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Abstract

In the Allais’ paradox, if an agent’s preferences violate independence axiom, the (non-
Expected Utility) decision maker appears to be prone to dynamic inconsistency, that is
in some sequential decision problem he may be expected to embark upon (action) plans
which he is not going to follow through. Moreover, Wakker (1988) proves that non-EU
decision maker can be made worse o¤, in dynamic choice setting, by getting a prior
knowledge of what nature’s moves will be. Thus, dynamic inconsistency and Information
aversion are closely linked. Following Wakker’s argument, a number of papers have set
out the relationship between dynamic consistency and information attitude, but authors
restrict the class of non-EU preferences by imposing di¤erent consistent properties, non-
EU preferences must satisfy.

Our approach in this paper is di¤erent, instead of starting from agent’s preferences to
infer agent’s attitude towards information, conversely we start from the attitude towards
information to infer the agent’s preferences “logically” possible. We display in the simplest
dynamic version of the Allais’ paradox, the di¤erent possible attitudes towards information
and characterize them in the Choice Functions Theory’s framework. We show for instance
that an agent who has non-EU preferences can be Information Averse as pointed out by
Wakker (1988) but also Information Lover. Therefore, the simple observation of non-EU
preferences cannot give us any piece of information about the agent’s attitude towards
information.

Classi…cation Number: C4, D8.

Keywords: Information, Decision Theory.



1 Introduction
Considering lotteries, that is to say …nitely-supported probability distributions over a set
of consequences (e.g., amounts of money), von Neumann & Morgenstern (1947) introduced
the “independence condition” for characterizing the maximization of expected utility for
decision making under risk. The independence (or substitution) condition says that if
a …rst “probabilistic mixture” of a …rst and a “…xed” lottery is changed into a second
“probabilistic mixture” by replacing the …rst lottery by a second one (without changing the
“…xed” lottery), then this change is felt as an improvement if and only if the second lottery
is preferred to the …rst lottery. This condition, together with some other (completeness,
transitivity and continuity of the preference relation) implies expected utility.

In economics, following Allais (1953)’s theoretical objections against the founding prin-
ciple of expected utility theory, systematic violations of the Independence axiom has been
found empirically (Kahneman & Tversky (1979)) and defended normatively (Machina
(1982)). These …ndings have led to alternative non-expected utility models (thereafter
non-EU) during the last twenty years (See Karni & Schmeidler (1990) for a survey).

Nevertheless, the non-EU models have been challenged in a dynamic setting because
in the simplest dynamic version of the Allais’ paradox, if an agent’s preferences violate
independence axiom1, the decision maker appears to be prone to dynamic inconsistency2,
that is, in some sequential decision problem he may be expected to embark upon (action)
plans which he is not going to follow through. In other word, the Dynamic Inconsistent
agent’s actual choice upon arriving at a decision node would di¤er from his planned choice
for that node. In such a case, the outcome of dynamic inconsistent behavior is guaranteed
to be less bene…cial than the outcome of an alternative course of action standing at
the agent disposal3. This argument seems to demonstrate that non-EU maximizers are
generically unable of behaving consistently, even in the simplest situation.

Moreover, Wakker (1988) proves that non-EU decision maker can be made worse o¤,
in dynamic choice setting, by getting a prior knowledge of what nature’s moves will be. A
number of papers have set out the relationship between the independence axiom and the
value of information (Wakker (1988), for instance). These papers showed in various set-
tings that if an agent violates a version of the independence axiom, then that agent prefers
less to more information. Such an agent is called Information Averse. As Machina (1989)
observed, however, these arguments implicitly assume an axiom known as “consequen-
tialism”, that is independence of past conterfactual events; accordingly, a more accurate
statement of this …nding is that a consequentialist agent who violates the Independence
axiom may prefer less to more information. Finally, Karni & Schmeidler (1991) formally
demonstrated that, if the consequentialism and the reduction of compound lotteries ax-
iom hold, then independence axiom is equivalent to dynamic consistency, a closely related

1An example of each of this argument can be constructed for any departure from Expected Utility
preferences, not only in the Allais’ paradox framework.

2We refer to the decision-theoretic problem of dynamic inconsistent risk preferences, that is Inconsis-
tent preferences over sequential risky decisions, in absence of time. See Caillaud & Jullien (2000) for a
discussion of the di¤erent problem of time-inconsistent preferences, that is inconsistent preferences over
intertemporal decisions, in absence of risk. See also Brocas & Carillo (2000).

3Several researchers have shown how the dynamic inconsistency argument can be adapted to “make
book” against (that is, extract a sure payment from) a non-EU maximizer.
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condition to desirability of information. But consequentialism is inappropriate when pref-
erences are non-EU because it is essentially a dynamic version of the independence axiom
the non-EU maximizers reject. Machina (1989) proposed to let down consequentialism,
for example by conditionning original preference by past uncertainty, that is risk borne,
in a consistent manner.

Thus, we see that dynamic inconsistency and Information aversion are closely linked.
Shortly, every preference violating Independence axiom displays these types of inconsis-
tency. To overcome these di¢culties, authors restrict the class of non-EU preferences by
imposing di¤erent consistent properties they must satisfy.

Our approach in this paper4 is di¤erent: instead of starting from agent’s preferences to
infer agent’s attitude towards information, conversely we start from the attitude towards
information (Information Averse, Neutral or Loving) to infer the agent’s preferences “log-
ically” possible. In our knowledge, it is the …rst work in which such basic assumptions are
proposed. To achieve this goal, we begin by displaying the simplest dynamic version of the
Allais’ paradox, using two strategically equivalent trees, in order to present the di¤erent
possible attitudes towards information. Then, following a suggestion of Yaari (1985), we
characterize this latter attitude in the Choice Functions Theory’s framework. We show for
instance that an agent who has non-EU preferences can be Information Averse as pointed
out by Wakker (1988) but also Information Loving. Therefore, the simple observation of
non-EU preferences cannot give us any piece of information about the agent’s attitude
towards information.

This paper includes six sections. In section 2, we introduce the problem, we present the
notion of strategically equivalent decision trees and we de…ne attitude towards informa-
tion. Section 3 is devoted to our main result characterizing attitude towards information
in terms of preferences. In section 4, we make an analysis of our results. We show for
instance that despite appearance, non-EU agent respects a special dynamic consistency
condition we call Cross-levels Dynamic Consistency. Section 5 compares our de…nition of
attitude towards information with those of Blackwell (1953) and Grant, Kajii and Polack
(1998). Finally, section 6 concludes the paper. All proofs are relegated in appendices.

2 Rationale
Consider an agent who must choose an action. The problem this agent faces is one of
choice under risk if contemplated actions do not have unique consequences. The standard
way of describing an action in this case is to write down a list of states-of-nature and
to specify what the consequences of the action would be in each state. Thus an action
is a rule that associates a unique consequence with every state-of-nature, and it is from
among objects of this type that the agent is called upon to choose. In standard decision
making under risk, an action is expressed as a lottery and one deals with preferences over
lotteries, where in a formal set-up lotteries are modelled as probability distributions over

4This paper considers the context of decision making under risk, with given probabilities, but it can of
course be reformulated in a completely straightforward way for decision making under uncertainty, with
“sure-thing principle” as an analog of independence (Savage (1954)).
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consequences called prizes5.
An axiom of EU theory in the set of axiomatics by Jensen (1967) is the following

known as Independence Axiom : let r, q and q0 be lotteries belonging to the set of
lotteries and let ¸ 2 ]0; 1] then q Â r () ¸q + (1 ¡ ¸)q0 Â ¸r + (1 ¡ ¸)q0. That is :
if lottery q is preferred to lottery r then the compound lottery (a lottery whose “prizes”
are themselves lotteries6) that leads to lottery q with probability ¸ and to lottery q0 with
probability 1¡¸ should be preferred to the compound lottery that leads to lottery r with
probability ¸ and to lottery q0 with probability 1¡¸: As shown by Allais (1953)’s famous
example, this axiom can be violated by agents : take q0 = ©0 (the degenerate lottery that
gives 0 with probability 1), r = fW =

¡
5M; 10

11
; 0M; 1

10

¢
is the lottery that gives 5 millions

with probability 10
11

and 0 million otherwise, q = ©1 (the degenerate lottery that gives 1
million with probability 1), ¸ = p = 0:11:

Allais has shown that some people have the following pattern of preferences : ©1 Â fW
and pfW + (1¡ p)©0 Â p©1 + (1¡ p)©0. In violation of Independence Axiom.

In this paper, we call Non-EU preference such a preference Â that violates
Independence Axiom. There are some theories that allow for such a violation. Their
goal is of course to generalize the EU theory and they do it very well. There are however
some disturbing things about allowing for Independence Axiom violation.

2.1 An Agent who violates the Independence Axiom is no longer

dynamically consistent

Let Â be a preference relation (of an agent) that violates Independence Axiom : q Â r
and ¸r + (1¡ ¸)q0 Â ¸q + (1¡ ¸)q0.

Following Rai¤a (1968), decisions under risk in extensive form can be modelled as
a decision tree in which boxes (¤) and circles (°) denote respectively, decision nodes
(where the decision maker (DM) chooses) and chance nodes (where nature chooses). Let
us consider the following decision tree that represents the above decision under risk.

5The kind of prizes that the lotteries yield is immaterial for the present analysis. For instance, prizes
may be amounts of money.

