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Summary . We present a new methodology for handling hidden Markov models. It consists of
providing a Bayesian joint estimation of the parameters and the number of distinct regimes that
have appeared in the sample. We adapt this approach to a switching regression model, and
consider its application to the information content of the yield curve regarding future inflation in
G7 countries. In order to compute the corresponding estimates, we implement a particle filter
algorithm.
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Résumé. Nous présentons une nouvelle méthodologie pour le traitement des modèles à
chaîne de Markov cachée. Elle consiste à mener une estimation bayésienne jointe des para–
mètres et du nombre de différents régimes apparus dans l’échantillon. Nous adaptons cette
approche à un modèle de régression à bascule, et considérons son application au contenu
informatif de la courbe des taux sur l’inflation future, dans les pays du G7. Afin de calculer les
estimateurs correspondants, nous avons recours à un algorithme de filtre particulaire.
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1. Introduction

Many macroeconomic variables or structural relationships undergo episodes in which their
behavior seems to be characterized by instability or important changes. In this respect, one
may de�ne instability as a switch from one period to another. The idea was �rst introduced
by Quandt (1972), in the case of independent switches in a regression model. Goldfeld
and Quandt (1973) have extended the analysis to Markov-chain regime-dependent-switching
probabilities. Since the seminal contribution of Hamilton (1989, 1990), economists'attention
has been drawn to Markov-switching modeling of endogenous structural changes. Dynamic
models with Markov switching have o�ered new perspectives in many economic areas such
as business �uctuations and long-run trend in GNP (Hamilton, 1989; Lam, 1990), the
behavior of foreign exchanges rates and real interest rates (Engel and Hamilton, 1990;
Garcia and Perron, 1996), the evolution of stock returns (Kim, Nelson and Startz, 1998), etc.
Kim and Nelson (1999) consider the advantages of a Bayesian approach when dealing with
such models, and address the practical implementation through Gibbs sampling techniques
(originally introduced by Geman and Geman, 1984). However, most of these papers invoke
inference procedures which are valid for a given number of distinct regimes. In contrast,
Chopin (2001) proposes a new general approach of discrete state-space models, which allows
for a Bayesian joint estimation of the parameters and the number of distinct regimes featured
by the studied data. We show in this paper how to adapt this approach to a switching
regression model, and describe the corresponding implementation strategy, which relies on
a particle �lter algorithm.

More precisely, to model abrupt changes in a given structural relationship, we introduce
an unobserved discrete process, which gives the state of the system (regime) at date t.
The hidden process may re�ect changes in monetary policies, exchange rate regimes or
any change in the economic environment. We focus here on the case where the hidden
process is a Markov chain (hidden Markov models), and the structural relationship is linear
(switching regression models). The divergence between our results and those found in the
literature re�ects in part the use of the Bayesian framework. The latter is motivated by
three shortcomings of the classical approach.

First, classical inference procedures often rely on asymptotic justi�cations, and therefore
may show some fragility when applied to short series, notably in a regime-switching context,
since it may be that only a few points of the studied sequence originate from a given regime.
Second, in the classical approach, estimation of the state variables is conditional on the
maximum likelihood estimates of the parameters. Here, the state variables, parameters and
regimes are jointly distributed random variables, i.e. estimates of each appropriately re�ect
the uncertainty of the others.

Third, determining the number of regimes is quite an involved problem within a classical
approach (see Hansen, 1992; Hamilton, 1996). This is because classical inference procedures
are only valid for a given number of regimes, while in practice if this number is mispeci�ed
- for instance if it is greater than necessary - extra regimes with no clear interpretation are
often arti�cially created. These extra regimes may be discarded afterwards through some
testing procedures, which unfortunately are often di�cult to implement and may make the
whole estimation process quite time-consuming. In contrast, our Bayesian method provides
in the same run (jointly with the other parameters) an estimate of the actual number of
regimes, that is the number of distinct regimes that indeed have appeared in the studied
sequence, provided it is supplied with a correct upper bound K of this number of regimes.

