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Perturbation approach applied to the asymptotic study of random

operators.
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R�esum�e : Nous montrons que, pour les principaux types de theor�emes limites
(loi des grands nombres, th�eor�eme central limite, principe de grandes d�eviations et
loi du logarithme it�er�e), des r�esultats asymptotiques pour des op�erateurs al�eatoires
auto-adjoints conduisent �a des r�esultats du même type concernant leurs valeurs pro-
pres et les projecteurs qui y sont associ�es. Quelques applications statistiques sont
mentionn�ees.

Abstract : We prove that, for the main kind of limit theorems (law of large num-
bers, central limit theorem, large deviation principle, law of the iterated logarithm)
asymptotic results for self-adjoint random operators yield equivalent results for their
eigenvalues and associated projectors. Statistical applications are mentioned.
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1 Introduction and statement of the mains re-

sults

Let H be a separable Hilbert Space (with norm k�k and scalar product < :; : >).
Denote by L (H) the separable Banach space of bounded linear operators from
H to H endowed with the norm

k�kL : x 2 L (H) 7! sup
khk�1

kx(h)k ;

and de�ne the subspace of L of Hilbert-Schmidt operators,

S =

8<
:s 2 L (H) :

X
p2N

ks (ep)k
2 <1

9=
; ;

where (ep)p2N is any complete orthonormal system in H: It is well known (see

[5]) that if we de�ne the scalar product

hs; tiS =
X
p2N

hs (ep) ; t (ep)i ; (1)

S becomes a separable Hilbert space.
Let C be a self-adjoint bounded operator and consider a sequence (Cn) of
random self-adjoint elements of L (H) de�ned on a common probability space
(
;A;P) :
Since C (resp. Cn) is bounded and self-adjoint, its eigen-values (�k)k�1 (resp.
(�k;n)k�1) are uniformly bounded real numbers. Without loss of generality,

we assume that (�k)k�1 and (�k;n)k�1 are non-increasing sequences. For every

k � 1; we denote by mk (resp. mk;n) the multiplicity degree of �k (resp. �k;n)
and by �k (resp. �k;n) the associated projector of �k (resp. �k;n).
In the following, (Cn)n�1 will be considered as a sequence of estimators of C and
our aim is to study how several limit theorems caracterizing the convergence of
Cn to C can be used to infer informations about the convergence of (�k;n)n�1
to �k and of (�k;n)n�1 to �k:
Many papers deal with this topic since applications are possible in the area of
principal component or canonical analysis for random vectors or functions. In
particular, when C is the covariance operator of a process, the estimation of the
empirical eigen-elements of C is of great interest since it is connected with data
analysis of the observed process (see [12]). The sequence Cn is consequently of-
ten the empirical covariance operator of a sample for which several dependence
assumptions have been considered. For instance, in their pioneering work [3],
the authors studied almost sure convergence and central limit theorem in the
case where Cn is the empirical covariance operator of a sample of i.i.d. ran-
dom functions (Cn then becomes a sum of i.i.d. random operators). In [2], the
hilbertian autoregressive context is investigated by martingale techniques, still
for almost sure convergence and central limit theorem. These results are gen-
eralised in [9] to linear hilbertian processes. In a second time, all these authors
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obtained almost sure and weak convergence theorems for the eigen-elements of
C. In [10] and in [11] moderate deviations principles and compact laws of the
iterated logarithm for hilbertian autoregressive processes are considered. The
main goal of this paper is to provide some general results focussing on the trans-
fert procedure beetween limit theorems caracterising the convergence of Cn to
C and the same kind of limit theorems for their eigen-elements. We refer to [13]
for some interesting results in the �nite dimensional case (matrices instead of
operators) in the context of the central limit theorem. Note anyway that the
methods of the proof do not rely on an improved version of the "delta-method"
since we do not use Taylor expansions. The only background needed is very
basic facts in perturbation theory (see [8] or the �rst chapter of [6]).
The di�erent kind of limit theorems considered are listed below.