6Although the successive chance nodes in a compound lottery are resolved sequentially rather than
simultaneously, we assume that this process does not require an economically signi…cant amount of time
and that the Decision Maker has no other economic activities or decisions (e.g. consumption/saving
decisions) to undertake in the meantime, so that he has no reason to prefer neither single-stage over
compound lotteries nor few-staged over many-staged trees, on ground of impatience or planning bene…ts
alone. For a discussion of the applicability of decision theory when delays in the resolution of uncertainty
are economically signi…cant, see Kreps & Porteus (1978, 1979).
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                                                                                                                                                          r

                                                                                                                                                      q
                                                                          λλ

                                                                            1-λλ
                        q’

Figure 1

To understand this tree :

1. The DM gets r with probability ¸ and gets q0 with probability 1 ¡ ¸, that is ¸r +
(1¡ ¸)q0:

2. The DM gets q with probability ¸ and gets q0 with probability 1 ¡ ¸, that is ¸q +
(1¡ ¸)q0:

3. The situation described in this decision tree involves a dynamic setting that is a
situation where Nature moves …rst and the DM thereafter at least one time.

The DM is not dynamically consistent because ex-ante (at the dotted arrow), he wishes
to go DOWN with respect to his preference : ¸r + (1¡ ¸)q0 Â ¸q + (1¡ ¸)q0. But when
Nature goes UP, then the DM goes UP with respect to his preference : q Â r:

2.2 An agent who violates the Independence Axiom is Informa-
tion Averse (Wakker, 1988)

A formal proof of this claim can be found in Schlee (1990). We will give here the intuition
of the result. The following two decision trees represent the same decision problem that
is a choice between ¸q + (1¡ ¸)q0 and ¸r + (1¡ ¸)q0.
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                                                                                                                         λλ

                                                                                                                        1-λλ                            q’
L(r)

T1

                                                                             L’ (q)                                      λλ                          q

                                                                                                                          1-λλ
                                                                                                                                                         q’

                                                                                                                                                                     L(r)
                                                                                                                                              r

                                                                                                                                                                   L’(q)
                                                                                                                                               q
                                                                       λλ

T2

                                                                     1-λλ
             q’

Figure 2

There is however a topological di¤erence between T1 and T2. In T1 the DM chooses
…rst and Nature thereafter. In T2, Nature chooses …rst and DM thereafter.

Examination of T2
At °, there is a random device leading to two results : E1 and E2 with Pr(E1) = ¸

and Pr(E2) = 1¡ ¸ . If E1 occurs then DM knows that …nal outcomes will be either r if
he chooses to go UP or q if he chooses to go DOWN. If E2 occurs then DM knows that
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…nal outcome will be q0: Then at T2, DM has an information about the …nal outcomes
before choosing. Decision tree T2 is said to be more informative7 than decision tree T1.

Broadly speaking, the DM will be Information Averse8 if he prefers to choose over T1
instead of T2.

               r

                                                                                                                            λλ

                                                                                                                             1-λλ                        q’
L(r)

                                                            2
                                                                             L’ (q)                                             λλ                     q

            T1
                                                                                                                               1-λλ
                                                                                                                                                         q’

  1

                                                                                                                                                                     L(r)
                                                                                                                                              r

            T2
                                                                                                                                                                   L’(q)
                                                                                                                                               q
                                                                       λλ

                                                                     1-λλ
             q’

Figure 3

If the DM has to choose over T1 then since he prefers ¸r+(1¡¸)q0 over ¸q+(1¡¸)q0
he will end up with ¸r+(1¡ ¸)q0: If the DM has to choose over T2 then if Nature moves

7The formal de…nition will be given in section 3.
8The rough de…nition will be given in section 3.
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UP then he will end up with q since he prefers q over r. But if Nature moves DOWN then
he will end up with q0: Hence if DM has to choose over T2, he will end up with lottery
(¸; q; 1¡ ¸; q0).

Since the DM prefers ¸r + (1¡ ¸)q0 then he will prefer to choose over T1 in order to
get ¸r + (1¡ ¸)q0. That is he prefers to choose without information.

Information aversion arises (for instance) in situations where the pay-o¤ function de-
pends to a signal (Schlee (2001), Datta, Mirman and Schlee (2000)). For instance, Lerman
et alii (1996) show that 57% of a group of subjects with a family history of breast/ovarian
cancer decline to receive free genetic test results. The main reason is a fear in insurance
consequence if the result becomes public.

The result of Wakker (1988) was important in the literature because it has in‡uenced
a research …eld that adresses both to dynamic consistency and the role of information in
Non-EU theories. To resume, the analysis of Wakker and others, has shown that there
exists a link between attitude towards information and preferences displayed by the DM.

The purpose of this paper is to give a complete model-free characterization of attitude
towards information in term of preference displayed by the DM. Following a suggestion by
Yaari (1985), we use the revealed preference framework. The two mathematical interests
of this paper are to adopt a model-free (then universal) approach and to work with decision
trees.

3 Method and De…nitions

3.1 Preliminary

Let ¦ be the abstract universal set of …nite decision trees. Let us apply the following four

operations (see Lavalle (1978), Lavalle & Fishburn (1987)) over ¦ :
FIRST OPERATION : Delete from ¦ the decision trees obtained from other by Suc-

cessive Choice Operations (combining or stringing out arcs belonging to the same
participant -nature or DM-). For instance if ¦ includes the two trees below then delete
the second.

x1

x2

x3

x1

x2

x3

and

SECOND OPERATION : Delete from ¦ the decision trees obtained from another by
Dummy-Move Operations (insertion and/or deletion of dummy moves -nodes from

7



which emanates only one arc-). For instance if ¦ includes the two trees below then delete
the second.

r

q

q’

and

q

q’

r

THIRD OPERATION : Delete from ¦ the decision trees obtained from another by
a Path Permutations (permutations of the arcs with ensuing subtrees at one or more
nodes). For instance if ¦ includes the two trees below then delete the second.
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r

q

q’

and

r

q

q’

After these …rst three operations, we get a set ¦0: Let us rename this set by ¦:
FOURTH OPERATION : Apply over ¦ the following equivalence relation denoted

SE and de…ned by : T and T’ are strategically equivalent, T SE T’, if they have
the same opportunity set, that is if they have the same set of endpoints and the same
probability distribution over the set of endpoints.

An opportunity set is therefore a set of lotteries.
For instance the above trees T1 and T2 in …gure 3 are strategically equivalent.

Loosely speaking, the argument entails that the order of choice of the decision maker
and nature may be reversed. Up to operations 1-3, two decision trees (or subtrees) are
strategically equivalent from the standpoint of the DM, if they imply the same opportunity
set. Therefore, according to the standard analysis, the agent should be indi¤erent between
two strategically equivalent decision trees.

In …gure 3, it is obvious that the opportunity set of subtree 1 (T1) is fL(r); L0(q)g.
Concerning subtree 2 (T2), as argued below, the opportunity set is also fL(r); L0(q)g.
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Therefore, according to the standard analysis, the individual should be indi¤erent at the
initial choice node ¤ 1 between subtree T1 and subtree T2.

The argument goes as follows. First, it should be immaterial to the decision maker if
he has to choose before (subtree T2) or after (subtree T1) the choice of nature concerning
whether event E1 or E2 obtains. The argument is that in each case he has the same two
compound lotteries or opportunities at his disposal. Second, when he chooses before the
nature’s choice, the decision maker should act in accordance with the situation in which
he chooses after nature.

Nevertheless, the di¤erence between these two situations is relevant, for instance be-
cause of the …rst situation considerations related to entire probability distributions which
are no longer relevant in the second choice situation one.

Let lotteries and mixtures again be as in …gure 3. We introduce a new decision
problem, a two-stage choice situation as in ¤ 1 of the …gure 3. Again, the DM will be
faced with the compound lotteries L(r) and L0(q). But he must …rst make another choice:
he must decide whether or not to receive, before choosing between the compound lotteries,
the information about whether event E1 or E2 obtains or not. This information is free
of charge. So he must choose between a choice situation with no information (¤ 2 of
the …gure 3), where the DM makes his choice between the compound lotteries without
knowing what event will actually obtain (for example, the DM must make his choice
before nature has decided whether event E1 or E2 will obtain), and a choice situation
with information (¤ 3 of the …gure 3), where he will be informed about whether event
E1 or E2 obtains before he has to choose and therefore will have to make his choice after
nature has decided whether event E1 or E2 obtains.

For instance, in our decision tree (…gure 3), the DM will be faced with the lotteries
L(r) and L0(q), and must decide whether or not to receive, before choosing between the
two lotteries, the information about whether event E1 or E2 obtains or not.

In …gure 3, the DM will not necessarily be indi¤erent between the two choice situations
de…ned above. He knows that if he chooses to receive the information, he will end up
with the lottery q0 if event E2 does obtain, and have the choice between the two lotteries
r and q otherwise. If he chooses not to receive information, then he will choose between
the two compound lotteries L(r) and L0(q).

Having done the above partition of ¦ (the abstract universal set of …nite decision
trees) in classes of strategically equivalent decision trees, we are now able to de…ne more
precisely the concepts of a tree more informative than another, and of attitude towards
information.

3.2 De…nitions

De…nition 1 We call Decision Problem denoted Pi , the pair fOi; Cg where Oi is the
opportunity set associated with Ci a class of strategically equivalent trees and C is a choice
function.

10



                                                 ( )Π,SE
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De…nition 2 Let T be a decision tree, we call Information Structure of T , denoted I(T ),
the number
I(T ) =Max

di 2 D
jch(di)j where D is the set of decision nodes of T, di is a decision node

2 D, CH is the set of chance nodes of T , chi is a chance node 2 CH, ch(di) =½
chi 2 CH : chi is a predecessor

(in the sense of graph theory) of di

¾
and jch(di)j is the cardinal of ch(di):

De…nition 3 Let T and T 0 belong to a same class C of strategically equivalent decision
trees. T is more informative than T’ if I(T ) ¸ I(T 0).

For instance, in …gure 4 below, T is more informative than T’which is more informative
than T”.