As an illustration, we apply the methodology to the information content of the yield
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curve about future in�ation in G7 countries. This is of particular interest for at least two
reasons. Firstly, yield curves or term structure of interest rates are often regarded as one of
the �nancial variables to help predict information or to extract information on future interest
rates and in�ation development. Thus policy makers or central banks may be interested
not only in the ability of the slope of the term structure to predict changes in in�ation rates
but also in the structural stability as well as the number of regimes embedded in the data.
Secondly, the stability of the information content of the yield curve about future in�ation
are often reviewed in the literature. One approach is to estimate the structural relationship
and to get at the issue of sub-sample stability proceeding with single unknown breakpoint
tests: the supremum LM test proposed by Andrews (1993) and the supremum predictive test
proposed by Ghysels, Guay and Hall (1997). Even if the date at which a structural change
occurs is endogenous to the model, the interpretation of the aforementioned statistics is not
clear. They may provide some insights about the stability of the model but they do not
identify the source of instability. Therefore, the instability of the parameters could re�ect
either a true instability of the parameters or a change in other aspects of the model. In
addition, due to many changes in the economic environment, there is no reason to believe
that there is only one break in the data. Thus, our approach may deliver some more
appealing results.

In the following section, we discuss the Bayesian approach used in this paper. Thus
we explain the state number determination of hidden Markov regression models, the prior
modeling as well as the computational implementation of the particle �lter. Section 3
presents a simple hidden Markov regression model for the information content of the yield
curve regarding future in�ation, describes the data and discusses the results. Section 4
brie�y summarizes the main �ndings.

2. A Bayesian approach

2.1. State number determination for Hidden Markov models
A hidden Markov model features an unobserved K-state Markov chain (st) (the regimes),
with transitions probabilities (pkl)1�k;l�K

P (st+1 = ljst = k) = pkl; (1)

and an observed parametric process (yt), whose behaviour at time t is indexed on the current
state st, in the sense that

ytjfst = k; y1; :::; yt�1g � f�k (ytjy1:t�1); (2)

where ff�(:j:); � 2 �g is some given parametric family of conditional densities, and y1:t�1

stands for the sequence y1; :::; yt�1 (similarly, a state sequence s1; :::; st will be denoted s1:t
throughout the paper). Equations (1) and (2) are commonly denoted, respectively, the
system equation, and the observation equation. Apart from the regimes, the unknown quan-
tities form a �xed vector parameter �, which comprises the pkl's and the regime parameters
�1; :::; �K .

In this paper, we will mainly focus on a switching-regression model, with observation
equation, given st = k,

yt = �k + �kxt + �kwt; (3)

where (wt) is a standard gaussian white noise. In this case, the observation density reduces
to f�k (yt) = �(yt;�k + �kxt; �

2
k), with �k = (�k; �k; �

2
k), and �(:;�; �2) is the gaussian
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density with mean � and variance �2. Notational dependencies in (xt) (which is assumed
to be an exogeneous process) are omitted for convenience. Note however the methodology
presented below would apply more generally to any hidden Markov model, as de�ned with
(1) and (2).

The current parameterization does not show a full identi�ability of the parameters, since
it is invariant by permutation of the labels of the regimes. To overcome this, an ordering
constraint (such as for instance �1 < ::: < �K in our application) is usually introduced.
However, within such a formulation, a given sequence of observations y1; :::; yt may not visit
all K regimes. This is especially true if some of the components of the transition matrix
are allowed to be null, i.e. for a given l, pkl = 0 for any k = 1; :::;K. Therefore, rather
than estimating all the K components, whereas the data may bring no information on some
of them, it seems more sensible to jointly estimate the number m of regimes that actually

have appeared in the studied sequence, along with these m components. To do so, and
following the lines of the state number determination procedure proposed in Chopin (2001),
we introduce a second discrete process (mt), which indicates at time t the number of regimes
that have appeared for the time being, and we label the regimes by order of appearance, that
is regime 1 is the �rst regime to appear, and so on. We reformulate the system equation as

s1 = 1;

P (st+1 = ljst = k;mt = m) =

8<
:

pkl if k; l � m � K;PM
l0=m+1 pkl0 if l = m+ 1 � K;

0 otherwise;

m1 = 1;

mt+1 = max(mt; st+1):

The new formulation is equivalent to the �rst system equation (1): when at time t, with
zt = k and mt = m (k � m), the next regime can be either an already visited regime
l (l � m) with probability pkl, or a new regime, which will be labeled m + 1. Since the
remaining regimes are not distinguishable at time t, the probability of appearance is indeedPM

l0=m+1 pkl0 . If a new regime appears, we have mt+1 = zt+1 = m + 1, if not, mt+1 = m,
hence in general mt+1 = max(mt; zt+1).