De�nition 1 Let (E; k�kE) be a Banach space with Borel �-algebra B (E) and
consider a sequence of E-valued random variable (Wn)n�1 de�ned on a common
probability space (
;A;P).

i) (Wn)n�1 converges almost surely to 0 in (E; k�kE) whenever

kWnkE ! 0 a:s:

ii) (Wn)n�1 converges in law in (E; k�kE) to the limit law G whenever for every
A 2 B (E) ;

lim sup
n!1

P (Wn 2 A) � G
�
A
�
;

were G is a probability measure on B (E) (here and after, (resp.
Æ

A) denotes the
closure (resp. interior) of A in E).

iii) (Wn)n�1 follows the large deviation principle in (E; k�kE) with rate function
J and speed vn # 0 whenever for every A 2 B (E) ;

� inf

�
J (x) : x 2

Æ

A

�
� lim inf

n!1
vn logP (Wn 2 A)

� lim sup
n!1

vn logP (Wn 2 A) � � inf
�
J (x) : x 2 A

	
;

where J :E ! [0;+1] is such that for all � > 0; fJ � �g is compact in E:

iv) (Wn)n�1 is almost surely relatively compact in (E; k�kE) with limit setK � E
whenever
a) K is compact
b)

lim sup
n!1

inf
x2K

kWn � xkE = 0 a:s:

c) For all x 2 K;

lim inf
n!1

kWn � xkE = 0 a:s:
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The next lemma contains some well known facts :

Lemma 2 Let (E; k�kE) and (F; k�kF ) be two Banach spaces and let ' : E ! F
be a continuous function. The following hold :
i) If (Wn)n�1 converges almost surely to 0 in (E; k�kE) then (' (Wn))n�1 con-
verges almost surely to 0 in (F; k�kF )
ii) If (Wn)n�1 converges in law in (E; k�kE) to the limit law G; then (' (Wn))n�1
converges in law in (F; k�kF ) to the limit law G Æ '�1:
iii) If (Wn)n�1 follows the large deviation principle in (E; k�kE) with speed vn # 0
and rate function J; then (' (Wn))n�1 follows the large deviation principle in
(F; k�kF ) with speed vn and rate function

I : y 2 F 7! inf fJ (x) : ' (x) = yg

iv) If (Wn)n�1 is almost surely relatively compact in (E; k�kE) with limit set
K � E; then (' (Wn))n�1 is almost surely relatively compact in (F; k�kF ) with
limit set ' (K) :

Denote by Sk the bounded linear operator from H to H de�ned in the basis
of eigenvectors of C by :

Sk =
X
p6=k

(�k � �p)
�1

�p; (2)

we set

'k : s 2 S 7! Sks�k +�ksSk 2 S; (3)

and

pk : s 2 S 7! h�k ; siS 2 R: (4)

Note for further references that 'k and pk are continuous and linear. Here are
our main results.

Theorem 3 If (Cn � C)n�1 converges almost surely to 0 in S; then, for all k,
i) (�k;n ��k)n�1 converges almost surely to 0 in S:

ii) (mk;n�k;n �mk�k)n�1 converges almost surely to 0 in R:

Theorem 4 If for some bn " 1; (bn (Cn � C))n�1 converge in law in S to the
limit GC ; then, for all k,
i) (bn (�k;n ��k))n�1 converges in law in S to the limit

G�k
: A 2 B (S) 7! GC

�
'�1k (A)

�
:

ii) (bn (mk;n�k;n �mk�k))n�1 converges in law in R to the limit

G�k : B 2 B (R) 7! GC

�
p�1k (B)

�
:
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Theorem 5 If, for some bn " 1; (bn (Cn � C))n�1 follows the large deviation
principle in S with speed (vn) and rate function JC ; then, for all k,
i) (bn (�k;n ��k))n�1 follows the large deviation principle in S with rate func-
tion

J�k
: t 2 S 7! inf fJC (s) : 'k (s) = tg :

ii) (bn (mk;n�k;n �mk�k))n�1 follows the large deviation principle in R with
rate function

J�k : � 2 R 7! inf fJC (s) : pk (s) = �g :

Theorem 6 If, for some bn " 1; (bn (Cn � C))n�1 is almost surely compact in
S with limit set KC then, for all k,
i) (bn (�k;n ��k))n�1 is almost surely relatively compact in S with limit set

K�k
= 'k (KC) :

ii) (bn (mk;n�k;n �mk�k))n�1 is almost surely relatively compact in R with limit
set

K�k = pk (KC) :

2 Proofs

In the next lemmas we give some results related to perturbation theory for linear
operators useful for our needs.