Let us now de…ne a preference relation.

De…nition 4 A preference relation over a set X of objects, is modelled by a binary rela-
tion % over X where % is a subset of X £X. x % y means x is preferred to y.

De…nition 5 Any binary relation % can be parted in a symmetric component called in-
di¤erence, denoted » and de…ned by x » y () x % y and y % x, and in an asymmetric
component called strict preference denoted Â and de…ned by x Â y () x % y and
not (y % x).

De…nition 6 9A binary relation % over X is complete if 8x; y 2 X; x % y or y % x:It
is transitive if 8x; y; z 2 X; x % y and y % z imply x % z:

9De…nition 2 gives us a useful tool to distinguishing a tree more informative than another. Of course,
it is possible to set another de…nition. For instance : a decision tree T is more informative than a decision
tree T 0 if T 0 = '(T ) where ' is a strategically equivalence preserving transformation such that a decision
node (in T ) is permuted with a predecessor chance node.
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Figure 4

Let us set the following hypothesis.

H1 The DM admits a preorder (complete and transitive) preference relation Ri over Ci.
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There exists therefore a preference relation R over [
i

Ci , which is the disjunction

union of the Ri : R = +
i
Ri: This preference relation R is of course not complete but

it is re‡exive and transitive. Let us remark that : R = PR + IR with PR = +
i
PRi and

IR = +
i
IRi :With PRi and IRi respectively the asymmetric component and symmetric

component of preference relation Ri.
We will now introduce our de…nition of local attitude towards information.

De…nition 7 A DM is information averse for the decision problem Pi if whatever T
and T 0 belonging to Ci (the class of strategically equivalent decision trees to which Pi is
associated with) :

¢ I(T ) > I(T 0) =) T PRi T
0

¢I(T ) = I(T 0) =) T IRi T
0

where PRi is the asymmetric component of preference relation Ri over Ci and IRi is
the symmetric component of preference relation Ri.

We have similar de…nition concerning information loving for the decision problem Pi.

De…nition 8 A DM is information neutral for the decision problem Pi if whatever T
and T 0 belonging to Ci (the class of strategically equivalent decision trees to which Pi is
associated with), we have T IRi T

0 where IRi is the symmetric component of preference
relation Ri over Ci .

De…nition 9 A DM is information averse if he is information averse for any decision
problem Pi:

We have similar de…nitions concerning information loving and information neutrality.

Remark 1 Of course, global attitude towards information implies local attitude towards
information.

However Lemma 5 (appendix D) shows the equivalence between attitude towards
information and attitude towards information for problem :

P = fO = f¸r + (1¡ ¸)q0; ¸q + (1¡ ¸)q0g;Cg
8 ¸ 2 ]0; 1[ ; r; q and q0 are lotteries.

This result allows us to deal with the decision problem :

P = fO = f¸r + (1¡ ¸)q0; ¸q + (1¡ ¸)q0g;Cg
as a generic one, and with C its associated class of strategically equivalent decision trees.
We consider, without loss of generality (see part 2 of the proof of Lemma 5 in Appendix
D), that this set C includes only decision trees T1 and T2 of …gure 3. Our below theorem
and propositions are therefore general.

We will complete this section with the following two hypotheses.
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H2 Let Pi be a decision problem and Ci its associated class of strategically equivalent
decision trees. Whatever T and T 0 belonging to Ci , I(T ) = I(T 0) =) T IRi T

0:

Hypothesis H2 says that if two strategically equivalent decision trees have the same
information structure then the DM is indi¤erent between both. This hypothesis allows
us to focus over the strategically equivalent decision trees having di¤erent information
structures. Assuming H2, we can rewrite the de…nitions of attitudes towards information
by neglecting the condition : 8 T ; T 0 2 C i , I(T ) = I(T 0) =) T IRi T

0:

H3 Let Pi be a decision problem and Ci its associated class of strategically equivalent
decision trees. Whatever T and T 0 belonging to Ci , T 6= T 0; T PRi T

0 [resp:
T IRi T

0] =) 8 Z a decision tree, 8 ¸ 2 [0; 1];

 
 
 
                             T              T’ 
                    λ                                                              λ    
                                           PR  [resp. IR]      
                   1-λ                                                            1-λ 
                              Z              Z  
 
 
 
 
                            

H3 is an independence axiom over strategically equivalent decision trees but it does
not imply the standard independence axiom.

4 Characterizing attitudes towards information in terms
of preferences

Since we will use the concept of choice function, let us give some basic notions in choice
function theory.

Let X be a set of objects. A set of subsets of X, denoted F , is called domain of choice
and the elements of F are called choice sets.

A choice function is a function C de…ned from F to P (X) the power set, which
associates S with C(S), with the condition C(S) µ S.
C(S) is the set of chosen elements over S. Moreover, let us assume that :

H4 C(S) is non-empty for any S belonging to F , that is C is decisive over F .
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De…nition 10 (Richter (1971)). A choice function C is said to be Rational if there
exists a binary relation % over X , rationalizing it, that is, such that for any S 2 F ,
C(S) = fx 2 S : x % y , 8y 2 Sg.

Thus, a choice function C is rational if the Decision Maker chooses the elements which
are optimal with respect to his preference relation.

From a choice function C, one can de…ne the following binary relation over X called
Revealed Preference denoted ¹. An object x is revealed preferred to an object y if there
exists a choice set over which x is chosen while y could have been. Formally,

De…nition 11 8 x; y 2 X, x ¹ y () 9 S 2 F such that x 2 C(S) and y 2 S.

Richter (1971) gives an interesting characterization of rational choices by showing that
any choice function is rational if and only if it is rationalizable by ¹, the revealed preference
relation. Therefore, from a rationality standpoint, any binary relation rationalizing a
choice function is equivalent to ¹. The revealed preference’s concept is hence central in
the theory of choice functions.

The above Richter de…nition has a dual equivalent (in duality) de…nition.

De…nition 12 (Kim and Richter (1986)). A choice function C is said to be Ratio-
nal if there exists a binary relation Â over X , such that for any S 2 F , C(S) =
fx 2 S : not(y Â x) , 8y 2 Sg.

Let us now take …gure 3 where the DM faces the following problem of decision: At the
decision node ¤ 1, he has the choice between having the choice at the decision node ¤
2 between compound lotteries L(r) and L0(q), and the following lottery: with probability
¸, he will have the choice (at the decision node ¤ 3) between r and q and the lottery q0

otherwise.
Formally, this decision problem can be writtenC1 fC2 fL(r); L0(q)g ; [¸;C3 fr; qg ; 1¡ ¸; q0]g

where Ci is the DM’s choice function at the decision node i = 1; 2; 3.
It is important to stress out that the choice functions Ci are a priori pairwise di¤erent.

The set of elements the DM faces at decision node ¤ 1 is the following set of decision trees
X1 = fT1; T2; L(r); L0(q)g where the compound lotteries L(r) and L0(q) ought to be seen
here as degenerate decision trees. Indeed it is straightforward to see that the DM faces
at decision node ¤ 1, subtrees T1 and T2 but at this decision node ¤ 1, he is also aware
about the existence of lotteries L(r) and L0(q) (recall that T1 and T2 are strategically
equivalent). The only technical consequence of assuming L(r) and L0(q) to belong to the
agent’s set of decision trees at decision node ¤ 1, is that it allows to well de…ne the choice
function C1 at decision node ¤ 1. Nevertheless this implicitely implies a perfect foresight
at decision node ¤ 1.

The set of elements, the DM faced at decision nodes ¤ 2 and ¤ 3 are respectively
X2 = fL(r); L0(q)g and X3 = fr; qg.

Since we assume the choice functions Ci to be a priori di¤erent then the (revealed)
preferences associated with these choice functions are a priori di¤erent.

Let us recall that in traditional analysis, the individual has a preference relation %
over the set fL(r); L0(q); r; qg = X2[X3. We can therefore always link our analysis to the
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traditional one by assuming that the relations %
2

and %
3

, respectively preferences relations

over X2 and X3, are subrelations of %. Then we have the main result of this paper:

Theorem 1 For strategically equivalent subtrees, an individual who exhibits non-EU
preferences (L(r) Â L0(q) and q Â r or L0(q) Â L(r) and r Â q, where % is a preference
relation over fL(r); L0(q); r; qg) can be either

a) Information Averse,

or

b) Information Loving,

or

c) Information Neutral.

Proof. See Appendices A, B, C and D.

Let us comment this result.
Let us recall that the purpose of this paper is to characterize in terms of preferences

over the lotteries, the agent’s attitude towards information. Theorem 1 enlights that
the simple observation of Non-EU preferences cannot give us any information about the
agent’s attitude towards information.

Since each pattern of preferences between L(r) and L0(q) and between r and q (at
the di¤erent decision nodes) is associated with an attitude towards information, thus
an immediate implication of Theorem 1 is that the simple observation of preferences at
decision nodes ¤ 2 and ¤ 3 is not su¢cient to inform us about the consistency of the
choices displayed by the agent. That is, the traditional level of abstraction is not su¢cient
and at such a level, one cannot impose a dynamic consistency between the choice exhibited
at decision nodes ¤ 2 and ¤ 3. The best level of abstraction (if we want to catch the
agent’s attitude towards information) must include the preference %

1
between L(r) and

L0(q) at decision node ¤ 1. Let us call Prime Preference Relation, the preference
relation %

1
at decision node ¤ 1. In that case, the true dynamic consistency criterion

should be the following:

Axiom 1 (Cross-levels Dynamic Consistency Axiom)
For strategically equivalent subtrees T1 and T2, the agent’s preference at decision node

¤ 1 between L(r) and L0(q) must be consistent with the one expressed, at decision node
¤ 2 if the agent is Information Averse, at decision node ¤ 3 if the agent is Information
Loving and with those expressed at decision node ¤ 2 and ¤ 3 if the agent is Information
Neutral.