Within a Bayesian framework, we have to consider a posterior distribution of the form

�(�;mT ; s1:T jy1:T ); (4)

in order to draw a joint inference on the states, the parameters and mt, the actual number
of components, for the considered sequence y1; :::; yT . For convenience, we may decompose
this posterior in

�(mT = mjy1:T ); and �(�1; :::; �m; p1y; :::; pmy; s1:T jmT = m; y1:T ); (5)

for m = 1; :::K, where pky stands for the kth-line (pk1; :::; pkK) of the transition matrix.
Conditionally on mt = m, the data brings no information upon �m+1; :::�K ; p(m+1)y; :::; pKy,
hence there is no point in incorporating these parameters into the conditional posterior
distribution above.

Note �nally that the vector est = (st;mt) is obviously discrete and Markov (with K(K+
1)=2 states), i.e. the new formulation still de�nes a hidden Markov model, with observed
process (yt) and hidden Markov chain (est). Therefore, any known method for estimating
(the states and parameters of) a hidden Markov model can be made to perform a state
number determination procedure. See �2.3 for implementation details.
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2.2. Prior modeling
For convenience, assume at �rst the components �1; :::; �K and the lines pky of the transition
matrix to be pairwise prior independent, so that the global prior on the vector � decomposes
in

�(�) =

KY
k=1

�(pky)

KY
k=1

�(�k): (6)

The mixture structure of hidden Markov models usually prevents a fully non-informative
prior modeling, since an improper prior (for �) usually yields to an improper posterior
distribution. Various solutions have been proposed to overcome this problemz, but for the
sake of simplicity, we only consider proper priors in the following. In particular, for the
switching regression model presented above, a most reasonable prior distribution �(�) for
� = (�; �; �2) is the natural conjugate prior for regression models

(�; �j�2) � N2(M0; �
2S0); 1=�2 � �(a0; b0); (7)

where the hyper-parameters M0, S0, a0, and b0 are to be set by the decision-maker.

The state number determination procedure de�ned in the previous section, which aims
at providing an estimate of the actual number of regimes mt, is in fact strongly a�ected
by the choice of prior for the transition probabilities. If we assign for instance a (natural
conjugate) Dirichlet prior to the lines of the transition matrix

(pk1; :::; pkK) � D(�k1; :::; �kK); (8)

we implicitly a�ect a null prior probability to the event p1l = ::: = pKl = 0, for a given l,
and therefore assume the number of distinct regimes that would �nally appear (as t! +1)
is exactly K. This is somehow presumptuous, and in practice such a prior may strongly
bias the estimation of mt. A more �exible approach is to consider K as a mere upper bound
of the (actual or �nal) state number, and assume with some (non-null) prior probability
that the data may be produced by a hidden Markov model with � states (� < K). In this
spirit, an appealing prior is

� � U [1;K]; and, given � (9)

(pk1; :::; pk�) � D(a�k1; :::; a
�
k�); pk(�+1) = ::: = pkK = 0 (10)

where U [1;K] stands for the uniform distribution on [1;K], and a�kl's are hyper-parameters.
While it is commonly suggested to set a�kl = 1 for any k; l; �, we rather advice to set for
instance a�kl = 1, for k 6= l, a�kk = 3(� � 1), in order to incorporate the prior information
that the probabilities pkk cannot be too close to 0, since this would imply unrealistically
high frequencies of switching, and hinder any interpretation of the regimes.

As it stands, our state number determination procedure is still ill-de�ned, since it may
fall in creating redundant regimes, in order to arti�cially improve the data �t. Note that this
"over-�t" artifact more generally a�ects most inference procedures in a mixture context,
either in a classical or a Bayesian approach, and must be countered with some parsimony
mechanism. However, within a Bayesian framework, the decision-maker has the ability

zfor independent mixture models, see Diebolt and Robert (1994), and Wasserman (2000), for
dynamic mixture models, see Chopin (2001).
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to prior specify the desired degree of parsimony, by introducing for instance in the prior
distribution a discriminating factor, that is, the prior in (6) is replaced by

�(�) /
KY
k=1

�(pky)

KY
k=1

�(�k)d(�1; :::; �K); (11)

where d(�1; :::; �K) is a discrimating factor of the form, for example,

d(�1; :::; �K) =
Y

1�i<j�K

n
1� e�[�(�i;�j)=Æ]

