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Weak dependence :
models and applications.

Patrick Ango Nze and Paul Doukhan

Abstract We are aimed to develop a systematic introduction to a new weak depen-
dence condition. We show that some popular models hold this property : stationary
Markov models, bilinear models, and more generally, Bernoulli shifts. In some cases
no mixing properties can be expected without additional regularity assumption of in-
novation's distribution where as weak dependence conditions can be easily derived. We
also develop some of its standard applications. First, probabilistic results : weak in-
variance principle for Donsker line and empirical process. We also present a statistical
application to kernel estimates for density and regression functions.

R�esum�e Nous d�eveloppons ici une introduction systematique �a une nouvelle condi-
tion de d�ependance faible. Nous montrons en particulier que quelques mod�eles tr�es
populaires en s�eries chronologiques v�eri�ent cette condition : des châ�nes de Markov
stationnaires, des mod�eles bilin�eaires ou plus g�en�eralement des sch�emas de Bernoulli.
On ne peut, en g�en�eral, esp�erer que ces mod�eles satisfassent �a des conditions de m�elange.
Quelques applications classiques sont aussi envisag�ees. Nous prouvons d'abord des

th�eor�emes limite probabilistes : le principe de Donsker et le th�eor�eme de limite centrale
empirique. Nous obtenons aussi le comportement asymptotique d'estimations �a noyau
d'une densit�e et d'une fonction de r�egression; leur convergence uniforme presque sûre
ainsi que leur comportement asymptotiquement gaussien sont prouv�es comme dans le
cas de suites ind�ependantes.
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1 Introduction

In this paper we are aimed to provide a real alternative to the standard mixing condi-
tions (see e.g. [24]) for modelling some of the stationary sequences commonly used in
statistics.
We deal with sequences of random variables. We do not assume independence.

Asymptotic results obtained do not need to be analogous to that of independent se-
quences: this is a �rst but complicated way to de�ne weak dependence.
We are thus turning to much simpler conditions:
{ The �rst preoccupation we bear in mind is to obtain conditions, simple enough

to check on the really used models; our experience (see [11] and [2]) proves the real
diÆculty to handle strong mixing or absolute regularity conditions.
{ The second condition expected from a tractable weak dependence condition is that

the planned applications may ensue from such condition.
Our �rst concern was to establish two probabilistic limit theorems: the Donsker

invariance principle and the empirical CLT. They are used in statistical applications:
to determine change point estimation in the mean of a stationary sequence or to obtain
Kolmogorov-Smirnov tests for distributions. Kernel functional estimation problems
provide other statistical applications.

This paper is organized as follows.
A �rst section is devoted to the de�nitions our new version of a weak dependence

conditions. The main source is the seminal works [13] and [4].
A second section provides the weak dependence properties (in this sense) of some

of the classical stationary sequences used in statistics: Markovian models, associated
sequences, and Bernoulli shifts. As a by-product, this new dependence condition gives
access to some classes of models which could not be studied with former tools (mixing,
for instance).
After this we turn to some moment inequalities to be used in the sequel. This is

a �rst application of those weak dependence conditions. Indeed, a moment inequality
for sums may be proved by combinatorial arguments. This condition also yields some
sub-exponential inequalities described in the application to functional estimation.
Another technical trick is the Lindeberg-Rio (see [26]) method, easily handled in

this weak dependence frame. The latter method is compared with Bernstein's blocking
technique (see [17]). Each method provides a CLT. The dependence rates for CLT
convergence are compared later on in the functional estimation frame. Surprisingly,
there is not an uniformly best method.
We then turn to the Donsker invariance principle and the empirical CLT.
Finally we consider functional estimation. Besides the convergence results which are

of a proper interest, this frame allows to compare
{ the weak dependence conditions with the standard mixing.
{ the methods for proving CLTs.
{ the obstructions in view of optimal almost sure convergence of kernel estimators

(that is the i.i.d. rates).
The number of applications is relatively limited due to the fact that the conditions are

quite recent. We hope that this panorama of statistical applications may be enlarged
in the years to come.
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2 Independence and dependence

2.1 Independence and correlation

Recall that random variables (r.v.), taking values in IRd are independent in case

8f; g bounded measurable : Cov (f(X); g(Y )) = 0:

It is enough to consider classes of continuous or more regular functions.
Mixing conditions (recalled hereafter) were introduced by weakening such conditions:

the null, right hand side term above is made "small".
Note that in some cases, orthogonality yields independence.