It is easy to see that :

Remark 2 The following assertions are true.
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1. An Information Averse Decision Maker respects the Cross-levels Dynamic Con-
sistency Axiom.

2. An Information Loving Decision Maker respects the Cross-levels Dynamic Con-
sistency Axiom.

Comments of Remark2. It says that despite appearance, Information Averse or
Information Loving agent is dynamically consistent in the sense that his prime preference
between L(r) and L0(q) at decision node ¤ 1 is in accordance with his preferences at
decision node ¤ 2 where he e¤ectively chooses if he is Information Averse, and with his
preferences at decision node ¤ 3 where he e¤ectively chooses if he is Information Loving.
Of course, there is no reason to request preferences at decision nodes ¤ 2 and ¤ 3 to be
dynamically consistent, and in fact they do not.

Let us take for instance an Information Averse DM with the following preference (Type
1 in the Lemma 1, Appendix A): L(r) Â

1
L0(q), L(r) Â

2
L0(q) and q Â

3
r.

Thus, he strictly prefers L(r) to L0(q) at decision node ¤ 1. This preference is his
prime preference %

1
between L(r) and L0(q). Since he is Information Averse, then the DM

moves to subtree T1 and when he has to choose (at decision node ¤ 2) between L(r) and
L0(q), he chooses L(r) in accordance with his prime preference. However, his choice at
decision node ¤ 3 between r and q is not in accordance with his prime preference since
he chooses q (which -the choice- is strategically equivalent to L0(q)) and not r (which is
strategically equivalent to L(r)). The question is why?

We think that the reason is the following: the Decision Maker is Information Averse
but at decision node ¤ 3, he has to choose with information and this has an in‡uence
on his behavior. Through what mechanism remains an open question for us. However,
we suspect that information in‡uences choices through an in‡uence over the degree of
pessimism/optimism and the attitude towards risk (or uncertainty).

Likewise, let us take an Information Loving DM with the following preference (Type
3 in the Lemma 2, Appendix B): L(r) Â

1
L0(q), L0(q) Â

2
L(r), and r Â

3
q.

Therefore, he strictly prefers (prime preference %
1
) L(r) to L0(q) at decision node ¤

1. Since he is Information Loving, then the DM moves to subtree T2 and when he has to
choose (at decision node ¤ 3) between q (which is strategically equivalent to L0(q)) and
r (which is strategically equivalent to L(r)), he chooses r in accordance with his prime
preference. However, his choice at decision node ¤ 2 between L(r) and L0(q) is not in
accordance with his prime preference since he chooses L0(q) and not L(r). The reason is
the same as above: the DM is Information Loving but at decision node ¤ 2, he has to
choose without information and this has an in‡uence on his behavior.

Generally speaking, it seems that being Information Averse (respectively Information
Loving) and choosing with (respectively without) information, has an in‡uence on the
agent’s choices. Nevertheless, the displayed preference % over fL(r); L0(q); r; qg is well-
de…ned from a set-theory standpoint and its restriction to fL(r); L0(q)g is dynamically
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consistent with the restriction of prime preference %
1

over fL(r); L0(q)g if the DM is

Information Averse and the restriction of % to fr; qg is dynamically consistent with the
restriction of prime preference %

1
over fL(r); L0(q)g if the DM is Information Loving.

What’s about an Information Neutral DM?

Proposition 1 The following two conditions are true.

1. An Information Neutral Decision Maker (DM) does not necessarily respect the Cross-
levels Dynamic Consistency Axiom.

2. A Decision Maker is Information Neutral and respects the Cross-levels Dynamic
Consistency Axiom if and only if he exhibits preferences of type H (that is, L(r) »

1

L(r), L0(q) »
1
L0(q), L(r) »

1
L0(q), L(r) »

2
L0(q) and r »

3
q. See Appendix C), C’ or

D’ where

Type C’ preferences =

8
><
>:

L0(q) »
1
L0(q), L0(q) Â

2
L(r) and q Â

3
r (Type C pref. in App. C)

+
L0(q) Â

1
L(r)

Type D’ preferences =

8
><
>:

L(r) »
1
L(r), L(r) Â

2
L0(q) and r Â

3
q (Type D pref. in App. C)

+
L(r) Â

1
L0(q)

Proof.

1. Among the nine types of preferences speci…ed in Lemma 3 (see Appendix C), only
the types C, D and H do not violate Axiom 1.

2. (=)) According to condition 1 of the current Proposition, only the C, D and H
types of preferences do not violate Axiom 1. In types C and D, the preference %

1
at

decision node ¤ 1 between L(r) and L0(q) is not speci…ed but the respects of Axiom
1 requires that L0(q) Â

1
L(r) in type C and that L(r) Â

1
L0(q) in type D.

((=) If the DM has preferences of type C’, D’ or H then he is Information Neutral
according to Lemma 3. He obviously respects Axiom 1.

Corollary 1 Let us restrict ourselves to the class of Cross-levels Dynamic Consis-
tent Preferences, then the following two conditions are equivalent.

1. The agent is Information Neutral.

2. The agent’s preferences are of EU-type.
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Proof. Immediate.

Comments. An agent who is Information Averse or Information Loving necessarily
displays non-EU preferences (theorem 1). However, according to Remark 2, such an
agent is dynamically consistent in the sense of Axiom 1. Paradoxically, condition 1
of Proposition 1 says that an Information Neutral agent is not necessarily dynamically
consistent in the sense of Axiom 1. Condition 2 of the same Proposition speci…es the
preferences that are Cross-levels dynamically consistent in the case of an Information
Neutral agent. And, according to corollary 1, these preferences coincide with those of EU-
type. Thus, if we want preference to be dynamically consistent with respect to Axiom
1, then having EU-type preference is equivalent to be Information Neutral (and having
non-EU-type preference is equivalent to be Information Averse or Information Loving).

Let us now talk about the traditional justi…cation that non-EU preferences are not
dynamically consistent. This justi…cation says that if two trees are strategically equivalent
then the DM’s choice should be the same over the two trees while in non-EU preference,
that is clearly not the case.

Let us therefore set the following axiom.

Axiom 2 (Strategically Equivalent-Same Choice Axiom).
The Decision Maker’s choice should be the same over two strategically equivalent trees.

We obtain the following proposition:

Proposition 2 For strategically equivalent subtrees T1 and T2, the following two condi-
tions are equivalent.

1. The Strategically Equivalent-Same Choice Axiom is ful…lled.

2. The preferences are of type C (L0(q) »
1
L0(q), L0(q) Â

2
L(r) , q Â

3
r), type D

(L(r) »
1
L(r), L(r) Â

2
L0(q) , r Â

3
q) or type H (L(r) »

1
L(r), L0(q) »

1
L0(q),

L(r) »
1
L0(q), L(r) »

2
L0(q) , r »

3
q).

Proof.

² (1) =) (2)

The DM is either Information Neutral, Information Averse or Information Loving.
However, in the cases he is Information Averse or Information Loving, he does not respect
the Strategically Equivalent-Same Choice Axiom. And in the case he is Information
Neutral, only the C, D and H-types ful…ll Axiom 2.

² (2) =) (1) is immediate.
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Corollary 2 For strategically equivalent subtrees T1 and T2, the respect of the Strate-
gically Equivalent-Same Choice Axiom implies that the DM is Information Neutral
(and has EU-type preferences).

Proof. Immediate.

Comments. According to Proposition 2, if we want both that the DM considers
subtrees 1 and 2 as strategically equivalent and respects the Strategically Equivalent-
Same Choice Axiom, then we are obliged to restrict ourselves to the class of C, D and
H-types preferences, hence (Corollary 2) to suppose that the DM is Information Neutral.

Let us …nish with the following remark. Despite the concept of strategical equivalence
is objective, the DM may subjectively consider subtrees 1 and 2 as not strategically
equivalent (likewise, the DM may subjectively consider strategically equivalent two decision
trees which are not objectively strategically equivalent), that is, up to conditions 1-3 of
de…nition 1, the DM considers that subtrees 1 and 2 do not have the same opportunity
set. For instance when the DM respects the axiom called Forgone-Event Independence
Axiom by Wakker (1999) and Consequentialism by Machina (1989), that is independence
of past counterfactual events, then he clearly subjectively considers that T1 and T2 are not
strategically equivalent. Indeed T2 becomes the subtree starting from decision node ¤ 3
and the opportunity set of this subtree is fr; qg while the one of T1 remains fL(r), L0(q)g.

5 Related Litterature
Following Blackwell’s (1953) theorem according to which all agents (at least weakly) pre-
fer more information to less, most of the litterature on individual choice for information
(e.g. Wakker (1988) or Schlee (1990)) chooses to focus on instrumental preference for
information, i.e. a decision maker likes information only because it lets him design better
strategies. Thus, if he does not or cannot condition his actions on what he learns, informa-
tion is of no value for him. Introspection suggests however that we sometimes intrinsically
prefer more information to less, even in absence of any instrumental purpose. Moreover,
Blackwell’s original setup is quite restrictive in the way it models attitudes towards both
risk and information. For example, if Blackwell’s agent always prefers the complete elimi-
nation of a risk (the mean of the original distribution), then he always prefers any partial
removal of the risk (any mean-preserving contraction). This is a consequence of the ex-
pected utility hypothesis. At last, the rare attempts (the seminal works of Wakker (1988),
Machina (1989) and Schlee (1990)) to extend standard individual choices models of prefer-
ence for information in a non-expected utility framework favor preference for information
as an axiom of individual choice.