De�nition 7 Let � be a self-adjoint element of L (H) ; � be an isolated point
of the spectrum of � we call � an admissible contour for � and � whenever �
is a contour around � which contains no other eigenvalues of �:

Lemma 8 i) Let � be a self-adjoint element of L (H) and � be an isolated
point of the spectrum of � then for every �; admissible contour for � and �;
the mapping

� =
1

2i�

Z
�

(zIdH ��)
�1

dz; (5)

where i2 = �1; is the orthogonal projection onto ker (�� �IdH) :
ii) Let � be a self-adjoint element of L (H) and let z 2 C such that � is not an
eigenvalue of �, then


(zIdH ��)�1





L
� sup

n
jz � �j�1 : � eigenvalue of �

o
: (6)

Proof. i) See e.g. Proposition 6.3 of [7].
ii) See e.g. Theorem 5.8 of [7].
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Lemma 9 Let � be a self-adjoint element of L (H) with (real) eigenvalues
(lk)k�1 of respective multiplicity degrees (dk)k�1 and associated projectors (Pk)k�1 :
Then, for all k � 1;

hPk ;�iS = dklk:

Proof. For all k � 1; let �k be an orthonormal basis of the eigen-subspace
associated with lk and let � be any orthonormal basis of H such that �k � �:
Note that �k has dk elements. Hence, by (1) ;

hPk ;�iS =
X
e2�

hPk (e) ;�(e)i

=
X
e2�k

he; lkei = dklk:

Set

Æk = inf
p6=k

j�k � �pj = min (�k � �k+1; �k�1 � �k) :

Let �k be the oriented circle with center �k and radius �k = Æk=2. Note that
�k is an admissible contour for �k and C:
Moreover, de�ne the event

Ok;n = fkCn � CkS < Æk=4g : (7)

Since

sup
p2N

j�p;n � �pj � kCn � CkS (8)

(see e.g. [6] p.99), we can prove :

Lemma 10 i) For all ! 2 Ok;n; �k is an admissible contour for �k;n (!) and
Cn (!).
ii)

sup
z2�k

n


(zIdH � Cn)
�1




L

o
1Ok;n

� 4Æ�1k : (9)

iii)

sup
z2�k

n


(zIdH � C)
�1




L

o
� 2Æ�1k : (10)

Proof. i) Set ! 2 Ok;n: By (7) and (8) ;

j�k;n (!)� �kj � Æk=4 < �k (11)
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and

inf
p6=k

j�p;n (!)� �kj � inf
p6=k

j�p � �kj � sup
p6=k

j�p;n (!)� �pj

> Æk � Æk=4

= 3Æk=4 > �k: (12)

Hence, the result holds by (11) and (12).
ii) Set ! 2 Ok;n: By (6) ;

sup
z2�k

n


(zIdH � Cn (!))
�1




L

o
� sup

n
jz � �p;n (!)j

�1
: p 2 N; z 2 �k

o
: (13)

Moreover, for all z 2 �k;

jz � �k;n (!)j � jz � �kj � j�k � �k;n (!)j

� �k � Æk=4 = Æk=4;

and

inf
p6=k

jz � �p;n (!)j = inf
p6=k

j(�p � �k) + (�k � z) + (�p;n (!)� �p)j

� inf
p6=k

j�p � �kj � j�k � zj � sup
p6=k

j�p;n (!)� �pj

� Æk � �k � Æk=4 = Æk=4:

Therefore,

inf
z2�k

inf
p2N

jz � �p;n (!)j � Æk=4;

which, combined with (13) ; give the result.
iii) Note that, for all z 2 �k;

j�k � zj = Æk=2;

and

inf
p6=k

j�p � zj � inf
p6=k

j�p � �kj � j�k � zj

� Æk � Æk=2 = Æk=2:

Therefore, using (6) ; we get,

sup
z2�k

n


(zIdH � C)
�1




L

o
� sup

n
jz � �pj

�1
: p 2 N; z 2 �k

o
� 2Æ�1k :

Now, we can state the main tools used in the proof of our theorems.
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Proposition 11 For all k,
i) There exists a S-valued random variable Rk;n such that, for every n � 1;

�k;n ��k = 'k (Cn � C) +Rk;n; (14)

and

kRk;nkS 1Ok;n
� 8Æ�2k kCn � Ck

2
S : (15)

ii) There exists a real valued random variable rk;n such that, for every n � 1;

mk;n�k;n �mk�k = pk (Cn � C) + rk;n; (16)

and, for some �k > 0 and 
k > 0;

jrk;nj1Ok;n
� �k kCn � Ck

2
S + 
k kCn � Ck

3
S : (17)

Proof. i) Set ! 2 Ok;n: Since, by the �rst part of Lemma 10, �k is an
admissible contour for �k and Cn (!) (and also for C), (6) implies that

�k;n (!)��k =
1

2i�

Z
�k

(zIdH � Cn (!))
�1

� (zIdH � C)
�1

dz: (18)

For convenience, set

a = zIdH � Cn (!) and b = zIdH � C:

Note that

a�1 � b�1 = a�1 (b� a) b�1

= b�1 (b� a) b�1 +
�
a�1 � b�1

�
(b� a) b�1

= b�1 (b� a) b�1 + b�1 (b� a) a�1 (b� a) b�1: (19)

