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A FAST SUBSAMPLING METHOD
FOR NONLINEAR DYNAMIC MODELS
HONG, H., SCAILLET, O. and TAMER, E.

Abstract

We highlight a fast subsampling method that can be used to provide valid inference in nonlin-
ear dynamic econometric models. This method is based on the subsampling theory proposed by
PoriTis and ROMANO (1992,1994) which computes an estimator on subsamples of the data and
uses these estimates to construct valid inference under very weak assumptions. Fast subsampling
directly exploits score functions computed on each subsample and avoids recomputing the estima-
tors for each of them thereby reducing computational time considerably. This method is used to
obtain the limit distribution of estimators, possibly simulation based, that admit an asymptotic
linear representation with both known and unknown rates of convergence. It can also be used
for bias reduction and variance estimation. Monte Carlo experiments demonstrate the desirable
performance and vast improvement in numerical speed of the fast subsampling method.

Résumé

Nous présentons une méthode rapide de sous-échantillonnage qui peut étre utilisée pour donner
une inférence correcte dans des modeéles économétriques dynamiques nonlinéaires. Cette méthode
est fondée sur la théorie de sous-échantillonnage proposée par POLITIS et ROMANO (1992,1994) qui
calcule un estimateur sur des sous-échantillons des données et utilise ces estimateurs pour cons-
truire une inférence valide sous des hypotheéses trés faibles. Le sous-échantillonnage rapide exploite
directement les fonctions de score calculées sur chaque sous-échantillon et évite de recalculer les
estimateurs sur chacun d’eux ce qui réduit le temps de calcul considérablement. Cette méthode est
utilisée afin d’obtenir la distribution limite d’estimateurs, fondés éventuellement sur des méthodes
simulées, qui admettent une représentation asymptotique linéaire de taux de convergence connu
ou inconnu. Elle peut aussi étre utilisée & des fins de réduction de bias et d’estimation de variance.
Des simulations de Monte Carlo démontrent la performance désirée et I’amélioration considérable
en vitesse de calcul de la méthode rapide de sous-échantillonnage.

Keywords: Subsampling, Nonlinear dynamic models, Simulation based estimators.

Mots-clés: Sous-échantillonnage, Modéles nonlinéaires dynamiques, Estimateurs fondés sur des
simulations.

JEL Classification: C12, C15, C22, C52.



1 Introduction

Bootstrap, jackknife and other resampling methods have become in recent years a bur-
geoning area in both theoretical and applied statistics, and are clearly beginning to impact
developments in econometric methodology as well as various applied scientific fields. Their
primary asset is to provide powerful statistical tools which are easy to implement and work
where other more classical tools fail. Among these computer-intensive methods, a very
general approach to constructing asymptotically valid inference procedures has been pro-
posed by PoLITIS and ROMANO (1992,1994). Their approach is based on subsampling and
benefits from a wider applicability than the bootstrap and the jackknife. The main idea
of subsampling is to evaluate a statistic of interest at subsamples of the data, and to use
these subsampled values to build up an estimated sampling distribution. In particular, the
consistency properties of this sampling distribution hold for dependent data under very
weak assumptions and even in situations where the bootstrap collapses. This attractive
feature is the reason why we focus on subsampling methods. Indeed we wish to provide a
setting large enough to cover various estimation methods and modelling frameworks.

In several econometric models, estimation of the parameter is computer-intensive and
hence requires a considerable amount of time. This is due to complex nonlinearities of
the model, or the need to rely on simulations when the model is too difficult to estimate
in a direct way, such as in latent factor models, stochastic volatility models and diffusion
processes. The objective of the paper is to offer a fast procedure that obtains valid in-
ference for parameters of interest while maintaining the attractiveness of the subsampling
method. The idea is to avoid estimating the parameter on each subsample but rather use
the asymptotic linear representation of the estimator and evaluate that on subsamples
of the data. This has been suggested by HEAGERTHY and LUMLEY (2000) in variance
estimation for asymptotically normally distributed estimators obtained as the root of an
additive estimating function. In this paper we propose to use the subsampled values as
the building blocks of an entire estimated sampling distribution. This allows for construct-
ing confidence regions without the requirement of asymptotic normality. We only need

existence of a limit law. Overall, we focus on models with dependent observations where



we consider the stationary and unit roots cases. Deriving asymptotic variances for infer-
ence purposes is more challenging under serial correlation. Our framework also includes
very general estimating functions, not necessarily additive, which may involve simulated
data. Simulation based nonadditive estimating functions are for example involved in the
indirect inference method introduced by GOURIEROUX, MONFORT and RENAULT (1993).
We also develop the case of unknown rate of convergence and eventually show how fast
subsampling can be used in bias reduction and variance estimation.

The basis for the material concerning the building of confidence regions and subsam-
pling distribution estimation is laid in POLITIS and ROMANO (1994). The design of sub-
sampling intervals in autoregressive models with linear time trend is addressed in ROMANO
and WOLF (2001), and the case of unknown rate of convergence is analyzed in BERTAIL,
Povitis, and ROMANO (1999). For more on the subsampling theory, we refer the reader
to the excellent monograph of PoriTis, ROMANO and WoLF (PRW) (1999).

Finally let us point out that fast subsampling is the subsampling version of the estimat-
ing function bootstrap of the bootstrap literature (see e.g. SHAO and TU (1995), DAVIDSON
and MCKINNON (1999), HU and KALBFLEISCH (2000), GONCALVES and WHITE (2000),
ANDREWS (2001)). Indeed this fast bootstrap also avoids solving an optimisation prob-
lem for each resample by relying on resampling the gradient of the nonlinear objective
function, hence reducing computational cost of bootstrapping.

The paper is organized as follows. In Section 2 we first outline our framework and
recall the standard subsampling methodology. Then we describe how fast subsampling
works and how it can be used in building confidence intervals. We consider stationary
strong mixing processes and a broad category of direct estimators and simulation based
indirect estimators admitting an asymptotically linear representation. We also discuss the
modifications to be made in the unit root case. Section 3 explains how fast subsampling
can be exploited in bias reduction and variance estimation. Section 4 is devoted to the case
of unknown rate of convergence. In Section 5 we show on a set of Monte Carlo experiments
that fast subsampling achieves desirable performance and improves computational speed

when compared with standard subsampling. Proofs are gathered in an appendix.



2 Framework and subsampling methods

2.1 Stationary case

We consider a real-valued strictly stationary process {X;,t € 4}, and denote the joint
probability law governing the infinite sequence by P. By stationarity all finite-dimensional
marginal distributions are shift-invariant. We consider a parametric model indexed by
some parameter 6, and the goal is to construct a confidence interval for 6 on the basis
of observing {Xs;¢t = 1,...,T}. This sequence of observations is assumed to satisfy the
weak dependence condition of a-mixing. Let 01 be an estimator of 0, the parameter of
interest, based on the full sample. We assume that this estimator converges to a true value,
pseudo true value or indirect pseudo true value, depending on the estimation technique and
whether the parameric model is well specified or not (see e.g. WHITE (1982), GOURIEROUX,
MONFORT, and TROGON (1984), DHAENE, GOURIEROUX and SCAILLET (1998)). This
value is denoted by 6g.