In our knowledge, Grant, Kajii & Pollak (1998) is the only paper explorating the con-
nections between risk and information by focusing on intrinsic preferences for information.
Introspection suggests that attitude towards risk and attitude towards information are
closely related. They show that the way in which they model an agent’s attitude towards
risk has implication for his attitude towards information and vice versa. For example, if
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you wish to maintain Blackwell’s result that an agent always prefers more information to
less, you have to restrict the overall shape of the agent’s preferences over risky prospects.
Moreover, they show that intrinsic preference for information is equivalent to a simple
substitution property (Single-Action Information Loving (SAIL) property) of preferences
over two-stage lotteries. Since this substitution property is de…ned directly on prefer-
ences, not on any particular functional representation, it is applicable to all non-expected
utility models. SAIL property is related to attitudes towards risk in two quite di¤erent
ways. First, preference for information restricts how an agent’s attitude towards risk in
lotteries that resolve early compare to his attitude towards risk in lotteries that resolve
late. Second, SAIL property is analogous to ”risk loving” with respect to the distribu-
tion of posteriors. Intuitively, information causes posteriors to be more widely dispersed.
Loosely speaking, this analogy allows them to translate known results about attitudes
towards risk into new results about attitude towards information.

We use also a concept of Intrinsic Preferences for Information but over Decision trees
while Grant, Kajii & Pollak (1998) deal with lotteries. For instance, Decision tree T2 can
be seen as a linear bifurcation of T1.

6 Conclusion
The main …nding of this paper is that the current level of abstraction used by non-EU
theories is not su¢cient to catch all the aspects of the agents’ behaviors. This level only
deals with the agents’ preferences over a set of lotteries while the best level of abstraction
should also include the agents’ preference over the set of decision trees that can be derived
from the set of lotteries. This latter preference (we call prime preference) is di¤erent in
its nature from the one over the set of lotteries since prime preference denotes an attitude
towards information and the preference over the set of lotteries, an attitude towards
risk (or uncertainty). Such a modelling can for instance be found in Grant, Kajii and
Polak (1998). Of course, attitude towards information has an in‡uence over preferences
displayed over the set of lotteries. We show that agents in non-EU theories respect in
fact a (Cross-levels) Dynamic Consistency Condition.The results are however valid for
strategically equivalent decision trees.
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A Proof of Theorem 1 a)
Lemma 1 Let a DM have choice functions Ci, i = 1; 2; 3, when choosing over the sets
X1 = fT1; T2; L(r); L0(q)g, X2 = fL(r); L0(q)g and X3 = fr; qg. For strategically
equivalent subtrees T1 and T2; the following two conditions are equivalent.

1. The DM is Information Averse.

2. The DM’s preferences at nodes ¤ 1, ¤ 2 and ¤ 3 denoted respectively %
1
, %
2

and %
3

are either of

² Type 1, that is

1.1 L(r) Â
1
L0(q)

1.2 L(r) Â
2
L0(q)

1.3 q Â
3
r

or of

² Type 2, that is

2.1 L0(q) Â
1
L(r)

2.2 L0(q) Â
2
L(r)

2.3 r Â
3
q

Proof.

² (1) =) (2)

If the DM is Information Averse then he chooses to choose directly between com-
pound lotteries L(r) and L0(q), that is

C1 fC2 fL(r); L0(q)g ; [¸;C3 fr; qg ; 1¡ ¸; q0]g = C2 fL(r); L0(q)g

Let %
1

be the DM’s (revealed) preference relation de…ned over the set X1. The DM

strictly prefers
³
Â
1

´
at node ¤ 1, C2 fL(r); L0(q)g to [¸;C3 fr; qg ; 1¡ ¸; q0], that is:

- At node ¤ 1, C2 fL(r); L0(q)g Â
1
[¸;C3 fr; qg ; 1¡ ¸; q0]

- At node ¤ 2, C2 fL(r); L0(q)g gives three possibilities of choice: choosing L(r) alone,
choosing L0(q) alone, or choosing both.

- At node ¤ 3, C3 fr; qg gives also three possibilities: choosing r alone, choosing q
alone, or choosing both.

That leads to 9 cases. Let us represent these cases by the following graph:
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C2 {L( r ), L’(q)}

is

{L( r )}          {L’(q)}       {L( r ), L’(q)}

     then

C3 {r, q}         C3 {r, q}          C3 {r, q}

    is

{r}  {q}  {r, q} {r}   {q}        {q, r}     {r}          { q}           {r, q}

��    ��        ��  ��     ��          ��                ��             ��                 ��

Let us consider cases 2 and 4.

* Case 2:
Since C2 fL(r); L0(q)g = fL(r)g then at node ¤ 2, L(r) Â

2
L0(q). Since C3 fr; qg = q

then at node ¤ 3, q Â
3
r. Therefore C2 fL(r); L0(q)g Â

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent

to L(r) Â
1
[¸; q; 1¡ ¸; q0], that is L(r) Â

1
L0(q).

* Case 4:
Since C2 fL(r); L0(q)g = fL0(q)g then at node ¤ 2, L0(q) Â

2
L(r). Since C3 fr; qg = r

then at node ¤ 3, r Â
3
q. Therefore C2 fL(r); L0(q)g Â

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent

to L(r) Â
1
[¸; r; 1¡ ¸; q0], that is L0(q) Â

1
L(r).
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The other cases 1; 3; 5; 6; 7; 8 and 9 are logically impossible. Let us make the proof
for case 1 for example.

Since C2 fL(r); L0(q)g = fL(r)g then at node ¤ 2, L(r) Â
2
L0(q). Since C3 fr; qg = r

then at node ¤ 3, r Â
3
q. Therefore C2 fL(r); L0(q)g Â

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent

to L(r) Â
1
[¸; r; 1¡ ¸; q0], that is L(r) Â

1
L(r), which is logically impossible by de…nition

of strict preference as asymmetric (thus irre‡exive) component of preference relation.

² (2) =) (1)

Let a DM exhibiting a pro…le of preference relations of type 1, then since q Â
3
r

and L(r) Â
2
L0(q) then at node ¤ 1, he has the choice between L(r) obtained when

moving up (subtree T1) and L0(q) obtained when moving down (subtree T2). Since
L(r) Â

1
L0(q) then he will choose to move up, that is to choose to choose in subtree

T1, hence he is Information Averse.

A similar reasoning with type 2-preference relation leads to the same conclusion. This
completes the proof of Lemma 1.

We complete the proof of Theorem 1 a) by taking %
2

and %
3

as subrelations of % a

preference relation over fL(r); L0(q); r; qg.
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B Proof of Theorem 1 b)
Lemma 2 Let a DM have choice functions Ci, i = 1; 2; 3, when choosing over the sets
X1 = fT1; T2; L(r); L0(q)g, X2 = fL(r); L0(q)g and X3 = fr; qg. For strategically
equivalent subtrees T1 and T2; the following two conditions are equivalent.

1. The DM is Information Loving (or Seeking).

2. The DM’s preferences at nodes ¤ 1, ¤ 2 and ¤ 3 denoted respectively %
1
, %
2

and %
3

are either of

² Type 3, that is

3.1 L(r) Â
1
L0(q)

3.2 L0(q) Â
2
L(r)

3.3 r Â
3
q

or of

² Type 4, that is

4.1 L0(q) Â
1
L(r)

4.2 L(r) Â
2
L0(q)

4.3 q Â
3
r

Proof.

² (1) =) (2)

If the DM is Information Loving, then he chooses to choose between the lotteries r
and q directly rather than in a game (a compound lottery), that is

C1 fC2 fL(r); L0(q)g ; [¸;C3 fr; qg ; 1¡ ¸; q0]g = [¸;C3 fr; qg ; 1¡ ¸; q0]

Let %
1

be the DM’s (revealed) preference relation de…ned over the set X1. The DM

strictly prefers
³
Â
1

´
at node ¤ 1, [¸;C3 fr; qg ; 1¡ ¸; q0] to C2 fL(r); L0(q)g, that is:

- At node ¤ 1, [¸;C3 fr; qg ; 1¡ ¸; q0] Â
1
C2 fL(r); L0(q)g.

- At node ¤ 2, C2 fL(r); L0(q)g gives three possibilities of choice, so is C3 fr; qg at
node ¤ 3. That leads to 9 cases. Let us represent these cases by the following graph:
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C3 {r, q}

is

{r} {q} {r, q}

       then

C2 {L( r ), L’(q)} C2 {L( r ), L’(q)}     C2 {L( r ),L’(q)}

    is

{L( r )} {L’(q)}  {L( r ), L’(q)}       {L( r )}      {L’(q)}   {L( r ), L’(q)}       {L( r )}      {L’(q)}  {L( r ), L’(q)}

�� ��     ��     ��        ��             ��            ��    ��           ��

Among these cases, only two (cases 2 and 4) are logically possible. Let us consider
these two cases.

* Case 2:
Since C3 fr; qg = frg, then at node ¤ 3, r Â

3
q. Since C2 fL(r); L0(q)g = fL0(q)g,

then at node ¤ 2, L0(q) Â
2
L(r). Therefore, [¸;C3 fr; qg ; 1¡ ¸; q0] Â

1
C2 fL(r); L0(q)g is

equivalent to [¸; r; 1¡ ¸; q0] Â
1
L0(q), that is L(r) Â

1
L0(q).

That is type 3.

* Case 4:
Since C3 fr; qg = fqg, then at node ¤ 3, q Â

3
r. Since C2 fL(r); L0(q)g = fL(r)g,

then at node ¤ 2, L(r) Â
2
L0(q). Therefore, [¸;C3 fr; qg ; 1¡ ¸; q0] Â

1
C2 fL(r); L0(q)g is

equivalent to [¸; q; 1¡ ¸; q0] Â
1
L(r), that is L0(q) Â

1
L(r).

That is type 4.
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The other cases 1; 3; 5; 6; 7; 8 and 9 are logically impossible.