� a) Bernoulli r.v's (that is r.v.'s with two points support.)

� b) Gaussian vectors : (X;Y ) 2 IRa+b:

� c) Associated random vectors.

The �rst case yields only pairwise independence but not independence, in the case of
more than two r.v.'s; it follows from orthogonality of the four couples (X;Y ), (X; 1�Y ),
(1�X;Y ) and (1�X; 1�Y ) if the couple (X;Y ) is orthogonal and the variables (X;Y )
are both supported in f0; 1g.
Except for the �rst case, properties inherited from covariances are not easy to translate

into properties of subjacent sigma-�elds.
In the two latter cases b) and c), additional inequalities may be proved for Lipschitz

functions. They take the form

jCov (f(X); g(Y )) j � c(f; g)
X
i;j

jCov (Xi; Yj)) j:

2.2 The weak dependence conditions

As the covariances of the initial r.v.'s are much easier to to compute than mixing co-
eÆcients, we introduce dependence properties (rather than sigma-�elds) for a process
(Xn)n2ZZ. Set IL1 for the set of numerical bounded measurable functions on some space
IRu and k � k1 the corresponding norm. We de�ne the Lipschitz modulus of a function
h : IRu ! IR

Lip(h) = sup
x6=y

jh(x)� h(y)j
kx� yk1 ; where k(z1; : : : ; zu)k1 = jz1j+ � � �+ jzuj:

De�ne
L = fh 2 IL1; khk1 � 1;Lip(h) <1g : (1)

De�nition 2.1 (Doukhan and Louhichi [13]) The sequence (Xn)n2ZZ is called (�;L;  )-
weakly dependent if there exists a sequence � = (�r)r2IN decreasing to zero at in�nity, and
a function  with arguments (h; k; u; v) 2 L2� IN2 such that for any u-tuple (i1; : : : ; iu)
and any v-tuple (j1; : : : ; jv) with i1 � � � � � iu < iu + r � j1 � � � � � jv, one has

jCov(h(Xi1 ; : : : ; Xiu); k(Xj1 ; : : : ; Xjv ))j �  (h; k; u; v)�r (2)

if the functions h and k are de�ned respectively on IRu and on IRv.
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The examples of interest involve the function  01(h; k; u; v) = vLip(k) (e.g. in causal lin-
ear processes),  1(h; k; u; v) = uLip(h) + vLip(k); (e.g. in non causal linear processes),
 2(h; k; u; v) = uvLip(h)Lip(k) (e.g. in associated processes), and  02(h; k; u; v) =
vLip(h)Lip(k):
Notice that the sequence � depends on both the class L and the function  . The

function  may really depend on all its arguments, in contrast with the case of bounded
mixing sequences. This de�nition is hereditary through images by convenient functions,
as it was noticed by [35] in view to check more easily a weak dependence property.
The following example, due to Rosenblatt ([29]) describes the case where mixing fails

to hold. This is the (Markov) AR(1)-process with binomial innovations (IP(�0 = 0) =
IP(�0 = 1) = 1

2 ) :

Xn =
1

2
(Xn�1 + �n):

This is also the Bernoulli shift (see de�nition below ) Xn = H(�n) with H(x) =P1
k=0 2

�(k+1)xk. This model has the stationary uniform distribution on the interval
but it satis�es no mixing condition (the past may entirely be recovered from present).
For a more rigorous proof see [17], page 375.
De�ne also the class,

I =
nOu

i=1
gxi ;xi 2 IR�+; u 2 IN�

o
; where gx(y) = 1Ix�y � 1Iy��x;8x 2 IR�+: (3)

The following lemma links I-weak dependence with L-weak dependence. Indeed, ex-
amples are proved to satisfy a weak dependence condition w.r.t. the class L. Consider
the weaker L0 \ C1b -weak dependence condition de�ned with

L0 =
nOu

i=1
fi; fi 2 L; fi : IR! IR; i = 1; : : : ; u; u 2 IN�

o
:

Here C1b stands for the set of partially di�erentiable functions with bounded partial
derivatives and the function  is either  1 or  2. This latter condition will thus imply
I-weak dependence under concentration assumptions.