The usual subsampling method consists in approximating the sampling distribution of
an estimator by recomputing it on subsamples of smaller size on the observed data. In the
case of stationary time series these subsamples are choosen to be blocks of size b of consec-
utive observations, the first one being {X1,... , X3}, and the last one {X7 p41,..., X7}
This gives ¢ =T — b+ 1 blocks. For each block, an estimate of the parameter of interest is
computed. Let us define éT7b7t7 the estimator of 6 based on {Xy, ..., Xy 1p_1}, and Jp(P),
the sampling distribution of Tb(éT7b71 —6o) where T, is an appropriate normalizing constant.
Since each block is a true subsample of size b from P, the distribution of 7 (éT,b,t —6p) is
Jp(P). Hence we expect the empirical distribution of the T'— b+ 1 values of Tb(éTybyt —6o)
to be a good approximation of Jp(P) the sampling distribution of 7p(f7 — 6g). Since 6y
is unknown it will be replaced by 07 which converges at a faster rate if 7,/7p — 0. Then

by defining in the univariate parameter case

T bt1
1 N .
Lrp(x) = T o1 > Wm(Orpe — 1) <z},
=1

and assuming 7,/ — 0, b/T — 0 and b — oo as T' — o0, it can be shown (see PRW

(1999) Theorem 3.2.1) that Ly (x) converges to the cdf J(z, P) of the limit law, if it exists,



of Jp(P) at point x. Note that the extension to the multivariate case is straightforward
by applying an adequate norm on the difference 73 (éT,b,t — éT)

As already mentioned, this standard subsampling procedure is suitable if the compu-
tational burden associated with the estimation of the parameter of interest is not heavy.
This will not be the case if the dynamic model involves lots of nonlinearities, which typ-
ically slows down numerical optimization routines, or if an indirect estimation method
based on simulations is called for. Note that the computations of the T"— b + 1 values of
HATvb’t may take a long time in both situations, and refrain the applied econometrician from
implementing the subsampling method. We propose hereafter to deal with this problem
by directly using estimating (score) functions computed on each subsample.

Assume that 07 solves the equation ¢p(f) = 0, where 1p(0) is a function involving
the observed data {Xi,...,Xr}, and possibly S simulated samples {f(f @), ... ,X%(Q)},
s =1,...,5, obtained from a simulation of the parametric model. This equation may
correspond to the first order condition of direct estimation methods, such as maximum
likelihood method and generalised method of moments, or indirect estimation methods,
such as indirect inference, efficient method of moments, simulated method of moments
and simulated pseudo maximum likelihood. In the case of M-estimation, 17(6) is equal
to the empirical average of the score vector, and is thus additive. A Taylor expansion of

¢T(éT) around #p leads in general to:
(0 — 00) = Ag Tribr(60) + 0p(1),

for some matrix Ag. Note that our method is in fact valid for any statistics, which admit
a linear representation of the form:

. 1 E

br = 0(P) + ;gp(xt) +op(1/7r),
where gp corresponds to an appropriately defined notion of derivative, Fréchet derivative
for example, of 6(-) at P (see Section 1.6 of PRW (1999) for further details on linear
approximations to statistical functionals).

Assume now that we can consistently estimate Ag by Ap. The idea is to approximate

Tror(00) by Tt (Bo) based on {Xy, ..., Xpppo1}, and {X7(60),..., X5 1(00)}, s =
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1,...,S. Since each block is a subsample of size b, the distribution of Ag 7pt)744(6o) is
Jy(P). Hence we expect the empirical distribution of the T'— b+ 1 values of Ag 77 p,(6o)
to be a good approximation of Jp(P). If 7,/7r — 0, we may replace the unknown Ag, 6o

by AT, éT, respectively, and build in the univariate parameter case:

1 T—b+1 . .
Liy(x) = T o1 Z K Ar yorp ¢ (0r) < x}.
=1

Let us introduce the following assumption.

Assumption 1

(i) O = 0o + 0p(1).

(it) Ap = Ay + op(1).

(iii) 71 (0 — 0p) = Ao Trr(00) + 0p(1).

(iv) There exists a limit law J(P) such that Jp(P) converges weakly to J(P).

(v) The a-mizing sequence corresponding to {X:} is such that ax(m) — 0 as m — oo.

In part (i) above, we require that the parameter of interest can be consistently estimated.
This is clearly a necessary minimal requirement for what follows. We also ask in (ii) to
have a consistent estimator for Ag. Such estimators are available in most cases. The
crucial assumption is (iii). The estimator needs to admit an asymptotic linear representa-
tion where the sampling distribution of Agrr¢r(6y) becomes Jr(P) as T increases. This
assumption excludes estimators like the sample minimum/maximum or non-regular like-
lihood problems where the support of the likelihood depends on the parameter. The last

assumption specifies the weak dependence properties of the data.
The next theorem states that L., () converges to J(x, P) when 7,/77 — 0, b/T — 0
and b — oo as T — oo where Lp(b) is the sampling distribution of 7p(67 — 6p).

Theorem 1 Let Assumption 1 hold and assume that 7,/ — 0, b/T — 0 and b — oo as
T — oo.
1. Ifx is a continuity point of J (-, P), then L}, (x) — J(z, P) in probability as T — oo.
2. If J (-, P) is continuous, then sup, |L},(x) — J(x, P)| — 0 in probability as T — oo.
3. For a € (0,1), let



erp(l —a) =inf{z : L}, (z) > 1 —a}.

and

c(l1—a,P)=inf{z: J(z,P) >1—a}.

If J(-, P) is continuous at c(1 — o, P), then

Plrp(6p — 6p) < crp(l—a)l =1—a as T — oo.

Note that the rate of convergence in most parametric econometric models is 70 = /T
and so assumptions on b then simplify to b/T — 0 and b — oco. For some simulation
based estimation methods, for example simulated pseudo maximum likelihood, the rate of
convergence is /T'S which yields the simplification b/(T'S) — 0 and b — co.

Similar results hold for two-sided equal-tailed or symmetric subsampling confidence
intervals, as well as for studentised version of statistics (see PRW (1999) for further de-
velopments). The multivariate parameter case can also be easily handled.

Besides the fast subsampling method can be applied to test statistics which depend on
the difference between a constrained estimator and an unconstrained estimator of 6. Let
us keep the notation O for the unconstrained estimator, and use 7 for the estimation
under the restriction g(#) = 0. Under the null hypothesis Hy : g(6p) = 0, we have (see

GOURIEROUX and MONFORT (1995) Sections 17 an 18):
mp(0p — O7) = (Id — M’ (60)) 71 (01 — 60) + 0p(1),

where

. 9g'(0o) (9g(6o) , 9g'(6o)\ 9g(bo)
M(8o) = 1d = =5, 20 0 o0 0

is the projection matrix associated to the orthogonal projection onto the subspace that is
orthogonal to the subspace generated by the columns d¢’(6p)/00 with repect to the scalar
product defined by Ag. We may then think of approximating TT(éT —6o) by Ao Totbrp,1(00)
as done in the previous lines. This will allow to build subsampling procedures for Hausman-

Wald type tests.