² (2) =) (1)

Let a DM exhibiting a pro…le of preference relations of type 3 (the reasoning is
the same for type 4), then since r Â

3
q and L0(q) Â

2
L(r), then at node ¤ 1 he

has the choice between the compound lottery L0(q) obtained by moving up (subtree
T1) and the compound lottery L(r) obtained by moving down (subtree T2). Since
L(r) Â

1
L0(q) then the DM will choose at node ¤ 1 to move down, that is to choose

to choose in subtree T2. Hence, he is Information Seeking. This completes the proof
of Lemma 2.

We complete the proof of Theorem 1 b) by taking %
2

and %
3

as subrelations of % a

preference relation over fL(r); L0(q); r; qg.
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C Proof of Theorem 1 c)
Lemma 3 Let a DM have choice functions Ci, i = 1; 2; 3, when choosing over the sets
X1 = fT1; T2; L(r); L0(q)g, X2 = fL(r); L0(q)g and X3 = fr; qg. For strategically
equivalent subtrees T1 and T2; the following two conditions are equivalent.

1. The DM is Information Neutral.

2. The DM’s preferences at nodes ¤ 1, ¤ 2 and ¤ 3 denoted respectively %
1
, %
2

and %
3

are one of the following 9 types:

² Type A:

A.1 L(r) »
1
L0(q)

A.2 L(r) Â
2
L0(q)

A.3 q Â
3
r

² Type B:

B.1 L0(q) »
1
L0(q) and L(r) »

1
L0(q)

B.2 L(r) »
2
L0(q)

B.3 q Â
3
r

² Type C:

C.1 L0(q) »
1
L0(q)

C.2 L0(q) Â
2
L(r)

C.3 q Â
3
r

² Type D:

D.1 L(r) »
1
L(r)

D.2 L(r) Â
2
L0(q)

D.3 r Â
3
q

² Type E:

E.1 L(r) »
1
L(r) and L(r) »

1
L0(q)

E.2 L(r) »
2
L0(q)

E.3 r Â
3
q

² Type F:

F.1 L(r) »
1
L0(q)

F.2 L0(q) Â
2
L(r)

F.3 r Â
3
q
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² Type G:

G.1 L(r) »
1
L(r) and L(r) »

1
L0(q)

G.2 L(r) Â
2
L0(q)

G.3 r »
3
q

² Type H:

H.1 L(r) »
1
L(r) and L0(q) »

1
L0(q) and L(r) »

1
L0(q)

H.2 L(r) »
2
L0(q)

H.3 r »
3
q

² Type I:

I.1 L0(q) »
1
L0(q) and L(r) »

1
L0(q)

I.2 L0(q) Â
2
L(r)

I.3 r »
3
q

Proof.

² (1) =) (2)

If the DM is Information Neutral, then he is indi¤erent at node ¤ 1 between going
up (subtree T1) and going down (subtree T2). That is he is indi¤erent between
choosing between the compound lotteries L(r) and L0(q) or choosing between the
lotteries r and q, that is he is indi¤erent between getting r or q directly or through
a game (a compound lottery). Formally,

C1 fC2 fL(r); L0(q)g ; [¸;C3 fr; qg ; 1¡ ¸; q0]g = fC2 fL(r); L0(q)g ; [¸;C3 fr; qg ; 1¡ ¸; q0]g

Let %
1

be the DM’s (revealed) preference relation de…ned over X1. The DM is indif-

ferent
³
»
1

´
at node ¤ 1 between C2 fL(r); L0(q)g and [¸;C3 fr; qg ; 1¡ ¸; q0], that is:

- At node ¤ 1, C2 fL(r); L0(q)g »
1
[¸;C3 fr; qg ; 1¡ ¸; q0].

- At node ¤ 2: C2 fL(r); L0(q)g gives also three possibilities of choice, so is C3 fr; qgat
node ¤ 3. That leads to 9 cases. Let us represent these cases by the following graph:
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C3 {r, q}

is

{q} {r} {r, q}

       then

C2 {L( r ), L’(q)}        C2 {L( r ), L’(q)}     C2 {L( r ), L’ (q)}

    is

{L( r )}  {L( r ), L’(q)}  {L’(q)}       {L( r )}      {L( r ), L’(q)}   {L’(q)}       {L( r )}    {L( r ), L’(q)}  { L’(q)}

�� ��     ��      ��            ��            ��    ��      ��               ��

* In case 1:
C3 fr; qg = fqg, that is at node ¤ 3, q Â

3
r. C2 fL(r); L0(q)g = fL(r)g, that is at node

¤ 2, L(r) Â
2
L0(q). Therefore, C2 fL(r); L0(q)g »

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent to

L(r) »
1
[¸; q; 1¡ ¸; q0], that is L(r) »

1
L0(q).

That is type A.

* In case 2:
C3 fr; qg = fqg, that is at node ¤ 3, q Â

3
r. C2 fL(r); L0(q)g = fL(r); L0(q)g, that

is at node ¤ 2, L(r) »
2
L0(q). Therefore, C2 fL(r); L0(q)g »

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is

equivalent to L(r) »
1
[¸; q; 1¡ ¸; q0] and L0(q) »

1
[¸; q; 1¡ ¸; q0], that is L(r) »

1
L0(q) and

L0(q) »
1
L0(q).

That is type B.

* In case 3:
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C3 fr; qg = fqg, that is at node ¤ 3, q Â
3
r. C2 fL(r); L0(q)g = fL0(q)g, that is at node

¤ 2, L0(q) Â
2
L(r). Therefore, C2 fL(r); L0(q)g »

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent to

L0(q) »
1
[¸; q; 1¡ ¸; q0], that is L0(q) »

1
L0(q).

That is type C.

* In case 4:
C3 fr; qg = frg, that is at node ¤ 3, r Â

3
q. C2 fL(r); L0(q)g = fL(r)g, that is at node

¤ 2, L(r) Â
2
L0(q). Therefore, C2 fL(r); L0(q)g »

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent to

L(r) »
1
[¸; r; 1¡ ¸; q0], that is L(r) »

1
L(r).

That is type D.

* In case 5:
C3 fr; qg = frg, that is at node ¤ 3, r Â

3
q. C2 fL(r); L0(q)g = fL(r); L0(q)g, that is at

node ¤ 2, L(r) »
2
L0(q). Therefore, C2 fL(r); L0(q)g »

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent

to L(r) »
1
[¸; r; 1¡ ¸; q0] and L0(q) »

1
[¸; r; 1¡ ¸; q0], that is L(r) »

1
L(r) and L0(q) »

1
L(r).

That is type E.

* In case 6:
C3 fr; qg = frg, that is at node ¤ 3, r Â

3
q. C2 fL(r); L0(q)g = fL0(q)g, that is at node

¤ 2, L0(q) Â
2
L(r). Therefore, C2 fL(r); L0(q)g »

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent to

L0(q) »
1
[¸; r; 1¡ ¸; q0], that is L0(q) »

1
L(r).

That is type F.

* In case 7:
C3 fr; qg = fr; qg, that is at node ¤ 3, r »

3
q. C2 fL(r); L0(q)g = fL(r)g, that is at

node ¤ 2, L(r) Â
2
L0(q). Therefore, C2 fL(r); L0(q)g »

1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent

to L(r) »
1
[¸; r; 1¡ ¸; q0] and L(r) »

1
[¸; q; 1¡ ¸; q0], that is L(r) »

1
L(r) and L(r) »

1
L0(q).

That is type G.

* In case 8:
C3 fr; qg = fr; qg, that is at node ¤ 3, r »

3
q.

C2 fL(r); L0(q)g = fL(r); L0(q)g, that is at node ¤ 2, L(r) »
2
L0(q). Therefore,

C2 fL(r); L0(q)g »
1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent to L(r) »

1
[¸; r; 1¡ ¸; q0], L(r) »

1

[¸; q; 1¡ ¸; q0], L0(q) »
1
[¸; r; 1¡ ¸; q0] and L0(q) »

1
[¸; q; 1¡ ¸; q0], that is L(r) »

1
L(r),

L(r) »
1
L0(q) and L0(q) »

1
L0(q).

That is type H.

* In case 9:
C3 fr; qg = fr; qg, that is at node ¤ 3, r »

3
q.

C2 fL(r); L0(q)g = fL0(q)g, that is at node ¤ 2, L0(q) Â
2
L(r).
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Therefore, C2 fL(r); L0(q)g »
1
[¸;C3 fr; qg ; 1¡ ¸; q0] is equivalent to L0(q) »

1
[¸; r; 1¡ ¸; q0]

and L0(q) »
1
[¸; q; 1¡ ¸; q0], that is L0(q) »

1
L(r) and L0(q) »

1
L0(q).

That is type I.

² (2) =) (1)

Do the same reasoning as in the proofs of Lemmas 1 and 2. This completes the proof
of Lemma 3.

We complete the proof of Theorem 1 c) by taking %
2

and %
3

as subrelations of % a

preference relation over fL(r); L0(q); r; qg.
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D Proof of lemma 4 and 5
Lemma 4 If DM is information averse (respectively information lover or information
neutral) for the decision problem P = f¸r + (1¡ ¸)q0; ¸q + (1¡ ¸)q0g,8 ¸ 2 ]0; 1[, 8 lotteries r,

q and q0then he is information averse for decision problem P0 =
n
¸1r +

Pm
j=2 ¸jq

0
j ; ¸1q +

Pm
j=2 ¸jq

0
j

o
.