�
o
; (12)

with �(�i; �j) a given distance on �, and Æ and � tuning hyper-parameters. Ideally, �(�i; �j)
should provide an identi�ability measure between �i and �j , or in other words indicate to
which extent the two considered parameters imply a distinct behaviour for the observation
process. For instance, in our switching-regression model, the (expected) Kullback-Leibler
divergencex between observations densities f�i(yt) and f�j (yt), with �i = (�i; �i; �i) and
�j = (�j ; �j ; �j), seems a reliable choice, and is easily derived as

�(�i; �j) =
�2i
�2j

+
�2j
�2i

� 2 + (1 +
1

�2j
+

1

�2i
)[(�i � �j)

2+

E(xt)(�i � �j)(�i � �j) +E(x2t )(�i � �j)
2]: (13)

For convenience, we assume (xt) to be a stationary process, so that E(x2t ) and E(xt) are
constant in time. In practice, these two expectations can be replaced by the corresponding
empirical averages over the studied sequence.

2.3. Computational implementation
Since its introduction in the early 1990's, MCMC (Monte Carlo Markov Chains) methods
(see Robert and Casella, 1999, for a thorough presentation) have gained an increasing
popularity in the Bayesian literature, and are now considered the most convenient numerical
tools for managing a Bayesian analysis. In particular, most recent papers dealing with
hidden Markov models (Kim and Nelson, 1999) prescribe Gibbs sampler techniques for
estimating the states and parameters.

However, the implementation of such algorithms can be quite delicate in complex set-
tings. For instance, the prior distribution we proposed in the previous section yields to
rather an intricate posterior distribution (partly because of the discriminating factor, and
the mixture prior of the transition probabilities), and therefore severely complicate the
derivation of a proper Gibbs sampler. Moreover, a drawback of MCMC methodology is the
di�culty to assess in practice if the algorithm has converged, and produces reliable esti-
mates. More speci�cally when dealing with mixture models (whose hidden Markov models
are a particular case), it happens that the Markov chain produced by the MCMC algorithm
seems to have reached stationarity whereas it is in fact con�ned in a �trap-state� (a local
mode of the posterior distribution). This di�culty is often referred as the �switching-label�
phenomenon, since it is considered that the hidden states simulated within Gibbs iterations
have mismatched labels (Celeux et al., 2000).

xthe Kullback-Leibler divergence between two densities f and g is de�ned as Ef [log(f)= log(g)]+
Eg[log(g)= log(f)].
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Rather, we use the Monte Carlo HMM �lter (MCHMM �lter) proposed by Chopin
(2001), which is a particle �lter algorithm (see Doucet et al, 2001, for a general overview of
this class of algorithms) devoted to the estimation of hidden Markov models. A �rst advan-
tage of this algorithm is its great �exibility, in that its code is mostly model-independent
(up to the computation of the prior and likelihood densities, and the simulation of the initial
particles), hence the adaptation to another model (obtained by changing the observation
equation for instance) or to another prior requires little e�ort. A second advantage of the
MCHMM �lter is that it is hardly a�ected by label-switching (at least in our experiments),
since instead of producing a single Markov chain which explores locally the distribution of
interest, and may be trapped by a local mode, it follows the evolution of numerous, well-
spread �particles� (Monte Carlo realizations) which are to accurately map the whole surface
of the target distribution at the �nal stage of the algorithm.

We now give a short description of the MCHMM �lter. For more details (notably on
the implementation of a resample-move strategy for improving the algorithm, in the spirit
of Gilks and Berzuini, 2001), we refer to Chopin (2001).

Following the lines of the approach developed above, the distribution of interest, for
a given observed sequence y1; :::; yT , is the posterior distribution �(�; s1:T ;mT jy1:T ). For
convenience, we consider more generally the problem of evaluating �(�; es1:T jy1:T ), withest = (st;mt). As we already stated, the process (est) is a discrete Markov chain with
K 0 = K(K + 1)=2 states, which we re-label for convenience in [1;K 0].