2.2 Unit root case

Assumption 1 is devoted to the case of a matrix Ar which converges to a non random limit
Ag. It may happen that Ap diverges, but 1 Ap converges to a random limit. A leading
example is the unit root process: X; = X;_1 + €, where {¢} is a strictly stationary white
noise innovation sequence with variance 0. Let us consider the OLS estimator pr derived

from the estimating function

T
Vr(p) = 7 D0 Xe 1(Xe = pXi ).
t=2

We know that pr converges to pg = 1, but

1 o B
Ap = (T ;Xf—1>
diverges. Nevertheless TAp converges to the random limit 1/ ((72 fol W2(r)d7“>, while
Yr(po) converges to the random limit o?(W2(1) — 1)/2, where W(-) denotes a standard
Brownian motion. Hence A T4r(jr) admits the random limit (W?2(1)—1)/(2 _[61 W2(r)dr).
To manage this situation as well as more general martingale difference innovation

sequences we may substitute the following assumption for Assumption 1. Theorem 1 will

then still hold but with L7.,(x) defined as

T—b+1
* 1 1 N A
L1y(z) = T b1 > WAy (0r) mtbrp (0r) < ).
t=1

Assumption 2

(i) O = 0 + 0,(1).
(ii) Tp(0p — 00) = Ap(00) T (60) + 0p(1).

(iii) There exists a limit law J(P) such that Jp(P) converges weakly to J(P), and for
T—b+1
1

every continuity point x of J(P), we have T br1 ; Jpt — J(x, P) for any sequence
T,b with T,b — oo and b/T — 0.
(iv) The a-mizing sequence corresponding to {Zr .} is such that T~! ST ary(h) —

0 as T — oo, where Zppy = Arp1(00) Toibr.1(60).-
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Assumptions (iii) and (iv) correspond to the assumptions needed for Theorem 12.2.1
in PRW (1999), which covers the random walk case as a particular example. From a
numerical point of view this second method will be slower than the previous one since we
need to recompute AT,b,t (éT), namely the inverse of the Hessian matrix on each subsample.
However O stays fixed across subsamples.

Finally note that application of Theorem 1 requires the knowledge of the rate of con-
vergence. The rate of convergence of the OLS estimator pr is given by T' in the unit root
case and by v/T in the stationary case. In order to avoid the issue of choosing between the
two cases, we may consider a studentised statistic, namely the usual t-statistic for pr, as
advocated by ROMANO and WOLF (2001). Indeed this statistic has a proper limit distri-
bution no matter what the value of pg. The necessary theory to apply fast subsampling in
a studentised setting can be derived from PRW (1999) Section 12.2.2 and ROMANO and
WoLF (2001).

3 Bias reduction and variance estimation

The fast subsampling methodology may be a useful bias reduction device. Indeed we may

approximate the bias Bias(éT) =F [éT — 6p] by the empirical counterpart:

— T |1~ & A

BZCLS(QT) == ZAT'(/JT,b,t(QT) , q=T — b+ 1,
T |93

and put

éT,BC = éT — B/ZES(éT)

The estimator éT7 Bc will be a bias corrected estimator of the parameter of interest in
virtue of the next theorem similar to PRW (1999) Theorem 3.7.1. Denote by mry, pr, f,

the respective means of L7.,, Jr and J.

Theorem 2 Assume Assumption 1 and that /77 — 0, b/T — 0 and b — oo as T — oo.
Also assume that pp — p, and EW},I),I(HO)PJF& < C, where 6§, C' are two positive constants
independent of T and w},b,t(%) = Yrp1(60)/\/ VarlYry1(6o)]. Then |mqpp — pr| — 0 in
probability.



Subsampling techniques may also provide variance estimator. Since the variance of
7r6r can be approximated by the variance of L7.,, an estimator of the variance of Op is

simply in the univariate case:

q
Var (0 Z (AT¢Tbt or) — AT@T,b)Q

qmlm
»Q | =

with ¢ =T — b+ 1 and ¢Tb =3 Zwat HT)
t=1
The consistency of 72V ar(fr) is a direct consequence of Lemma 3.8.1 in PRW (1999).

This lemma establishes the convergence to 02, = Tlim Var(éT) in L? norm.
—00

4 Unknown rates of convergences

In the previous section, the rate of convergence 71 was assumed to be known. Sometimes it
may not be the case, and the only available information is 70 = T for some 3 > 0. Then
the methods described in PRW (1999) Section 8 can be used to obtain consistent estimate
for 8 and subsequently be used in a second step inference procedure. For b denoting the

subsample size, and ¢ =T — b+ 1, define
Ly (z|m) = Z]I{AT (10 (0r) — $r(0r)) < 2},
and
Ly (2]1) = Z]I{AT ¢T,b,t(9T) vr(fr)) < ).
This implies that Ly (x|75) = L1y (Tglx\l) = v, and therefore
v =Ly (vIn) =7 (1 '2) = Ly, (VL)

where G~! denotes the quantile transformation of a given distribution G. Since Ly (z|m)
will converge uniformly to J(z, P) (cf. Statement 2 of Theorem 1), it can be shown (PRW
(1999) Lemma 8.2.1) that if J(z, P) is continuous and strictly increasing on its support,

Lk (vm) = T (1, P) + 0, (1),



or equivalently
TbLi% (1) =J (v, P) +0,(1).

The last expression implies that L;% (v|1) is approximately proportional to 7, L= Pt
Therefore it should be possible to determine (3 by constructing several subsampling dis-

tributions. Indeed let us take b; and bs. We get

. <I%> i (108 (Lzk, 11) =g (L, 01D)) =5+, (log (%) _1> |

The idea is then to average the left hand side over several v; to estimate 3. In fact if we
consider different b;, ¢ = 1,...,J, and take points vo; € (0.5,1) and vy; € (0,0.5), for

j=1,...,J, the estimator 8 will consist in

ST (9 — ) (logb; — log)

Py == 3L, (logb; — log)?
where g
Yi, = %Z (10g (Li%i (sz\1)> —log (LI_“,lbi (Vlj!l))) ;
j=1
j= %;i(log( rh (v21D) = log (Lg}, (D))
=1 j=
and

_ 1&
log = 7 Zlog b;.
=1
Theorem 8.2.2 in PRW (1999) establishes that 3z 7 = 3 + o, (1/log T'), while Theorem
8.3.1 shows the asymptotic validity of the second step procedure, namely subsampling
with an estimated rate of convergence 77 = TPZ.7. Their adaptation to our setting is

straightforward.