Proof.
It is obvious. Indeed in both cases P and P0, attitude towards information is determined

at decision nodes ¤ 1; ¤ 2 and ¤ 3, (See …gure 3 in the body text and the …gure below).

              r

                                                                                                                      λλ1           λλ2                  q’2

•
•
•

L1 λλm              q’m

                                                         2

L2               q

                                                                                                                      λλ1           λλ2                  q’2

•
•
•

λλm              q’m

  1

                                                                                                                                                     r
        L3

                                                                                                                 3                                 q
                                                                       λλ1

                                                                                          λλ2                                                       q’2

•
       λλm •

•
q’m
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Lemma 5 The following two conditions are equivalent.

1. 8 ¸ 2 ]0; 1[ ; 8 lotteries r; q and q0, DM is information averse (respectively informa-
tion lover or information neutral) for the decision problem

P = f¸r + (1¡ ¸)q0; ¸q + (1¡ ¸)q0g

2. The DM is information averse (respectively information lover, information neutral).

Proof.
(2) =) (1) is immediate.
(1) =) (2) The strategy to prove this implication will be the following. We want to

prove that (1) =) (2), that is : 8 Ci ;8 T; T 0 2 Ci :
¢ I(T ) > I(T 0) =) T PRi T

0

¢I(T ) = I(T 0) =) T IRi T
0

Assuming H2, we have only to prove that (1) =) [8 Ci ; 8 T; T 0 2 Ci; I(T ) > I(T
0) =)

T PRi T
0]. Let us call this implication (¤). Let Ci be a class of strategically equvalent

decision trees. Ci includes a …nite number of trees. Let us de…ne the following binary
relation “is more informative than” denoted I and de…ned by : T I T 0 if I(T ) ¸ I(T 0):
It is obvious that I is a preorder (complete and transitive). Let Ci =I be the quotient set
and let I¤ be the quotient order. Let us numbered the equivalent classes in the sense of I

such that C¤i is the class having elements T with I(T ) = i¡ 1 where i = 1 to n. To show
(¤) it is su¢cient to show that : (1) =) [8 Ci ; 8 T 2 C¤t ; 8 T 0 2 C¤t0 ; t > t0 =) T PRi T

0].
C¤1 and C¤2 include only one decision trees. We will divide our proof into two parts. In the
…rst part (PART I) of the proof, we will show that (1) =) [8 Ci ; T 2 C¤1 ; T 0 2 C¤2 ; t >
t0 =) T PRi T

0]. Let us call this implication (¤¤). In the second part (PART II) of
the proof, we will show that one can restrict to C¤1 and C¤2 without loss of generality :
(¤¤) =) [8 Ci ; 8 T 2 C¤t ;8 T 0 2 C¤t0 ; t > t0 =) T PRi T

0]:

PART I
Let Ci be an equivalence class of ¦=SE and Pi be its associated decision problem.

The opportunity set Oi is a set of lotteries. Let us recall that these lotteries have as
consequences the set of endpoints of the decision trees belonging to Ci. These lotteries
have a special form since the decision trees are strategically equivalent. They have the
same probability distribution over their consequences (which are however di¤erent from
a lottery to another). Thus if we take two lotteries L and L0 in Oi , they will reach their
consequences at the same number of stages, say n. We will say that L and L0are n-stages
lotteries. Moreover, lotteries L and L0 have (at least) a common consequence (otherwise
the decision problem cannot be modeled by strategically equivalent decision trees). Since
the decision trees are supposed to be …nite, so are the opportunity sets.

² If CardOi = 2 that is if Oi includes only two lotteries L and L0 then they are
necessarily of the form : L = ¸1r +

Pm
j=2 ¸jq

0
j; L

0 = ¸1q +
Pm

j=2 ¸jq
0
j where r, q and

the q0j are lotteries, r and q are di¤erent, r and q are n-1 stages lotteries if L and
L0 are n-stages lotteries. In such a case, we apply the above lemma 4 and get the
required result.
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² If CardOi = 3 that is if Oi includes three lotteries then they are necessarily of the
form L1 = ¸1r+

Pm
j=2 ¸jq

0
j; L2 = ¸1q+

Pm
j=2 ¸jq

0
j and L3 = ¸1z+

Pm
j=2 ¸jq

0
j;where

r, q and z are pairwise di¤erent, r, q and z are n-1 stages lotteries if L1, L2
and L3 are n stages lotteries. Let us consider the following three decisions prob-
lems P1 = fL1; L2g ; P2 = fL2; L3g ; P3 = fL1; L3g : Since the agent is in-
formation averse for the decision problem P = f¸r + (1¡ ¸)q0; ¸q + (1¡ ¸)q0g ;
8 ¸ 2 ]0; 1[ ; 8 lotteries r; q and q0 then he is, according to Lemma 4, informa-
tion averse over P1; P2, and P3 (see the case with CardOi = 2). Let us display the
revealed preference of the DM when confronted with P1; P2, and P3, using Lemma
1.

Over P1, the possible preferences are :
Con…guration 1.1. L1 Â

1
L2 ; L1 Â

2
L2 ; q Â

3
r or,

Con…guration 1.2. L2 Â
1
L1 ; L2 Â

2
L1 ; r Â

3
q.

Over P2, the possible preferences are :
Con…guration 2.1. L3 Â

1
L2 ; L3 Â

2
L2 ; q Â

3
z or,

Con…guration 2.2. L2 Â
1
L3 ; L2 Â

2
L3 ; z Â

3
q.

Over P3, the possible preferences are :
Con…guration 3.1. L1 Â

1
L3 ; L1 Â

2
L3 ; r Â

3
z or,

Con…guration 3.2. L3 Â
1
L1 ; L3 Â

2
L1 ; z Â

3
r.

Let us show that the preferences displayed over P1; P2, and P3 when the DM is
information averse over these sets, lead to the conclusion that DM is information averse
over fL1; L2; L3g : There are 2£ 2£ 2 = 8 cases: But 4 are logically impossible because
they violate the decisiveness assumption of the choice functions. We will not enumerate
all the 8 cases, let us give just two cases (one possible and one impossible).

Con…guration 1.1 + Con…guration 2.1 + Con…guration 3.1 : L1 Â
1
L2 ; L1 Â

2

L2 ; q Â
3
r and L3 Â

1
L2 ; L3 Â

2
L2 ; q Â

3
z and L1 Â

1
L3 ; L1 Â

2
L3 ; r Â

3
z . In the

decision problem fL1; L2; L3g ; the DM has the choice at decision node ¤ 1 between the
following trees :
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L1

L2                             T

                                                                                                                   2
L3

  1

                                                                                                                                                         r

                                                                                                                                                         q

                                                                                                                    3                                    z
                                                                 λλ1

                  q’2         T’
λλ2

•
•

λλm •

   q’m

Since q Â
3
r, q Â

3
z and r Â

3
z; then at ¤ 3 the DM will choose lottery q. Then over

decision tree T’, lottery L2 will be choosen. Over decision tree T, since we have L1 Â
2
L2,

L3 Â
2
L2, L1 Â

2
L3 , then lottery L1 will be choosen at decision node ¤ 2. Well at ¤ 1,

we have L1 Â
1
L2 then DM will prefer to choose over T in order to get L1. Thus he is

information averse for the decision problem fL1; L2; L3g :
Con…guration 1.1 + Con…guration 2.2 + Con…guration 3.1 is impossible be-

cause it violates the decisiveness hypothesis of the choice functions. Indeed q Â
3
r, r Â

3
z

and z Â
3
q; leads to a cycle in the preference Â

3
and to the conclusion that C3 fq; r; zg = ?:

If k ¸ 4; then the lotteries can be of di¤erent shapes. For instance when k = 4 then
two possible shapes are the following :

Either (shape 1) : L1 = ¸1r +
Pm

j=2 ¸jq
0
j; L2 = ¸1q +

Pm
j=2 ¸jq

0
j ; L3 = ¸1z +Pm

j=2 ¸jq
0
j ;and L4 = ¸1a +

Pm
j=2 ¸jq

0
j ;where r, q, a and z are pairwise di¤erent, r, q,

a and z are n-1 stages lotteries if L1, L2; L3 and L4 are n stages lotteries.
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                                                                                r
                                                                                q
                                                   λ1           3               z

                        T’                                                          a
                                                              Σλjq’j

      1

                    T                                    L1
                                                           L2
                                          2               L3
                                                           L4

Or (shape 2) : L1 = ¸1r + ¸2z +
Pm

j=3 ¸jq
0
j; L2 = ¸1r + ¸1a +

Pm
j=3 ¸jq

0
j ; L3 =

¸1q + ¸1z +
Pm

j=3 ¸jq
0
j;and L4 = ¸1q + ¸1a +

Pm
j=3 ¸jq

0
j ;where r, q, a and z are pairwise

di¤erent, r, q, a and z are n-1 stages lotteries if L1, L2; L3 and L4 are n stages lotteries.

                                                                                r

                                                              3                 q
                                               λ1                              z
                                               λ2          3
                        T’                                                     a
                                                          Σλjq’j

      1

                    T                                    L1
                                                           L2
                                          2               L3
                                                           L4

The two shapes lead to two di¤erent representations (see the above …gures).

Generally speaking when CardOi = k ¸ 2, the number of possible shapes is
lQ
i=1

ei

where k =
lQ
i=1

(ki)
ei , the ki are prime numbers and the ei are strictly positive integers. Let
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us take a shape and its associated representation (see the below …gure). We will number
without loss of generality the di¤erent decision nodes as indicated in the below …gure.