An important methodological remark is that conditional distributions of the form
�(estj�; y1; :::; yT ) can be derived exactly. More precisely, let Stt0(�) the vector of probabili-
ties P (est = kj�; y1:t0), k = 1; :::;K 0. These probabilities are usually referred as, respectively,
forecasting, �ltering, or smoothing probabilities, whether t > t0, t = t0 or t < t0. We have
(Hamilton, 1989)

St+1
t (�) = P 0Stt(�); St+1

t+1(�) / Ot+1(�)
 St+1
t (�); (14)

where P is the transition matrix de�ned by the corresponding components of �, Ot+1(�)
is the vector of observation densities f�k (yt+1jy1:t; �), for k = 1; :::;K, and 
 denotes the
element-by-element product of two vectors. In the latter equation, St+1

t+1 is de�ned up to a
multiplicative constant (/ means "proportional to") which is retrieved by normalization.
Moreover, we have, for k � 0 (Kitagawa, 1987)

St�kt+1 (�) / St�kt�k (�)

�
P
�
St�k+1
t+1 (�) � St�k+1

t�k (�)
�	

; (15)

where St�k+1
t+1 (�) � St�k+1

t�k (�) denotes the element-by element division of St�k+1
t+1 (�) by

St�k+1
t�k (�). Formulae (14) and (15) are usually referred as the forward/backward formulae,

or the HMM �lter. Their matrix formulation is adapted from Ryden (2000).
The MCHMM �lter must be seen as a Monte Carlo generalization of the HMM �lter:

it consists in running a number H of forward recursions (14), for various values �j (j =
1; :::; H), of the parameter. These �j are weighted �particles� (�j particle with weight wj),
which provide a Monte Carlo approximation of the marginal posterior distribution �(�jy1:t)
at the iteration t of the algorithm (t = 1; :::; T ), in the sense that

lim
H!+1

PH
j=1 wjh(�

(j))PH
j=1 wj

= E�(�jy1:t)[h(�)] almost surely; (16)

holds at iteration t for any function h such that the limit term is de�ned.



Bayesian inference and state number determination for hidden Markov models 7

More precisely, assume the particle system (�j ; wj) ful�lls (16) at iteration t, and the
corresponding �ltering probabilities Stt(�j) are known. Apply (14) for each particle, in order
to get the St+1

t+1(�j)'s, and de�ne ut+1(�j) = P (yt+1j�j). As it is easily shown, ut+1(�j) is
at the same time the normalization constant related to the proportionality relation of (14)
(and therefore is computed when deriving St+1

t+1(�j)) and the ratio (up to a multiplicative
constant):

ut+1(�j) /
�(�jy1:t+1)

�(�jy1:t)
: (17)

Then, by updating the weights through

wj ! wj � ut+1(�j) (18)

we operate a sequential importance sampling step from distribution �(�jy1:t) to distribution
�(�jy1:t+1), and (16) is now ful�lled at iteration (t+1) (Liu and Chen, 1998).

In this manner, the algorithm provides at its �nal stage a Monte Carlo estimate of any
expectation of the form E�(�jy1:T )[h(�)], and therefore allows for a marginal inference on
�. We then iterate the backward formula (15) for each particle �j (note the S

t
t(�j)'s were

already computed in the previous iterations), in order to derive the probabilities P (est =
kj�j ; y1:T ), t = 0; :::; T , k = 1; :::;K 0. Since

�(est = kjy1:T ) =

Z
P (est = kj�; y1:T )�(�jy1:t) d�; (19)

we apply (16) with h(�) = P (est = kj�j ; y1:T ) and get that

PH
j=1 wjP (est = kj�j ; y1:T )PH

j=1 wj

(20)

is a consistent estimate of the probability �(est = kjy1:T ). In this way, we also get a marginal
inference of the states es1; :::esT (and therefore of the st's and the mt's).

3. An application: The information content of the yield curve regarding future in-
flation

3.1. A simple model
We argue that the information content with respect to future in�ation varies over time
and depends on regimes that occur at di�erent points of time. In e�ect, the variation and
instability in the relationship between yield spreads and future in�ation may be explained
by changes in the structure of the economy (Kozicki, 1997, Schich, 1999), i.e. changes in
monetary policy, exchanges rate regime, �nancial market regulation or the institutional
structure of bond markets. Accordingly, the �rst m1 observations may come from regime 1,
the next m2 from regime 2 and the next m3 from regime 1 again, etc. The �rst regime may
be characterized with a strong information content about future in�ation and the second
may only re�ect changes in the real interest rate.

The theoretical basis for the information content regarding future in�ation can be il-
lustrated by a simple model with K regimes. The K regimes are not however necessarily
ful�lled.
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Assume that the in�ation rate evolves over time according to the following

�t =

KX
k=1

1fst=kg�k;t; (21)

where 1fst=kg is the indicator function of the event st = k (i.e. 1fst=kg = 1; 0 whether
st = k or not).