5 Monte Carlo experiments

This section aims to examine the small sample performance of the fast subsampling method

via Monte Carlo experiments. We follow closely PRW (1999) Sections 9.5 and 12.5 for
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their design. This will ease comparison with previous studies on the performance of
subsampling methods. Performance is assessed for nominal 95% two sided confidence
intervals by measuring estimated true coverage probability. We first analyse results for
AR(1) processes and linear regressions. Then we study ARCH(1) processes. Finally the

unit root case is analysed.

5.1 AR(1) process

The first Monte Carlo study is concerned with the parameter p of a simple stationary
AR(1) process:
X =pXi1+ e,

where {¢;} is white noise. We use the estimating equation (PML estimation of order one

with Gaussian pseudo family):

T
1
Ur(p) = T ;Xt—l(Xt —pXi1) =0,

and L .
Ap = (f ;Xfl> .
Here pr takes the form of the standard OLS estimator.

In the following we wish first to examine the impact of block size on performance.
We take a sample length T = 256, and block sizes b = 4,8,16,32 and 64. The coverage
probability is estimated as the proportion of 95% confidence intervals that contain the true
value pg. This proportion is computed on 3000 random samples. Innovations are chosen
to be i.i.d. from either a standard normal distribution or an exponential distribution with
parameter one shifted to have mean zero. The true values of the parameter of interest are
po =0.2,0.5,0.8,0.95 and —0.5. Note that we adopt the same design as PRW (1999), but
their study is dedicated to the mean.

Tables 1 and 2 give the estimated coverage probabilities for equal tailed and symmetric
intervals both under the fast subsampling method and the standard subsampling method,

for the normal and exponential errors, respectively. It is clear that the fast subsampling

11



method does equally well and sometimes outperforms the standard subsampling method.
Block sizes 4, 8 and 16, all give very precise coverage for both types of confidence intervals.
It can be noticed that given our sample size T' = 256, performance of both subsampling
methods deteriorates for the large block sizes b = 32 and b = 64. This is not surprising
since a large number of independent blocks is typically required to obtain precise coverage
in subsampling. With sample size 256 and block size 64, we only have four roughly
independent sample observations in the empirical distribution of the subsample statistics.
Although overlapping blocks are used, these are highly dependent with each other. The
drop in coverage is thus easy to understand. For b too close to T all statistics éT,b,t in
standard subsampling will almost equal to Or resulting in the subsampling distribution
being too tight (see for example the discussion in Section 9 of PRW (1999)). The same
phenomenon will occur in fast subsampling since the subsample scores 7 ¢ (éT) will only
differ from each other by a small amount. Given that we draw here from independent
normal and exponential errors, a block size b = 4 already gives a good distributional
approximation. The crucial need for a large number of independent blocks has been
confirmed by increasing the sample size to 4096 (results not reported here). In that case
block size 64 gives very similar results to the first three rows of Tables 1 and 2.

In principle, a numerical comparison in terms of computational speed is not interesting
in this first set of Monte Carlo experiments since both techniques involve close amount of
computational load. In fact, this can be seen from the last two columns. The computa-
tional times are essentially identical for the two methods. Computational times are total

computational times over the 3000 simulations in seconds.

5.2 Linear regressions

The second set of Monte Carlo experiments is concerned with multivariate least squares

linear regression. We examine the model:

yr = 248 + €,

where 2} = (1,21, ... ,24). We are interested in constructing confidence intervals for the

second coordinate of 3. The true value (j is set equal to zero. The estimator BT is the

12



least squares estimator, and the fast subsampling method relies on

Ap N0 1 (Br),
with
. 1t .
Y1t (Br) = 7 Z$1t+h (yt+h - fﬂﬂ;ﬁT) ;
h=0
and

1 & -
A 2
t=1
Note that we do not need to use the full score vector, but only its second coordinate.

Four data generating processes are employed:

AR(1)-HOMO :  zj; = pxji—1 + Njt, € = per—1 +n;
AR(].)—HET LTt = PLt—1 + Tt gt = pgt,1 + T]g, €t — |x2t|€t
AR(1)-SEASON :  xj; = pxji—1 + Njt, € = per—1 + amy,

MA(1)-HOMO : @y = 15t + 6nje—1, € =nf + 6n_1,

where {n;;} and {n;} are independent i.i.d. innovation sequences, and {a;} is made of
repeated sequences {1,1,1,2,3,1,1,1,1,2,4,6}. Innovation distribution is either standard
normal or centered exponential with variance one. Values for the parameters p and 6 are
0.2, 0.5, 0.8, 0.95, and -0.5. Sample size and block sizes are again T" = 256, and b =
8,16,32,64. Coverage probability is assessed on 3000 random samples for each scenario.
Tables 2 to 10 report results for all above configurations. It is not possible to use block
size 4 for the standard subsampling method since it would be inverting a singular matrix.
On the other hand, it is still possible to use the fast subsampling method with b = 4 and
very precise coverage rates have been obtained (results not reported here). In fact, even
with block size 8, the standard subsampling method needs inversion of a near to singular
matrix, which yields a coverage rate very close to 1 as we can see from the tables. On the
other hand, the fast subsampling method does fairly well. For block sizes 16 to 64, both
methods give comparable and reasonable coverage rates (previous remarks for large block

sizes also apply here). Note that the standard subsampling tends in general to give higher
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estimated coverage probabilities than the fast one. The improvement in the computational
speed offered by the fast subsampling method is obvious from the two last columns. This
is essentially due to avoiding inversion of a new matrix for each subsample. This time
consuming numerical operation is needed to get BT,t,b in the standard subsampling method.
In fact in most cases the fast subsampling method takes less than half the time that the

standard subsampling method asks for.

5.3 ARCH(1) process

We analyse a simple Gaussian ARCH(1) model:

Xy = Et\/h_t;

hi = B+ X2,

where {¢€;} is a sequence of i.i.d. normal disturbances. We analyse the second coordinate of
0 = (p1,32)". The estimator 01 is obtained through an ML criterion. The fast subsampling
method is run using the score and the outer product version of the information matrix.
Parameter (1 takes value 0.5, while 35 takes value in 0.2, 0.5, 0.8 and 0.95. We keep a
sample size T' = 256 and block sizes b = 4,8,16,32 and 64. We draw 3000 samples each
time. A quasi-Newton optimization (routine dfpmin.c from numerical recipes in C) is used
to perform estimation of 6 = (81, 32)’.

Variation of performance according to block size is given in Table 11. Due to the
nonlinear nature of the problem, the coverage performance is not as good as previously.
On the other hand, the requirement of nonlinear optimization highlights the advantage
of the fast subsampling method over the standard subsampling method in terms of both
precision and computational speed. In fact we find that the standard subsampling method
does not perform very well. Estimated coverage probabilities are far away from the nominal
ones. On the contrary, the fast subsampling method gives very reasonable approximation
to the nominal coverage probability, although as we expect for a nonlinear problem, the
approximation is not as good as in the two previous simple linear examples. Furthermore,

as shown in the last two columns of the tables, the gain in numerical speed is striking. In
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fact, the fast subsampling method reduces the computational time essentially by a factor
of 20. The explanation is that a numerical optimisation routine is no more necessary in

the fast subsampling method once 61 has been obtained.