                                                             r1
1

                                           3                M
                                 λ1      M                r1

n1

                                  λp                        r
p

1

                                            3              M
                                                             rp

np

             T’
                                          Σλjq’j

      1

                    T                                    L1

                                          2               M
                                                           Lk

Figure PG

It is easy to see that the k lotteries of Oi have the following shape : Ls = ¸1r
1
i1
+

¸2r
2
i2
+ ::::: + ¸pr

p
ip
+

Pm
j=p+1 ¸jq

0
j with i1 = 1 to n1 ; i2 = 1 to n2 ; ::::::::; ip = 1 to np ;

and s = i1 £ i2 £ ::::£ ip ; s = 1 to k:
There are C2k possible paire of lotteries. But all these paires are not a decision problem

in the sense of de…nition 1, that is they are not associated with an equivalent class
including some strategically equivalent decision trees. For instance : if we take L = ¸1r11+
¸2r

2
1+¸3r

3
1+::::+¸pr

p
1+

Pm
j=p+1 ¸jq

0
j and L0 = ¸1r12+¸2r

2
2+¸3r

3
1+::::+¸pr

p
1+

Pm
j=p+1 ¸jq

0
j,

P = fL;L0g is not associated with a class of strategically equivalent decision trees because
otherwise P should have include the following 4 lotteries L;L0; L00; L000 where L00 = ¸1r11 +
¸2r

2
2+¸3r

3
1+::::+¸pr

p
1+

Pm
j=p+1 ¸jq

0
j and L000 = ¸1r12+¸2r

2
1+¸3r

3
1+::::+¸pr

p
1+

Pm
j=p+1 ¸jq

0
j.
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                                                                                r1
1

                                                                                r1
2

                                               λ1                              r
2

1

                                               λ2

                                                                                 r2
2

                                                           Σλjq’j

We will show that if we take the decision problems building by taking two elements
from fL1; L2; ::::; Lkg then if DM is information averse for these decision problems then
he is information averse for the decision problem {fL1; L2; ::::; Lkg;Cg:

Let P = fL;L0g be a decision problem with L;L0 2 fL1; L2; ::::; Lkg then L and L0 are
di¤erent other only one consequence.

If DM is information averse for the decision problem P= f¸r + (1¡ ¸)q0; ¸q + (1¡ ¸)q0g ;
8 ¸ 2 ]0; 1[ ; 8 lotteries r; q and q0 then according to lemma 4, DM is information averse for

the decision problem P=
n
¸r +

Pm
j=2 ¸jq

0
j ; ¸q +

Pm
j=2 ¸jq

0
j

o
; 8 ¸ 2 ]0; 1[ ; 8 lotteries r; q and q0:

Therefore DM is information for the decision problem P = fL;L0g, associated with a class
of strategically equivalent decision trees and L;L0 2 fL1; L2; ::::; Lkg:

If DM is information averse for any decision problem P = fL;L0g associated with a
class of strategically equivalent decision trees and L;L0 2 fL1; L2; ::::; Lkg then lemma 1
gives us for any decision problem P the possible con…gurations of preference at the dif-
ferents decision nodes 1, 2 and 3. We can induce (like in case CardOi = 3) the preferences
over fL1; L2; ::::; Lkg at nodes 1 and 2, and the preferences over fr11; :::; r1n1 ; r21; ::::; r2n2 ; ::::::; r

p
1::::; r

p
npg

at nodes 3. [See the above graph called Figure PG]
These preferences are not necessarily complete since some pairs of fL1; L2; ::::; Lkg are

not decision problems in the sense of de…nition 1.
Moreover some con…gurations of preferences at nodes 1, 2 and 3 lead to cyclical pref-

erences. However we do not take such a preference into account in this analysis since we
have assume decisiveness of the choice functions (hypothesis H4).

When the displayed preferences do not lead to a cycle then there is a selection (using
the dual de…nition of rational choice if the exhibited strict preference is not complete) of
a lottery Li0 2 fL1; L2; ::::; Lkg over T (node 2), of a lottery Lj0 2 fL1; L2; ::::; Lkg over
T 0 (node 3) and of a lottery Lp0 2 fL1; L2; ::::; Lkg at node 1. We will show from one
part that Li0 and Lj0 are unique, and from another part that the lottery Lp0 selected
at decision node 1 is the same as the lottery Li0 selected at decision 2, and …nally that
Lp0 6= Lj0 : This implies that at decision node 1, DM will prefer to choose over T in order
to get Li0 : Then he is information averse.

Let us show the unicity of Li0 (we can show likewise the unicity of Lj0using the same
strategy of proof):
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Suppose that two lotteries were selected : Li0 and L0i0: Then necessarily fLi0 ; L0i0g
is not a decision problem in the sense of de…nition 1. Otherwise there will exist a strict
preference between Li0 and L0i0 contradicting the assumption that they were both selected.

However there exist two lotteries L00i0 and L000i0 with Li0 , L0i0 , L
00
i0

and L000i0 pairwise dif-
ferents such that fLi0 ; L00i0g; fLi0 ; L000i0g; fL0i0 ; L00i0g and fL0i0 ; L000i0g are decision problems in
the sense of de…nition 1. Indeed let us, without loss of generality, set Li0 = ¸1r

1
1 + ¸2r

2
1 +

¸3r
3
1 + ::::+ ¸pr

p
1 +

Pm
j=p+1 ¸jq

0
j and L0i0 = ¸1r

1
2 + ¸2r

2
2 + ¸3r

3
1 + ::::+ ¸pr

p
1 +

Pm
j=p+1 ¸jq

0
j:

fLi0 ; L0i0g is not a decision problem because the two lotteries are di¤erent over two
states of nature. Let us take L00i0 = ¸1r

1
1 + ¸2r

2
2 + ¸3r

3
1 + :::: + ¸pr

p
1 +

Pm
j=p+1 ¸jq

0
j

and L000i0 = ¸1r
1
2 + ¸2r

2
1 + ¸3r

3
1 + :::: + ¸pr

p
1 +

Pm
j=p+1 ¸jq

0
j : It is easy to check that

fLi0 ; L00i0g; fLi0 ; L000i0g; fL0i0 ; L00i0g and fL0i0; L000i0g are decision problems.
Let us continue the proof. Since Li0 and L0i0 are both selected then we have : Li0

Â2 L
00
i0
; Li0 Â2 L

000
i0
; L0i0 Â2 L

00
i0
; L0i0 Â2 L

000
i0
: These preferences necessarily exist since

fLi0 ; L00i0g; fLi0 ; L000i0g; fL0i0 ; L00i0g and fL0i0; L000i0g are decision problems.

Li0                               L’’i0 
 
 
 
 
L’i0                             L’’’i0 
 

Well according to lemma 1, at node 3 for the decision problem fLi0; L000i0g;we have
r12 Â3 r

1
1 (because Li0 Â2 L

000
i0
) and at node 3 for the decision problem fL0i0 ; L00i0g;we have

r11 Â3 r
1
2 (because L0i0 Â2 L

00
i0
). And that contradicts the asymmetry of Â3 :

Let us complete the PART I proof by showing that Lp0 6= Lj0 and Lp0 = Li0:
Obviously, Lp0 6= Lj0 because according to lemma 1, preferences at decision nodes 3

and 1 do not coincide.
Obviously, Lp0 = Li0because according to lemma 1, preferences at decision nodes 2

and 1 coincide.

PART II : There is no lost of generality when restricting the analysis to C¤1 and C¤2 :
Let us remark that if the lotteries are n-stages in the sense de…ned in PART I, then

there are exactly n classes C¤t : C
¤
1 includes the tree T described in Figure PG and

C¤2 includes the tree T 0 described in …gure PG. We want to show that (¤¤) =) [8 Ci ;
8 T 2 C¤t ; 8 T 0 2 C¤t0; t > t0 =) T PRi T

0]: Let us rename by T1 the tree belonging to C¤1
and by T2 the tree belonging to C¤2 : Let T belongs to C¤3 then I(T ) = 2: This tree T was
built from T2 by the following way: over one j0; we have,
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                                                        r1
1

                                                         M
                                                        r1

n1

                                                                     r’1
1

                      λ1                                             M
                            M                   α1    M          r’1

n1

                                                                      r’p
1

                 λj0                                αp              M
                    M                                                r’p

np

                                                       Σαjb’j

                            λp                        r
p

1

                                                         M
                                                        rp

np

                                          Σλjq’j

Let us call ¿ the following decision tree :

                                                                                rj0
1

                                                                                M
                                                                                 rj0

nj0

and let us call ¿ 0 the below decision tree :

                                                             r’1
1

                                                             M
                                 α1      M                r’1

n1

                                  αp                        r’
p

1

                                                            M
                                                             r’p

np

                                          Σαjb’j

¿ and ¿ 0 are strategically equivalent. Moreover I(¿ ) = 0 and I(¿ 0) = 1. ¿ and ¿ 0

belong to the class of strategically equivalent decision trees C
0
which is associated to the
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following decision problem P0 = frj01 ; rj02 ; ::::::; rj0nj0g: According to PART I , we have ¿
PR0 ¿

0 where PR0 is the asymetric part of R0 the DM’s preference relation over C0: Let us
now remind that T2 and T are:

                                                        r1
1

                                                         M
                                                        r1

n1

                       λ1

                            M
                                            τ
                        λj0

                    M
                            λp                        r

p
1

                                                         M
                                                        rp

np

                                          Σλjq’j

Figure T2

                                                        r1
1

                                                         M
                                                        r1

n1

                       λ1

                            M
                                            τ '
                        λj0

                    M
                            λp                        r

p
1

                                                         M
                                                        rp

np

                                          Σλjq’j

Figure T
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Using H3, we have ¿ PR0 ¿ 0 =) T2 PR T; 8 T 2 C¤3 : Likewise, one can show that
T PR T

0; 8 T 2 C¤t¡1; T
0 2 C¤t ; t = 2 to n: We …nally use transitivity of PR to get the

required result : T1 PR T2 PR:::::::PRTn.
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