Thus, the di�erence between the m-period (�mt ) and the n-period (�nt ) ahead in�ation
rate is given by

�mt � �nt =

KX
k=1

1fst=kg(�
m
k;t � �nk;t): (22)

Using the methodology of Tzavalis and Wickens (1996), the Fisher decomposition of the
m-year nominal interest rate imk;t yields

imk;t = rmk;t +Et[�
m
k;t] + �mk;� ; (23)

where rmk;t stands for the (ex-ante) m-year real interest rate, �mk;� is the forward in�ation
risk premium, and Et[:] is the expectation operator conditional on information available at
time t.

Assuming rational expectations the realized in�ation rate �mk;t can be written as the sum
of the expected m-period in�ation rate and a serial uncorrelated, zero-mean error term:

�mk;t = Et[�
m
k;t] + "mk;t: (24)

Thus, changes in the future m-period in�ation rate from the n-period in�ation rate
(m > n) is expressed as

�mk;t � �nk;t = Et[�
m
k;t � �nk;t] + "mk;t � "nk;t: (25)

Combining equations (23) and (25), we obtain:

�mk;t � �nk;t = (imk;t � ink;t)� (rmk;t � rnk;t)� (�mk;� � �nk;�) + "mk;t � "nk;t: (26)

Considering that the di�erence between the real interest rates for maturities m, n equals
some constant plus a zero-mean random variable umk;t, and that the di�erence between the

forward in�ation risk premium equals a constant �m;n
k , the di�erence between the m-period

and n-period in�ation rate (25) can be written in state st = k:

�mk;t � �nk;t = (�m;n
k + 
m;n

k ) + �m;n
k (imk;t � ink;t) + "mk;t � "nk;t + um;n

k;t : (27)

Note that an identi�cation problem exists, in that only the sum �m;n
k = (�m;n

k +
m;n
k ) is

estimable. Thus, a switch in the constant term may re�ect either a change in real interest
rates or a change in risk premium, or even both.

Finally, combining equations (27) and (22), the non-centered Markov switching model
is given by:

�mk;t � �nk;t =

KX
k=1

1fst=kg[�
m;n
k + �m;n

k (imk;t � ink;t)

+"mk;t � "nk;t + um;n
k;t ]: (28)

The model can be equivalently written in terms of equation (3) and then analyzed
through the methodology developed in �2.
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3.2. Empirical evidence

We estimate the information content of the term structure regarding future in�ation in G7
countries. The interest rate data is end of month observations from one to �ve years for
Canada (starting January 72 and ending May 95), France (January 1980, October 1998),
Germany (January 67, January 1999), Italy (October 1985, January 1998), Japan (March
1980, May 1998), the United Kingdom (January 1970, February 1999) and the United States
(June 1961, February 1998). We construct all the term spread where m (respectively n)
varies from one to �ve (respectively from one to four). The data is obtained from national
central banks and the beginning dates are dictated by data availability. The in�ation
rate is based on the Consumption Price Index (CPI) from the monthly OECD Analytical
Database (ADBM). The actual forward in�ation rate over the next m-period is computed
as log(Pt+12m=Pt)=m with Pt denoting the CPI in month t. The relationship between yield
curves and future in�ation changes is estimated on the di�erent maturities combinations.

The hyper-parameters of the prior distribution (see �2.2) were set to, respectively, M0 =
(0; 0)0, S0 = diag(2:5; 5) (that is the diagonal matrix with diagonal terms 2:5; 5) , a0 = 1=2,
b0 = 1=8, Æ = 12:5, � = 4, a�kl = 1 for k 6= l, and a�kk = 3(�� 1). The upper bound K of
the number of components is set to four.

Table 1 reports the posterior expectations of the parameters in the case of the United
States. First, results show that the four components are always ful�lled (with a probability
equals to one). The large number of components indicates a great variability in the struc-
tural relationship between the yield curves and the future in�ation across time. However
the number of regimes is always four whatever the maturities. These results di�er from the
standard literature in the sense that breakpoint tests (Schich, 1999) only identify a single
structural change in the United States. Figure 1 represents the evolution of the �ltered
expectations E(ztjy1:t) and E(mtjy1:t), which respectively estimate the current state st and
the current number of components mt (at time t). In addition, the expected duration in
each regime de�ned as 1=(1� pkk) suggests asymmetric dynamics: expected durations are
(on average) 14, 9, 20, 6 months in regimes 1 to 4 respectively. Second, according to the
positive sign of the slope parameter, the information content of the yield curves regarding
future in�ation varies with the studied segment of the yield curve and the relevant regime.
To test for the information content in regime k, we derive the Bayes factor for �k > 0 (see
Table 1).