Lemma 2.2 Let (Xn) be a sequence of r.v's. Suppose that, for some real � > 0

C(�) = sup
x2IR

sup
i
IP (x � Xi � x+ �) � C��: (4)

Suppose that the sequence (Xn) is

� (�;L0 \ C1b ;  1)-weakly dependent, then it is (�I ; I;  )-weakly dependent with

�I;r = �
�

1+�
r and  (h; k; u; v) = 2(8C)

1
1+� (u+ v):

� (�;L0 \ C1b ;  2)-weakly dependent, then it is (�I ; I;  )-weakly dependent with

�I;r = �
�

2+�
r and  (h; k; u; v) = (8C)

2
2+� (u+ v)

2(1+�)
2+� :

In order to understand better the mechanism of proofs we recall the proof of this lemma.

Proof of Lemma 2.2. First recall the following useful inequality, valid for real
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numbers 0 � xi; yi � 1, jx1 : : : xm � y1 : : : ymj �
Pm

i=1 jxi � yij: Let g; f 2 I, then
g(y1; : : : ; yu) = gx1(y1) : : : gxu(yu); and f(y1; : : : ; yv) = gx0

1
(y1) : : : gx0v(yv) for some

u; v 2 IN� and xi; x0j � 0. For �xed x > 0 and a > 0 let

fx(y) = 1Iy>x � 1Iy��x +
�y
a
� x

a
+ 1
�
1Ix�a<y<x +

�y
a
+
x

a
� 1
�
1I�x<y<�x+a:

Therefore Lip(fx) = a�1 and kfxk1 = 1 and Lip(h) � a�1, Lip(k) � a�1 if we set

h(y1; : : : ; yu) = fx1(y1) : : : fxu(yu); k(y1; : : : ; yv) = fx01(y1) : : : fx0v(yv):

Consider i1 � : : : � iu � iu + r � j1 � : : : � jv and set

Cov(h; k) := Cov(h(Xi1 ; : : : ; Xiu); k(Xj1 ; : : : ; Xjv )):

� (�;L0 \C1b ;  1) (resp. (�;L0 \C1b ;  2))-weak dependence implies, with either c(u; v) =
(u+ v) or c(u; v) = (u+ v)2,

jCov(h; k)j � 1

a
c(u; v)�r

�
resp. jCov(h; k)j � 1

a2
c(u; v)�r

�
:

� Inequality (4) yields jCov(g; f) � Cov(h; k)j � 8Ca�(u + v). Hence jCov(g; f)j �
8Ca�(u+ v) + 1

ac(u; v)�r (resp. jCov(g; f)j � 8Ca�(u+ v) + 1
a2 c(u; v)�r):

The Lemma follows by setting

a =

�
c(u; v)�r
8C(u+ v)

�1=(1+�)  
resp. a =

�
c(u; v)�r
8C(u+ v)

�1=(2+�)!
:

2.3 Mixing

For the completeness sake, we recall here the de�nitions of the main mixing coeÆcients.
For more details, the reader is deferred to Doukhan [11].
Let (
;A; IP) be a probability space and let U ;V be two sub �-algebras of A, various

measures of dependence between U and V have been introduced; among them let us
recall

�(U ;V) = supfjIP(U \ V )� IP(U)IP(V )j;U 2 U ; V 2 Vg;
�(U ;V) = IE supfjIP(V jU)� IP(V )j;V 2 Vg;
�(U ;V) = supfjCorr(u; v)j;u 2 IL2(U); v 2 IL2(V)g;
�(U ;V) = supfjIP(V jU)� IP(V )j;U 2 U ; V 2 Vg:

