each group, two points can be linked by a sequence of neighbours, thus, in each group :

j��i � �ij � nin
�d�1 �

�n�+1��h0

log n
:

Choosing h0 > (� + 1)=�, we obtain that for all i = 1; :::; q:

j��i � �ij � n�r0 ;

for some r0 > 0.
We �rst obtain an upper bound for f(x) as follows :

f(x) � f (1)(x) =

Pq
i=1 e

��i1I �Vi(x)Pq
i=1 e

�i�( �Vi)
:
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Let now consider moves of length Æ for all the points. Let f 0(x) be the density corresponding
to the (�0l; �

0
l), l = 1; :::; k. We have :

f 0(x) � e2Æ
0

Pq
i=1 e

��i1I �V 0

i
(x)Pq

i=1 e
�i�( �V 0i )

:

Recall that the �Vi's are connected collections of tiles. Thus we can reason exactly as in the
previous case : @ �Vi is a collection of segments, which are bissectors of points such as �il ; �jl0 ,
where �il is in the group i and �jl0 is in an other group. Therefore dil;jl0 > d1 and the upper
bound of h(y) is still valid. We thus obtain that

f 0(x) � fU(x):

Besides,

Z
E
fU(x)d�(x) = e2Æ

0

Pq
i=1 e

��i [�( �Vi) + �( �Bi)]Pq
i=1 e

�i [�( �Vi)� �( �Bi)]
� 1 + "

,
qX

i=1

�( �Bi)e
�i
h
e
��i��i + (1 + ")e�2Æ

0

i
�

qX
i=1

�( �Vi)e
�i
h
(1 + ")e�2Æ

0 � e
��i��i

i
:

The above inequality is satis�ed in particular if

�( �Bi) � �( �Vi)
(1 + ")e�2Æ

0 � e
��i��i

e
��i��i + (1 + �)e�2Æ

0
; (12)

for all i = 1; :::; q. when Æ0 = "=3,

1 + 2"=3 � (1 + ")e�2Æ
0 � 1 + "=6:

We also have that
e
��i��i � expn�r0 � 1 + "=12;

when n is large enough. Therefore, if Æ0 = "=3,

�( �Bi) � �( �Vi)
�

24

when n is large enough and " small enough. �Vi is a collection of tiles, say Vil , il 2 Ii � fi1; :::; inig
that are bordering on @Vi plus possibly other tiles. Therefore

�( �Vi) �
X
il2Ii

�(Vil) =
X
j�Ii

Lijjdijj

2
� d1

X
j�Ii

Lijj

2
;

where j � Ii means that �j does not belong to �Vi, that �ij 2 �Vi and that �j � �ij . Similarly

�( �Bi) = 2h
X
j�Ii

Lijj :

Thus, by choosing h = d1"=96, i.e.

Æ =
"d21
192L

= c"d21;
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(12) is satis�ed and
R
fU(x)d�(x) � 1 + ".

References

Arjas, E., Gasberra, D. (1994) Nonparametric Bayesian inference from right censored survival
data, using the Gibbs sampler. Statistica Sinica, 4, 505{524.
Arjas, E., Heikkinen, J. (1997) An algorithm for nonparametric Bayesian estimation of a Poisson
intensity. Computational Statistics, 12, 385{402.
Arjas, E., Heikkinen, J. (1998) Non{parametric Bayesian estimation of a spatial Poisson inten-
sity. Scandinavian Journal of Statistics, 25, 435{450.
Arjas, E., Heikkinen, J. (1999) Modeling a Poisson forest in variable elevations : a nonparamet-
ric Bayesian approach. Biometrics, 55, 738{745.
Barron, A. Schervish, M.J. and Wasserman, L. (1999) The Consistency of posterior distribution
in nonparametric problems. Annals of Statist., 27, 2, 536{561.
Boots, A., Chiu, S.N., Okabe, A. and Sugihara, K. (1999) Spatial Tesselations, Wiley series in
probability and statistics.
Denison, D.G.T., Mallick, B.K. and Smith, A.F.M. (1998) Automatic Bayesian curve �tting.
J.R. Statist. Soc. B, 60, 2, 333{350.
Diaconis, P., Freedman, D. (1986) On the consistency of Bayes estimates. Annals of Statist.,
14, 1, 1{26.
Green, P. (1995) Reversible jump Markov chain Monte Carlo computation and Bayesian model
determination. Biometrika, 82, 4, 711{732.
Hartigan, J.A. (1975) Clustering algorithms. New York: Wiley.
Hartigan, J.A. (1987) Estimation of a convex density contour in two dimensions. J. Am. Statist.

Ass., 82, 267{270.
Heikkinen, J. (1998) Curve and surface estimation using dynamic step functions. In Practical

Nonparametric and semiparametric Bayesian statistics (eds D. Dey, P. M�uller and D. Sinha),
pp. 255{272, N.Y : Springer{Verlag.
M�uller, D.W., Sawistzki, G. (1991a) Using excess mass estimates to investigate the modality
of a distribution. In The Frontiers of Statistical Scienti�c Theory & Industrial Applications,
26 of the American Series in Mathematical and Management Sciences, pp. 355{382, American
Sciences Press, N.Y.
M�uller, D.W., Sawistzki, G. (1991b) Excess mass estimates and tests for multimodality. J. Am.

Statist. Ass., 86, 415, 738{746.
Nicholls, G. (1998) Bayesian image analysis with Markov chain Monte Carlo and colored con-
tinuum triangulation models. J.R. Statist. Soc. B, 60, 3, 643{659.
Nolan, D. (1991) The excess mass ellipsoid. J. Multiv. Analysis, 39, 348{371.
Polonik, W. (1995) Measuring mass concentration and estimating density contours clusters-an
excess mass approach. Ann. of Statist., 23, 3, 855{881.
Tsybakov, A.B. (1997) On nonparametric estimation of density level sets. Ann. of Statist., 25,
3, 948{969.

19