This con�rms previous empirical studies. Among others, Mishkin (1990a, 1990b), Jorion
and Mishkin (1991) and Schich (1999) have shown that the information of the yield curve
is subject to change over time using sub-sample OLS estimates. Third, as shown by �gure
2, the source of instability is due to switches of the slope parameter as well as the constant
term. In the latter, this may re�ect important changes in the evolution of the real interest
rates and/or the in�ation risk premium. Notably, the switch from regime 2 to 3 features
a rather higher variation of the constant term than the spread parameter. Fourth, the
regression standard deviations in each regime are remarkably smaller than the standard
deviation of the OLS estimate computed on the whole sample, hence within a given regime
the structural relationship is stronger than previously thought.

Table 2 reports selected results for other G7 countries. First, the upper bound of the
number of components K is not reached in every case. We obtain two components for
France, Italy and Japan, three components for Germany, four components for Canada,
and the United Kingdom. This re�ects that our procedure provides the actual number
of regimes, i.e. the number of distinct regimes that have truly appeared in the studied
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sequence. Figure 3 gives the evolution in time of the �ltered expectations of the current
state st on the current number of components mt in Germany. Second, the information
content of the yield curve regarding future in�ation varies across countries. In agreement
with earlier studies, the term structure in Canada, Germany appears more informative
than in France, Italy, Japan and the United Kingdom about future in�ation. In the case
of Canada, Day and Lange (1997) show that the yield curve has some information content
about future in�ation for di�erent maturities combinations. Gerlach (1997), Schich (1999)
�nd evidence for a signi�cant information content in the German term structure. However,
contrary to the aforementioned papers, our results suggest that the information content
depends on each regime and thus the predictive content may appear unstable. The negative
sign of the constant term and its variations are in favor of variations of the real interest
rates and/or the risk premium. Figure 3 shows that a shift from regime 1 to 2 is due to
both a change in the constant term and the slope parameter whereas a shift from regime 2
to 3 re�ects a lower information content of the yield curve. In the case of France, Jondeau
and Ricart (1997) fail to �nd any signi�cant information in the term structure but obtain
some empirical evidence using sub-samples. Our results con�rms such a predictive content
in regime 1. In Japan, Koedijk and Kool (1995) failed to �nd any empirical support for
the information content of the yield curves. Figure 5 shows that there are two apparent
regimes. The negative sign of the slope parameter also indicates however a lack of the
information content and thereby the predominance of the variations of the real interest rate
and/or the forward in�ation risk premium. Finally, while Jorion and Mishkin (1991) �nd
some empirical support in the English term structure, we fail to obtain such results in the
four identi�ed regimes. Breedon and Chadha (1996) obtain similar results.

In summary, the information content of the term structure regarding future in�ation
varies over time, across countries, and the di�erent combinations of studied maturities.
This con�rms earlier empirical results. In addition, we get that the predict content of the
yield curve varies among regimes. Finally, the number of regimes (which is determined
endogeneously in our method) is remarkably stable for di�erent maturities combinations in
a given country.

4. Conclusion

This paper gives new insights into the Bayesian analysis of hidden Markov models, with a
particular focus on switching regression models. Mainly, the determination of the number
of regimes that actually appear in a given sequence is more easily identi�ed in our approach.
This allows for a more precise characterization of the instability of a given structural rela-
tionship, as illustrated by our yield curve against future in�ation data. Our method may
show handful in a variety of other economic applications.
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Table 1: Inflation switching regressions in the United States

Probabilities Constant Slope parameter Standard deviationSpread (m-n)
p11 p22 p33 p44 α1 α2 α3 α4 β1 β2 β3 β4 σ1 σ2 σ3 σ4

2-1 0.903 0.873 0.928 0.896 -0.03 0.60 -1.10 1.02 0.07+ 0.35++ 0.92+++ 2.55+++ 0.21 0.26 0.51 0.44