Those coeÆcients are respectively Rosenblatt's [28] strong mixing coeÆcient, �(U ;V),
Wolkonski and Rozanov's absolute regularity coeÆcient in [36], �(U ;V), Kolmogorov
and Rozanov' maximal correlation coeÆcient �(U ;V) [18], and �(U ;V) the uniform
mixing coeÆcient from Ibragimov [17].
Let X = (Xn)n2ZZ be a discrete time stationary process. We set XA = fXt; t 2 Ag if
A � ZZ for the A-marginal of X . At last �(Z) will denote the sigma-algebra generated
by a random variable Z.
For any coeÆcient previously de�ned, say c(�; �), we shall call the process X a c-mixing
process if limk!1 cX;k = 0 where cX;k = c(�(X]�1;0]); �(X[k;+1[).

��mixing ) ��mixing ) ��mixing; and ��mixing ) ��mixing) ��mixing

and no other implication holds.
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3 Models

3.1 Markovian Models

Let (�n)n2ZZ be an i.i.d. sequence and let M be some measurable function. We turn our
attention to models driven by the equation

Xn =M(Xn�1; :::; Xn�p; �n): (5)

In order to justify the title of this section, remark that the vector valued sequence

(X
(p)
n )n2ZZ, where X

(p)
n = (Xn�1; :::; Xn�p) is Markovian.

Such models are associated with ergodic Markov chains (see [21] for a review of the
main models). Thus the stationarity assumption is reachable. An interesting subclass
of examples is given by two functions R and S and two mutually independent i.i.d.
sequences (�n) and (�n)

Xn = R(Xn�1; :::; Xn�p; �n) + S(Xn�1; :::; Xn�p)�n:

Here the function S satis�es S(x1; :::; xp) � s > 0 for some s 2 IR, and any real numbers
x1; :::; xp and the functions R and S essentially satisfy contraction assumptions (see [11],
[14], [2] or [34] for developments).
For instance ARMA(p; q) processes

Yn =

pX
i=1

aiYn�i + �n +

qX
j=1

bj�n�j ;

have such a Markov representation. Indeed Xn = (Yn; Yn;n�1 : : : ; Yn;n�`), where Yn;j =
IE [Yn j Yn+i : i � n], and ` = maxfp; q+1g, is a Markov process. The mixing properties
of these models are developed in [22].
Lipschitzian models are shown to be exponentially L-weakly dependent.

Proposition 3.1 ([14]) . Let a vector valued Markov model be de�ned through the
recurrence relation (5). Assume that

IEkM(x; �n)�M(y; �n)kS � akx� ykS and IEkM(0; �n)kS <1;

for some 0 � a < 1 and S � 1.
Then the sequence (Xn)n2ZZ is (�;L;  )-weakly dependent with �r = O(ar) and  (h; k; u; v) =
vLipk:

Only recall that here stationarity is not required.
More general AR(p) nonlinear models, Xn =M(Xn�1; : : : ; Xn�p; �n), have the same

properties: if, for example, IEjM(0; �n)j < 1 and, for some constants aj � 0; 1 � j � p
with

Pp
j=1 aj < 1,

IEjM(x1; : : : ; xp; �n)�M(y1; : : : ; yp; �n)j �
Pp

j=1 aj jxj � yj j:
This model is geometrically (�;L;  )-weakly dependent with  (h; k; u; v) = min fuLiph; vLipkg
as proved in [13].
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Remark. Under the assumption that �0's distribution has an almost sure non vanish-
ing density f and is integrable the additive model

M(Xn�1; : : : ; Xn�p; �n) = R(Xn�1; : : : ; Xn�p) + �n

is shown to be ergodic and mixing. More precisely, if the function R is continuous, and
jR(x1; : : : ; xp)j � A+a1jx1j+ � � �+apjxpj with a1+ � � �+ap < 1; under the invariant
initial distribution, the sequence is absolutely regular with �n = O(e�bn) (see [8]).