Therefore, if we set

Uk;n =
1Ok;n

2i�

Z
�k

(zIdH � C)�1 (Cn � C) (zIdH � Cn)
�1 (Cn � C) (zIdH � C)�1 dz;

we get, by (18) and (19) ;

�k;n (!)��k =
1

2i�

�Z
�k

(zIdH � C)
�1

(Cn (!)� C) (zIdH � C)
�1

dz

�
+ Uk;n (!) :

Now, in [3] p.145, it is shown that

'k : s 2 S 7!
1

2i�

�Z
�k

(zIdH � C)
�1

s (zIdH � C)
�1

dz

�
:

7



Hence, if we de�ne

Rk;n = Uk;n + (�k;n ��k � 'k (Cn � C))1Oc
k;n

;

(14) holds. Moreover, following [3] p.142 (lines 2 and 3), we obtain, using (9)
and (10) ; that

kUk;nkS

� �k sup
z2�k

�


(zIdH � C)
�1

(Cn � C) (zIdH � Cn)
�1

(Cn � C) (zIdH � C)
�1




S

�
1Ok;n

�
Æk
2
kCn � Ck

2
S sup
z2�k

�


(zIdH � C)
�1



2
L




(zIdH � Cn)
�1




L

�
1Ok;n

� 8Æ�2k kCn � Ck
2
S :

ii) Observe that, by lemma 9,

mk;n�k;n �mk;n�k

= h�k;n; CniS � h�k; CiS
= h�k; Cn � CiS + h�k;n ��k; CniS
= h�k; Cn � CiS + h�k;n ��k; CiS + h�k;n ��k; Cn � CiS
= pk (Cn � C) + h'k (Cn � C) ; CiS (20)

+ hRk;n; CiS + h�k;n ��k; Cn � CiS :

Furthermore, let (ep)p�1 be an orthonormal basis of H such that ek is an eigen-

vector of C associated with �k: Then, by (1) ; (3) and (2) ; for all s 2 S;

h'k (s) ; CiS

=
X
p

hSks�k (ep) ; C (ep)i+
X
p

h�ksSk (ep) ; C (ep)i

= �k hSks (ek) ; eki+
X
p6=k

�p
�k � �p

h�ks (ep) ; epi

= 0: (21)

Hence, if we combine (20) and (21) ; we get

mk;n�k;n �mk�k = pk (Cn � C) + rk;n;

where

rk;n = hRk;n; CiS + h�k;n ��k; Cn � CiS

satis�es

jrk;nj1Ok;n
� kCkS kRk;nkS 1Ok;n

+ kCn � CkS k�k;n ��kkS 1Ok;n

�
�
8Æ�2k kCkS + k'kkL(S)

�
kCn � Ck

2
S + 8Æ�2k kCn � Ck

3
S ;
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where k�kL(S) is the usual norm on the space L (S) of bounded linear S-valued
operators.

Remark 12 It is clear that the proof of (14) may be easily adapted when the
norm k�kS is replaced by the weaker norm k�kL. Hence, if Cn converges to C
only in L, all the conclusions of theorems 3, 4, 5 and 6 remains valid with the
norm k�kL for the projectors �k;n��k. On the opposite, this is not the case for
the eigen-values since the proof of (16) depends strongly of the Hilbert-Schmidt
norm via Lemma 9.

Remark 13 Note also that (14) and (16) may be used to get informations on
the global behaviour of the random variables

f�k;n ��k : k � 1g and fmk;n�k;n �mk�k : k � 1g :

In particular,

max
k�kn

k�k;n ��kkS and max
k�kn

jmk;n�k;n �mk�kj ;

can be studied, where (kn) is a well-chosen sequence increasing to 1 (see Chap-
ter 4 of Bosq [2] for related applications). This will be done elsewhere.

Using Lemma 11, the proofs of our theorems are now simple exercises.

Proof of Theorem 3 :

i) The law of large numbers for (Cn � C) ; the continuity of 'k and (15) give;

lim sup
n!1



'k (Cn � C) +Rk;n1Ok;n




S
= 0 a:s:

Hence, by (14), we just need to show that

lim sup
n!1




Rk;n1Oc
k;n





S
= 0 a:s:;

which is obvious since for all

! 2

�
lim sup
n!1

kCn � CkS = 0

�

and all large n;

1Oc
k;n

(!) = 1fkCn(!)�CkS�Æk=4g
= 0: (22)

ii) The law of large numbers for (Cn � C) ; the continuity of pk and (17) give;

lim sup
n!1

��pk (Cn � C) + rk;n1Ok;n

�� = 0 a:s:
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Hence, by (14), we just need to show that

lim sup
n!1

���rk;n1Oc
k;n

��� = 0 a:s:

which is clear using (22).