3-1 0.910 0.882 0.941 0.898 0.16 0.94 -1.45 1.98 -0.11- 0.57+++ 1.20+++ 1.35+++ 0.32 0.35 0.90 0.81

4-1 0.929 0.885 0.951 0.836 1.40 0.46 -1.44 4.68 -1.28- - - 2.53+++ 1.68+++ -1.03- - - 0.36 0.51 1.21 0.47

5-1 0.884 0.941 0.883 0.937 0.99 1.44 -0.34 -2.13 -0.62- - - 1.32+++ -0.31- - 1.66+++ 0.24 0.58 0.33 1.43

4-2 0.935 0.931 0.920 0.923 0.73 -0.55 1.60 -2.05 -0.13- 0.22++ 1.45+++ 0.81+++ 0.29 0.37 0.59 0.62

5-2 0.924 0.886 0.951 0.921 1.03 0.12 -1.54 2.30 -0.01- -0.50- - - 1.30+++ 0.45++ 0.29 0.37 1.15 0.48

4-3 0.941 0.942 0.911 0.887 0.38 -0.37 1.24 -1.22 -0.33- - -0.04- -0.06- 1.68+++ 0.18 0.19 0.36 0.41

5-3 0.937 0.952 0.913 0.896 0.60 -0.61 1.91 -2.35 -0.02- 0.09+ -0.30- 0.20++ 0.26 0.32 0.37 0.44

5-4 0.941 0.949 0.903 0.915 0.31 -0.31 1.01 -0.95 -0.23- 0.09++ 0.23++ -0.70- - 0.17 0.14 0.23 0.41

Note:
+, ++, +++, -, - -, - - - denote the slope parameters whose Bayes factor (for testingβ >0) is greater than 1, 10 and 100, smaller than 1,

0.1, 0.01 respectively.
Source: Authors’ calculations

Table 2: Selected results in other G7 countries

Probabilities Constant Slope parameter Standard deviationSpread1

(m-n) p11 p22 p33 p44 α1 α2 α3 α4 β1 β2 β3 β4 σ1 σ2 σ3 σ4

Canada 0.875 0.858 0.908 0.892 -0.56 0.16 0.97 -1.11 -0.05- -0.19- 0.03+ 0.72++ 0.16 0.21 0.42 0.23

France 0.953 0.991 .. .. -1.88 -0.16 .. .. 0.17+ -0.39- .. .. 0.24 0.25 .. ..

Germany 0.958 0.920 0.961 .. 1.10 -0.72 -1.52 .. 0.28+++ 0.88+++ 0.42+++ .. 0.37 0.32 0.29 ..

Italy 0.952 0.953 .. .. 0.25 -0.94 .. .. 0.01+ 0.34++ .. .. 0.32 0.25 .. ..

Japan 0.963 0.945 .. .. -0.38 0.42 .. .. -0.26- -1.18- .. .. 0.29 0.28 .. ..

United Kingdom 0.883 0.888 0.940 0.943 1.37 3.96 -0.17 -2.13 -0.13- -0.82- - - -0.07- -0.23- 0.49 0.58 0.44 0.76

Notes:
1. The spreads are 4-3 for Canada, 5-3 for France, 5-2 for Germany, 4-2 for Italy, 3-2 for Japan and 5-3 for the United Kingdom,

respectively.
2. +, ++, +++, -, - -, - - - denote the slope parameters whose Bayes factor (for testingβ >0) is greater than 1, 10 and 100, smaller

than 1, 0.1, 0.01 respectively.
Source: Authors’ calculations
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Fig. 1. USA 4-1, evolution in time of the filtered expectations of the current state E(stjy1:t) (solid
line) and the current number of regimes E(mtjy1:t) (dotted line).
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Fig. 2. USA 4-1, yield curve against future inflation between June 1961 and January 1990, regression
lines for each regime (solid lines), regression lines translated by two times the standard deviation
(dashed lines).
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Fig. 3. Germany 5-2, evolution in time of the filtered expectations of the current state E(stjy1:t) (solid
line) and the current number of regimes E(mtjy1:t) (dotted line).
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Fig. 4. Germany 5-2, yield curve against future inflation between January 1967 and January 1990
and the corresponding regression lines for each regime, same conventions as figure 1.
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Fig. 5. Japan 3-2, yield curve against future inflation between March 1980 and March 1998 and the
corresponding regression lines for each regime, same conventions as figure 1.
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