3.2 Bernoulli shifts

De�nition 3.2 Let (�i)i2ZZ be a sequence of i.i.d. real valued r.v's and the function
H : IRZZ ! IR be measurable. The sequence (Xn)n2ZZ is called a Bernoulli shift if it is
de�ned by Xn = H(�n�j ; j 2 ZZ):

Causal shifts write as Xn = H(�n; �n�1; �n�2; : : : ; �0; ��1; ��2; : : :), i.e. H : IRIN ! IR.
Such shifts provide natural examples of weakly dependent, but not mixing sequences
(see [27]).
Notice that a stationary Markov setting provides such causal sequences. In fact,

consider a Markov process driven by the recurrence equation Xt = M(Xt�1; �t); for
some i.i.d. sequence (�t)t2ZZ. Then the function H is de�ned, if it exists, implicitly
by the relation H(x) = M(H(x0); x0); where x = (x0; x1; x2; : : :); x

0 = (x1; x2; x3; : : :):
Control theory yields tools to provide explicit Bernoulli shift representations (see [22]
and [21]).

3.2.1 Chaotic representations

We now specialize in chaotic expansions associated with the discrete chaos generated by
the sequence (�i)i2ZZ; in a condensed formulation we write H(x) =

P1
k=0H

(k)(x); where

H(k)(x) denotes the k-th order chaos contribution, H(0)(x) = a
(0)
0 is only a centering

constant, and

H(k)(x) =
1X

j1=�1

1X
j2=�1

: : :
1X

jk=�1
a
(k)
j1;:::;jk

xj1 � xj2 � : : :� xjk

or in short, in a vectorial notation, H(k)(x) =
P

j2ZZk a
(k)
j xj :

In contrast with mixing conditions, it may be proved that even non causal sequences
may admit a L-weakly dependent behaviour. This is a by-product of the proposition
3.4 to follow.

De�nition 3.3 For any integer k > 0, we denote Æk any number such that

sup
i2ZZ

IEjH(�i�j ; j 2 ZZ)�H(�i�j1Ijjj<k; j 2 ZZ)j � Æk:

Such sequences (Æk)k2ZZ+ are related to the modulus of uniform continuity of H . If,
for instance, for positive constants (ai)i2ZZ; 0 < b � 1, the inequality jH(ui; i 2 ZZ) �
H(vi; i 2 ZZ)j �Pi2ZZ aijui � vijb holds for any sequence (ui); (vi) 2 IRZZ and if the se-

quence (�i)i2ZZ has a �nite b-th order moment, then one can choose Æk =
P
jij�k aiIEj�ijb.

Proposition 3.4 ([13]) Bernoulli shifts are (�;L;  )-weakly dependent with �r = 2Ær=2,
and with the function  (h; k; u; v) = 4 (ukkk1Lip(h) + vkhk1Lip(k)). Under causality,
this holds with �r = Ær and  (h; k; u; v) = 2vLipkkhk1.
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Processes associated with a �nite number of chaotic terms (i.e. H(k) = 0 if k > k0)
are also called Volterra processes. A suitable bound for Ær corresponds here with the
stationarity condition

Ær =
1X
k=0

8<
:

X
j2ZZk;kjk1>r

���a(k)j

���
9=
; IEj�0jk <1:

The �rst example of such a Volterra process is clearly the class of linear processes
Xt =

P1
�1 ak�t�k. A suitable sequence is �r = 2IEj�0j

P
jkj>r=2 jakj with the previous

function  1.
The simple bilinear process, Xt = (a + b�t�1)Xt�1 + �t; is stationary if c = IEja +
b�0j < 1 (see [33]). It is a Bernoulli shift with H(x) = x0 +