Proof of Theorem 4 :

i) The linearity of 'k and (14) entail

bn (�k;n ��k) = 'k [bn (Cn � C)] + bnRk;n: (23)

Therefore, by Lemma 2 and Theorem 4.1 of Bilingsley [1], we just have to show
that, for all � > 0;

lim
n!1

P
�
bn kRk;nkS � �

�
= 0:

To this aim, observe that, for all � > 0; (15) leads to, for n large enough;

P
�
bn kRk;nkS � �

�
� P

�
bn kCn � Ck2S �

�Æ2k
8

�
+ P

�
Oc
k;n

�

� P

 
bn kCn � CkS �

�
�Æ2kbn
8

�1=2!
+ P

�
bn kCn � CkS �

Æk
4
bn

�

� 2P (bn kCn � CkS � �) : (24)

Hence, using the convergence in law of bn (Cn � C) we get

lim sup
n!1

P
�
bn kRk;nkS � �

�
� 2 lim sup

�!1
lim sup
n!1

P (bn kCn � CkS � �)

� 2 lim sup
�!1

GC (fs 2 S : kskS � �g)

= 0:

ii) The linearity of pk and (16) give

bn (mk;n�k;n �mk�k) = pk [bn (Cn � C)] + bnrk;n: (25)

Therefore, by Lemma 2 and Theorem 4.1 of Billingsley [1], we just have to show
that, for all � > 0;

lim
n!1

P (bn jrk;nj � �) = 0:

But, for all � > 0; (15) entails, for all large n;

P (bn jrk;nj � �)

� P

�
b2n kCn � Ck

2
S � ��1k

�

2
bn

�
+P
�
b3n kCn � Ck

3
S � 
�1k

�

2
b2n

�
+ P

�
Oc
k;n

�
� 3P (bn kCn � CkS � �) : (26)

10



Hence,

lim sup
n!1

P (bn jrk;nj � �) � 3 lim sup
�!1

lim sup
n!1

P (bn kCn � CkS � �)

= 0:

Proof of Theorem 5 :

i) By (23) ; Lemma 2 and Theorem 4.2.13 of Dembo and Zeitouni [4], we just
have to show that, for all � > 0;

lim sup
n!1

vn logP
�
bn kRk;nkS � �

�
= �1:

But, (24) and the large deviation principle of bn (Cn � C) give

lim sup
n!1

vn logP
�
bn kRk;nkS � �

�
� lim sup

�!1
lim sup
n!1

vn logP (bn kCn � CkS � �)

� lim sup
�!1

� inf fJC (s) : kskS � �g = �1:

ii) Using (25) ; Lemma 2 and Theorem 4.2.13 of Dembo and Zeitouni [4], we
just have to show that, for all � > 0;

lim sup
n!1

vn logP (bn jrk;nj � �) = �1:

But, (26) and the large deviation principle of bn (Cn � C) give

lim sup
n!1

vn logP (bn jrk;nj � �)

� lim sup
�!1

lim sup
n!1

vn logP (bn kCn � CkS � �)

� lim sup
�!1

� inf fJC (s) : kskS � �g = �1:

Proof of Theorem 6 :

i) By (23) and Lemma 2, it is enough to show that

lim sup
n!1

bn kRk;nkS = 0 a:s:

Now, since (bn (Cn � C)) is almost surely relatively compact

lim sup
n!1

bn kCn � CkS = sup fkskS : s 2 Kg a:s:

< 1 a:s: (27)
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Hence,

lim sup
n!1

kCn � CkS = 0 a:s: (28)

and

lim sup
n!1

bn kCn � Ck
2
S = 0 a:s: (29)

using (15) and (22) ; we get

lim sup
n!1

bn kRk;nkS � 8Æ�2k lim sup
n!1

bn kCn � Ck2S

+lim sup
n!1

bn kRk;nkS 1Oc
k;n

= 0 a:s:

ii) By (25) and Lemma 2, we just have to show that

lim sup
n!1

bn jrk;nj = 0 a:s:

But (17) and (27) ; we get

lim sup
n!1

bn jrk;nj � �k lim sup
n!1

bn kCn � Ck
2
S + 
k lim sup

n!1
bn kCn � Ck

3
S

+ lim sup
n!1

bn kRk;nkS 1Oc
k;n

= 0 a:s:
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