5.4 Unit root process

In Table 12 we finally report the results for the unit root process discussed in Section
2.2 with an innovation sequence {¢} taken as i.i.d. standard normal. As in ROMANO
and WOLF (2001), we also consider in Table 13 the case ¢, = Z;_1Z; where the Z; are
ii.d. standard normal. In the latter case the innovations are a martingale difference
sequence but dependent. Performances of the standard subsampling method and the fast
subsampling method are compared for the OLS estimator pr and its associated t-statistic
for T'= 256, b =4, 8,16, 32,64 and 3000 samples.

Fast subsampling method does fairly well in both cases, while the standard subsam-
pling method tends to produce confidence intervals that are either too wide or too tight.

Numerical speed is similar for both methods as expected.

6 Conclusion

We have proposed a fast subsampling method. The method directly exploits estimating
(score) functions computed on each subsample and avoids recomputing the estimators for
each of them. Fast subsampling is easy to perform, and achieves satisfactory performance
while improving considerably numerical speed. These advantages should be of interest for

applied researchers using nonlinear and dynamic models to conduct effective inference.
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APPENDIX
Proof of Theorem 1
The proof parallels the proof of Theorem 3.2.1 in PRW (1999).
Let us define .
1
Ur(z) = p > Aot (fo) < ),
t=1
withg=T —b+ 1.

Since E[Ur(z)] = Jp(z,P) and Assumption (iv) holds we only need to show that

Var[Ur(x)] tends to zero as T' goes to infinity. Define:

q—h

1
Sq,h = — Z COV[Ibyt, Ib,t—i—h}a
7=
where I,y =I{ Ao 7 +(00) < a}.
Then
1 K
Var[Ur(z)] = —(sq0+2 Z Sq,h)
q h=1
1 b—1 b—1
= —(sq0+2) 5qn+2) sqn);
q h=1 h=b
1 b—1 g b1
which can be rewritten M*+ M, with M* = —(s4.0+2 Z Sqn) and M = — Z Sq¢,n- Since
q q
h=1 h=b

|M*| = O(b/q), M* converges to zero. M will also converge to zero due to Assumption

(v). Hence the first statement is shown. Proofs of the second and third statements are

identical to the lines in PRW (1999).

Proof of Theorem 2

The proof mimicks the proof of Theorem 3.7.1 in PRW (1999).
We have
q
-
E [—b ZA0¢T,b,t(90)] = U,
17=
and |pp — pir| — 0. Hence we only need to show that Var[mq ] tends to zero as T goes to

infinity. This is deduced from

16



Var

q q

T 1

gb E A0¢T,b,t(90)] =15 A 5Var[1/1T,b,1(90)] + E Cov[rp,t(00), Yrp,¢ (00)] | 5
t=1 tt! =1

£
which leads to

C = ) )
|Var | < ;1 > 1Cov Y1 (B0), Wi 1 44(00)],

t=1

q
T ~
2 E Aotrp¢(6o)
173

using 72 = O(1/Var[p7,,1(60)]) and some constant C;. The convergence is then obtained

by application of Davydov’s mixing inequality.
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Table 1: Monte Carlo Simulations I: AR(1) process

Sample size=256, nsim=3000, Exponential innovations

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

p:

0.20

b=14
b=28
b=16
b=32
b=064

0.937333
0.915667
0.877667
0.837667
0.769000

0.926333
0.931333
0.907333
0.862000
0.785667

0.946000
0.935333
0.909333
0.874667
0.800667

0.915333
0.909333
0.907667
0.863333
0.793667

4.924219
1.209093
1.299703
1.601945
4.061635

1.074409
1.245713
4.668300
4.304005
2.068239

p:

0.50

b=4
b=28
b=16
b=32
b=064

0.937667
0.901000
0.877000
0.845333
0.772667

0.935000
0.933333
0.898667
0.866667
0.779333

0.961667
0.928333
0.913000
0.876000
0.810333

0.924667
0.918667
0.905333
0.868333
0.787000

1.069319
1.205699
1.300249
4.397887
1.940223

1.072294
4.755776
1.331772
4.301340
5.932426

p:

0.80

b=14
b=38
b=16
b=32
b=064

0.970000
0.930000
0.887000
0.849333
0.789000

0.936000
0.919667
0.890333
0.846000
0.783000

0.987667
0.973000
0.950333
0.911000
0.835667

0.927667
0.922667
0.915333
0.862333
0.786333

1.056460
1.192468
1.290944
1.595596
4.060219

1.062079
1.235280
4.675033
4.306672
2.067516

p:

0.95

=4
b=28
b=16
b=32
b=064

0.997333
0.985333
0.948333
0.901333
0.810333

0.944333
0.918667
0.870000
0.841333
0.766667

0.997667
0.991000
0.980000
0.945000
0.864000

0.951333
0.943000
0.924667
0.872000
0.792000

1.050101
1.186962
1.285051
4.408379
4.062242

1.063628
4.765824
1.321090
1.689679
2.065544

p:

—0.50

b=4
b=38
b=16
b=32
b=064

0.961667
0.890667
0.851667
0.842000
0.769333

0.959333
0.962667
0.932333
0.867667
0.781667

0.977000
0.958000
0.919333

0.89%%33

0.810000

0.942333
0.940667
0.922667
0.865667
0.786667

1.056712
1.190533
1.286913
1.591273
4.064861

4.936795
1.239859
4.670065
4.303820
2.066407




Table 2: Monte Carlo Simulations I: AR(1) process

Sample size=256, nsim=3000, Normal innovations

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

p:

0.20

b=14
b=28
b=16
b=32
b=064

0.924000
0.881333
0.889000
0.856667
0.795000

0.960667
0.947667
0.925333
0.892000
0.787333

0.933000
0.902000
0.909333
0.873333
0.807000

0.949667
0.934333
0.919000
0.890000
0.797667

1.122589
1.266405
1.348243
4.352598
4.009319

1.123548
4.704120
1.383722
4.251291
2.117345

p:

0.50

b=4
b=28
b=16
b=32
b=064

0.938333
0.890333
0.868000
0.864000
0.790333

0.952333
0.942667
0.920000
0.875000
0.804333

0.958000
0.934333
0.910667
0.888667
0.819667

0.946667
0.945000
0.918667
0.876333
0.806000

1.112640
1.249227
1.343252
4.354286
4.009632

1.113706
4.711506
1.378262
4.254739
2.116778

p:

0.80

b=14
b=38
b=16
b=32
b=064

0.975333
0.915667
0.880000
0.839333
0.775000

0.929333
0.904333
0.887000
0.860000
0.782667

0.991333
0.978333
0.950667
0.913333
0.832333

0.946333
0.931000
0.922333
0.877333
0.795667

1.106057
1.238486
1.337476
4.357022
4.012489

1.107263
4.718862
1.374065
4.258802
2.115786

p:

0.95

=4
b=28
b=16
b=32
b=064

0.997667
0.980000
0.955333
0.897333
0.806000

0.934667
0.886667
0.858333
0.836333
0.764667

0.998000
0.992667
0.981667
0.951667
0.858667

0.956667
0.935000
0.923000
0.886667
0.785000

1.099281
1.236251
1.332574
4.361264
4.014762

1.110624
4.718865
1.368064
4.262167
2.114612

p:

—0.50

b=4
b=38
b=16
b=32
b=064

0.942333
0.901333
0.877333
0.862333
0.787000

0.950000
0.946667
0.910667
0.873000
0.796333

0.954000
0.930667
0.918667

0.884}[@00

0.801333

0.951000
0.942000
0.913667
0.877333
0.805333

1.111129
1.243929
1.338614
4.357562
4.014851

1.114435
4.708704
1.381167
4.251439
2.118232




Table 3: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Exponential innovations, AR(1)-HOMO

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

3 =0.20

b=38

b=16
b=32
b=064

0.999667
0.980667
0.927667
0.825667

0.945667
0.914000
0.881333
0.791667

1.000000
0.987333
0.935000
0.846333

0.928333
0.908667
0.888333
0.800000

22.221629
28.620526
45.486909
73.163079

11.344490
14.373252
20.195992
26.323384

8 =10.50

=8
b=16
b=32
b=064

0.996667
0.967000
0.909333
0.806000

0.946000
0.907333
0.869667
0.785333

0.998667
0.977333
0.925667
0.842667

0.919667
0.903000
0.864333
0.787333

22.214799
28.612346
48.531839
73.173226

11.350676
14.377046
17.800292
29.672025

B8 =10.80

b=38

b=16
b=32
b=064

0.957333
0.871333
0.836333
0.783667

0.906667
0.880000
0.838000
0.737000

0.977000
0.912000
0.883333
0.840333

0.871000
0.870333
0.833333
0.744000

19.930448
31.251467
48.498704
71.108355

11.349569
11.619685
20.204919
26.319230

B =095

b=38
b=16
b=32
b= 064

0.736333
0.621333
0.655667
0.628667

0.725333
0.770333
0.719667
0.591667

0.787333
0.698667
0.742667
0.742333

0.684000
0.746667
0.712000
0.592333

20.075695
29.005545
45.745910
73.060444

11.351645
14.381656
20.211683
26.308645

6=

—0.50

=8
b=16
b=32
b= 064

0.997333
0.971333
0.918000
0.830667

0.947667
0.923000
0.889333
0.776333

0.999333
0.976667
0.925000
0.847333

0.929000
0.913000
0.883333
0.791333

22.286640
28.622931
45.479240
73.148033

11.345515
14.377980
20.203520
26.314054
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Table 4: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Normal innovations, AR(1)-HOMO

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

3 =0.20

b=38

b=16
b=32
b=064

0.999000
0.962667
0.910667
0.826000

0.937333
0.911333
0.875000
0.809667

0.999000
0.967667
0.913000
0.836667

0.930000
0.912000
0.885333
0.816333

22.074718
31.143926
45.685491
71.100299

11.070202
14.130420
20.000170
29.411436

8 =10.50

=8
b=16
b=32
b=064

0.994333
0.935333
0.887333
0.812667

0.929667
0.915000
0.867333
0.793333

0.996000
0.952000
0.909000
0.834667

0.910000
0.917333
0.872667
0.798667

22.001972
31.155503
48.347879
71.096207

8.919144
14.133083
20.000216
29.418522

B8 =10.80

b=38

b=16
b=32
b=064

0.921000
0.828333
0.820000
0.757333

0.894333
0.884667
0.838000
0.747333

0.947333
0.872333
0.868000
0.819667

0.874000
0.872667
0.840333
0.755000

20.184567
31.010423
48.309074
71.098799

11.086873
14.146991
20.007986
26.578197

B =095

b=38
b=16
b=32
b= 064

0.661000
0.580333
0.602667
0.618667

0.735667
0.771333
0.711333
0.608000

0.716667
0.652000
0.696667
0.728333

0.699667
0.740333
0.711333
0.621000

20.351245
29.242647
48.071880
71.212956

11.087034
14.142852
20.019547
29.421738

6=

—0.50

=8
b=16
b=32
b= 064

0.994667
0.951333
0.899333
0.804667

0.939000
0.911000
0.873667
0.797000

0.996667
0.958667
0.907000
0.820667

0.928000
0.908667
0.877667
0.805000

22.083764
31.145863
48.328521
71.109755

11.079350
14.138691
20.007705
26.585338
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Table 5: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Exponential innovations, AR(1)-HET

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

8=0.20

b=38

b=16
b=32
b=064

0.852333
0.762000
0.760333
0.689000

0.947000
0.907000
0.841667
0.737667

0.863667
0.819667
0.808000
0.744000

0.878667
0.891000
0.834000
0.748333

22.153899
28.675303
48.451778
73.116664

11.295578
14.353669
17.771825
29.616406

8 =10.50

=8
b=16
b=32
b=064

0.886667
0.796333
0.761000
0.717000

0.953333
0.911667
0.844667
0.740000

0.891333
0.830333
0.802333
0.774333

0.884667
0.894667
0.828333
0.735333

22.141849
31.336670
45.562938
73.129074

8.706913
14.353665
20.227019
26.383580

B8 =10.80

b=38

b=16
b=32
b=064

0.861667
0.788000
0.753667
0.702000

0.931000
0.898667
0.832000
0.713333

0.864000
0.803333
0.795667
0.762667

0.838333
0.865667
0.810000
0.704667

20.002799
31.202536
45.592056
71.032494

11.294232
14.353185
20.224496
26.425313

8 =0.95

b=38
b=16
b=32
b= 064

0.707000
0.694333
0.709333
0.620667

0.752333
0.783333
0.718333
0.554000

0.709667
0.713667
0.745667
0.681333

0.655000
0.722667
0.701000
0.559000

20.233897
29.028903
48.178326
71.008642

11.297375
11.642453
20.229754
26.372976

0=

—0.50

=8
b=16
b=32
b= 064

0.866333
0.837000
0.813000
0.746000

0.964667
0.929667
0.864000
0.751333

0.867000
0.847333
0.835333
0.780333

0.901000
0.920667
0.855333
0.750667

22.211854
28.654514
48.452197
73.115564

11.294618
14.353748
17.774360
29.632741
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Table 6: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Normal innovations, AR(1)-HET

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

8=0.20

b=38

b=16
b=32
b=064

0.962333
0.909333
0.878667
0.796333

0.956000
0.918333
0.883000
0.798333

0.963333
0.911000
0.880333
0.821333

0.936333
0.912000
0.875333
0.809667

22.025650
31.058884
48.186742
71.127459

11.051928
14.092693
18.006162
29.261800

8 =10.50

=8
b=16
b=32
b=064

0.950667
0.898333
0.854333
0.789667

0.955000
0.922333
0.870667
0.780333

0.951333
0.902333
0.870333
0.813000

0.922333
0.912667
0.863667
0.780000

23.924014
28.899060
48.158899
74.632910

11.048342
14.100695
18.063143
26.688544

B8 =10.80

b=38

b=16
b=32
b=064

0.875000
0.816333
0.793000
0.725333

0.925667
0.903667
0.842000
0.730000

0.874000
0.831333
0.821000
0.771667

0.863333
0.872667
0.826000
0.737667

20.239452
29.031416
48.170007
71.087483

11.073107
14.131946
20.023867
29.325195

8 =0.95

b=38
b=16
b=32
b= 064

0.678667
0.675667
0.684000
0.615667

0.757667
0.790667
0.701333
0.577333

0.679333
0.693000
0.727333
0.687667

0.665000
0.722000
0.697000
0.571333

23.609314
29.289869
46.108904
71.222939

11.055319
14.094036
20.005530
29.279025

0=

—0.50

=8
b=16
b=32
b= 064

0.933333
0.888667
0.869000
0.771000

0.965333
0.931000
0.874667
0.790333

0.931333
0.900333
0.877333
0.785333

0.931333
0.917000
0.877667
0.796000

22.016554
31.092572
48.137248
71.110701

11.026871
14.044001
20.013409
29.304502
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Table 7: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Exponential innovations, AR(1)-SEASON

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

3 =0.20

b=38

b=16
b=32
b=064

0.998667
0.985667
0.939667
0.848000

0.975667
0.945333
0.895667
0.821333

0.999667
0.983000
0.936667
0.855667

0.933333
0.929667
0.880667
0.821333

21.370292
31.009842
52.751286
76.593835

12.629717
12.569247
19.197753
31.325954

8 =10.50

=8
b=16
b=32
b=064

0.995333
0.968333
0.918333
0.831333

0.973000
0.934667
0.888333
0.798667

0.997667
0.975000
0.927667
0.842333

0.927333
0.918667
0.878667
0.801333

21.399071
31.010740
49.253593
76.487474

12.615772
12.569459
22.828511
31.334471

B8 =10.80

b=38

b=16
b=32
b=064

0.945667
0.878667
0.854000
0.778333

0.925000
0.896000
0.844000
0.748667

0.966667
0.917333
0.895000
0.824667

0.874333
0.877333
0.843667
0.758667

24.462900
31.141159
49.293170
79.499229

9.372431
15.432206
19.175169
31.339434

B =095

b=38
b=16
b=32
b= 064

0.733333
0.618333
0.647000
0.623000

0.738667
0.776333
0.728000
0.615000

0.776667
0.689667
0.744000
0.733667

0.691333
0.748000
0.725333
0.619333

24.340965
34.619020
52.473108
79.383994

9.366512
12.564055
19.165086
28.663418

6=

—0.50

=8
b=16
b=32
b= 064

0.997000
0.970000
0.926333
0.832667

0.973000
0.934000
0.903667
0.781000

0.995667
0.972333
0.929667
0.855000

0.927000
0.923000
0.889000
0.789000

21.305777
33.005734
49.257912
79.495583

9.370282
15.433096
19.170534
31.335386
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Table 8: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Normal innovations, AR(1)-SEASON

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

3 =0.20

b=38

b=16
b=32
b=064

0.999667
0.971000
0.922000
0.810333

0.971667
0.943333
0.897333
0.805667

0.999667
0.969333
0.924000
0.825333

0.939000
0.936000
0.887000
0.805667

24.500464
34.724897
52.374974
77.146013

9.632896
12.840410
22.572527
28.814146

8 =10.50

=8
b=16
b=32
b=064

0.993000
0.949000
0.903000
0.815333

0.965000
0.924333
0.883000
0.786667

0.996000
0.964333
0.912333
0.833000

0.924333
0.910667
0.869667
0.792000

21.578373
31.287991
52.375243
77.149086

12.353445
15.159032
19.438273
31.197714

B8 =10.80

b=38

b=16
b=32
b=064

0.919000
0.830667
0.822333
0.761667

0.926667
0.901333
0.843667
0.751333

0.950333
0.883667
0.862333
0.825667

0.885333
0.888000
0.831667
0.763333

24.234948
31.449808
52.320000
77.160251

12.366362
15.163945
19.420533
31.172236

B =095

b=38
b=16
b=32
b= 064

0.668667
0.577000
0.608000
0.626333

0.723667
0.772667
0.725667
0.614667

0.717000
0.650667
0.707333
0.743333

0.688667
0.741000
0.719667
0.621000

24.097808
31.667165
52.107257
80.722773

12.374219
15.163683
19.424637
31.182769

6=

—0.50

=8
b=16
b=32
b= 064

0.994000
0.960667
0.913667
0.813667

0.971000
0.939000
0.896333
0.803000

0.994667
0.957667
0.912000
0.827000

0.933333
0.927667
0.882000
0.803667

21.515967
31.292004
52.362998
77.181672

12.361406
15.168712
19.445435
31.210887
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Table 9: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Exponential innovations, MA(1)-HOMO

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

p=0.20

8=

0.20

b=38

b=16
b=32
b=064

0.999000
0.979667
0.936333
0.817333

0.936667
0.914333
0.876333
0.789333

0.999333
0.986000
0.935333
0.834667

0.925000
0.907333
0.877333
0.797000

22.135509
28.597782
45.149513
72.063531

11.235934
14.248934
18.163444
29.574989

8 =10.50

b=38

b=16
b=32
b=064

0.998333
0.978333
0.926333
0.833000

0.943667
0.922667
0.885000
0.786333

0.999333
0.984333
0.935667
0.848000

0.926333
0.914667
0.882000
0.790667

22.076793
28.586218
45.206295
72.184503

11.248199
14.312845
20.181945
26.496267

B8 =10.80

b=38

b=16
b=32
b=064

1.000000
0.975667
0.938000
0.846000

0.951333
0.918667
0.868000
0.777000

1.000000
0.980667
0.944333
0.856667

0.925667
0.911333
0.869667
0.785333

22.116943
31.364697
48.879892
72.245084

11.241444
11.683778
17.810614
26.370749

B8 =10.95

=8
b=16
b=32
b=064

0.999667
0.985333
0.934333
0.835000

0.958333
0.936000
0.893333
0.780000

0.999667
0.992000
0.942667
0.863000

0.928000
0.915333
0.882667
0.769667

19.818973
31.423614
45.089990
72.206920

11.247910
11.677717
20.172078
29.587364

6=

—0.50

b=38

b=16
b=32
b=064

0.999667
0.981667
0.926333
0.832333

0.957333
0.918000
0.876333
0.770000

0.999667
0.978667
0.934000
0.848000

0.939000
0.915000
0.878000
0.781667

19.848966
31.422583
48.904007
72.163126

11.239523
11.674821
17.843676
29.627338
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Table 10: Monte Carlo Simulations II: linear regressions

Sample size=256, nsim=3000, Normal innovations, MA(1)-HOMO

equal tail

symmetric

time

standard

fast

standard

fast

standard

fast

3 =0.20

b=38

b=16
b=32
b=064

0.998333
0.960667
0.907333
0.814000

0.933333
0.913333
0.875333
0.798333

0.999333
0.966333
0.918333
0.829667

0.930667
0.917000
0.880000
0.807667

20.015759
31.168467
48.615643
70.121052

9.075204
12.003598
18.132335
29.304408

8 =10.50

=8
b=16
b=32
b=064

0.997667
0.963000
0.904333
0.820667

0.938667
0.920333
0.876000
0.789000

0.998667
0.969000
0.912000
0.833333

0.923333
0.914000
0.875667
0.794667

20.060068
31.172958
48.614151
70.069833

9.073609
14.001012
18.097987
26.693628

B8 =10.80

b=38

b=16
b=32
b=064

0.997333
0.961333
0.907333
0.806333

0.946000
0.922333
0.872333
0.792000

0.998000
0.970667
0.914667
0.834000

0.924000
0.909667
0.870333
0.792667

20.123753
31.091003
48.585880
70.073567

9.088840
12.000105
18.102141
29.307689

B =095

b=38
b=16
b=32
b= 064

0.997667
0.962333
0.909333
0.825333

0.957333
0.944333
0.884667
0.803333

0.999667
0.971333
0.921667
0.837667

0.935333
0.922667
0.873000
0.792667

20.180027
28.894624
48.595144
70.223251

12.926023
14.005363
18.115928
29.311657

6=

—0.50

=8
b=16
b=32
b= 064

0.997333
0.959667
0.911667
0.813333

0.936000
0.917000
0.888333
0.790667

0.999000
0.968000
0.913667
0.821000

0.929667
0.913000
0.885667
0.806000

20.018498
28.839317
48.597131
70.109295

12.922229
14.004709
18.103728
29.302486
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Table 11: Monte Carlo Simulations ITI: ARCH(1) process

Sample size=256, nsim=3000

equal tail symmetric time
standard fast standard fast standard fast
6=0.20
b=4 | 0.395000 | 0.818667 | 0.478000 | 0.794667 | 106.158012 | 9.441458
b=8 | 0.323000 | 0.822333 | 0.416667 | 0.800333 | 124.008540 | 7.191408
b=16 | 0.250333 | 0.782667 | 0.304000 | 0.778667 | 160.285605 | 11.606134
b=32 | 0.183333 | 0.770000 | 0.209333 | 0.778000 | 211.590072 | 13.494634
b=64 | 0.125000 | 0.696333 | 0.130667 | 0.719333 | 283.147487 | 16.326398
8 =0.50
b=4 | 0.399000 | 0.920667 | 0.451333 | 0.897000 | 101.461675 | 6.091064
b=8 | 0.331000 | 0.906000 | 0.384000 | 0.891667 | 109.097385 | 9.211740
b=16 | 0.269000 | 0.894333 | 0.293000 | 0.893333 | 132.371523 | 7.891285
b=32 | 0.225000 | 0.863000 | 0.225000 | 0.873000 | 164.017802 | 13.943144
b=64 | 0.145000 | 0.807667 | 0.149333 | 0.828000 | 215.731918 | 13.242809
6 =0.80
b=4 | 0.407667 | 0.950667 | 0.466333 | 0.933667 | 103.554542 | 8.105092
b=8 | 0.348000 | 0.938667 | 0.373667 | 0.930000 | 101.444544 | 9.415940
b=16 | 0.303000 | 0.928000 | 0.308000 | 0.933667 | 116.284817 | 7.737518
b=32 | 0.244000 | 0.918000 | 0.248667 | 0.925333 | 145.055172 | 12.128273
b=64 | 0.156667 | 0.875333 | 0.172333 | 0.897000 | 197.286815 | 13.052062
8=10.95
b=4 | 0.418000 | 0.964667 | 0.459333 | 0.951667 | 100.516946 | 8.152153
b=8 | 0.350667 | 0.955000 | 0.380667 | 0.948333 | 99.042962 | 9.450073
b=16 | 0.289333 | 0.945333 | 0.302667 | 0.950333 | 111.131355 | 7.671819
b=32 | 0.231333 | 0.926333 | 0.253000 | 0.939333 | 140.831393 | 9.827453
b=64 | 0.135667 | 0.876333 | 0.159667 | 0.899333 | 190.037159 | 13.012083
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Table 12: Monte Carlo Simulations IV: unit root process

Sample size=256, nsim=3000, Normal innovations

equal tail symmetric time
standard fast standard fast standard fast
p =1, OLS estimator
b=4 | 0.936667 | 0.895333 | 0.926000 | 0.870667 | 1.07750 | 1.05419
b=28 | 0.982000 | 0.913333 | 0.970667 | 0.892333 | 4.79926 | 1.16436
b=16 | 0.991000 | 0.915333 | 0.981333 | 0.904333 | 1.42551 | 1.36613
b= 32| 0.998000 | 0.897000 | 0.993667 | 0.903667 | 4.19037 | 4.27615
b=64 | 0.999667 | 0.855667 | 0.999333 | 0.880333 | 2.38357 | 5.73919
p =1, t-statistics
b=4 | 0.672667 | 0.891667 | 0.699333 | 0.887000 | 1.36296 | 4.68180
b= 0.733000 | 0.916000 | 0.759333 | 0.912667 | 5.08875 | 4.52817
b=16 | 0.798000 | 0.912333 | 0.826667 | 0.916333 | 6.54767 | 4.24121
b= 32 | 0.826333 | 0.890000 | 0.869333 | 0.914333 | 4.43174 | 2.24512
b=64| 0.821333 | 0.838333 | 0.921333 | 0.886667 | 8.03645 | 5.00263
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Table 13: Monte Carlo Simulations IV: unit root process

Sample size=256, nsim=3000, Martingale difference

equal tail symmetric time
standard fast standard fast standard fast
p =1, OLS estimator
b=4 | 0.963000 | 0.940000 | 0.948333 | 0.913667 | 1.10152 | 1.07395
b=28 | 0.983333 | 0.954333 | 0.967333 | 0.925000 | 1.22514 | 1.18560
b=16 | 0.994667 | 0.942333 | 0.987667 | 0.930000 | 4.55796 | 1.39896
b=32 | 0.999333 | 0.927000 | 0.996667 | 0.923000 | 4.16829 | 4.24014
b= 64 | 1.000000 | 0.871000 | 1.000000 | 0.890333 | 2.39837 | 5.72064
p =1, t-statistics
b=4 | 0.688333 | 0.919667 | 0.6750000 | 0.915667 | 4.61876 | 1.34423
b= 0.732333 | 0.945000 | 0.738667 | 0.944000 | 5.04936 | 1.48389
b=16 | 0.791667 | 0.929667 | 0.814667 | 0.941333 | 3.48277 | 4.22785
b= 32| 0.824000 | 0.919333 | 0.880667 | 0.938667 | 7.54265 | 2.25628
b=64 | 0.815333 | 0.845333 | 0.909667 0.893 8.01383 | 5.00687
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