P1
j=1 xj

Qj
s=1(a + bxs);

for x = (xi)i2IN. We truncate the previous series up to rank r in order to obtain
Ær = �r = cr(r + 1)=(1� c).
Giraitis, Koul and Surgailis have introduced ARCH(1)�models (from Giraitis, Koul
and Surgailis in [15]. We are given a nonnegative sequence (bj)j�1 and a i.i.d. sequence
of nonnegative random variables (�j)j�0: The process (if it exists) is ruled through the
recurrence relation

Xt =

2
4a+ 1X

j=1

bjXt�j

3
5 �t:

Such models are proved to have a stationary representation with the chaotic expansion

Xt = a

1X
`=1

1X
j1=0

� � �
1X

j`=0

bj1 � � � bj`�t�j1 � � � �t�[j1+���+j`]

under the simple assumption IE�0
P1

j=1 bj < 1: They extend the standard ARCH(p)

model (bj = 0 if j > p). Here we have �r =
�
IE�0

P1
j=1 bj

�r
.

3.2.2 Association

De�nition 3.5 The sequence (Zt)t2ZZ is associated, if for all coordinatewise increasing
real-valued functions h and k,

Cov(h(Zt; t 2 A); k(Zt; t 2 B)) � 0

for all �nite subsets A and B of ZZ.

Associated sequences are (�;  2;L)-weakly dependent with �r = supk�r Cov(X0; Xr)
(see [13]). Note that broad classes of examples of associated processes result from
the fact that any independent sequence is associated and that monotonicity preserves
association (for this, see [23]).
The case of Gaussian sequences is analogous by setting �r = supk�r jCov(X0; Xk)j.

Also, one may consider combinations of sums of Gaussian and associated sequences, or
Bernoulli shifts driven by stationary, associated, instead of i.i.d. sequences.
Note that for associated or Gaussian sequences,  02 replaces  2 if �r = supk�r jCov(X0; Xk)j

is replaced by �r =
P

k�r jCov(X0; Xk)j.
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Remark. The causal linear process Xn =
P1

t=0 at�n�t; satis�es a �-mixing condition
if �0's density and (for some Æ > 0) the 1 + Æ order moment exist, together with the

condition
P1

t=�1 jatjÆ < 1. Then [25] prove that �n � C
P1

l=n (
P1

k=l jakj)Æ=1+Æ , for
some C > 0. If, for instance aj = O(j�a), then under the previous regularity and
moment conditions yields if a > 2 + 1=Æ, �n � n�b with b = (a � 2)Æ=(1 + Æ): For
instance,

P1
n=0 �n <1 if a > 3 + 2=Æ. If Æ = 1 this writes a > 5. If Æ =1 this writes

a > 3.

4 Algebraic moments of sums (see [13])

Let (Xn)n2IN be a sequence of centered r.v's and let Sn =
Pn

i=1Xi: In this section,
we give moment bounds for jIESqnj, when q 2 IN and q � 2. Let (Xn) be a sequence of
centered r.v's and de�ne for positive integer r coeÆcients of weak dependence as non
decreasing sequences (Cr;q)q�2 such that��Cov �Xt1 � � � � �Xtm ; Xtm+1 � � � � �Xtq

��� � Cr;q ; (6)

for all the successions ft1; : : : ; tqg such that 1 � t1 � : : : � tq � n and, for some integer
1 � m < q, tm+1 � tm = r: Explicit bounds Cr;q are provided by [13] in order to build
inequalities for the partial sums Sn. Two kinds of bounds are considered, either��Cov �Xt1 � � � � �Xtm ; Xtm+1 � � � � �Xtq

��� � cqM q�2�r (7)

or,

��Cov �Xt1 � � � � �Xtm ; Xtm+1 � � � � �Xtq

��� � c

Z �r

0

QXt1
(x)� � � � �QXtq

(x)dx; (8)

where QX still denotes the X 's quantile function and c;  � 0 denote real numbers.
In the examples, the previous bound (7) holds for bounded sequences such that kXnk1 �
M: Under (�;L;  )-weak dependence, this yields the bound

Cr;q = max
1�m<q

 (j
m; j
(q�m);m; q �m)Mq�r

where j(x) = x1Ijxj�1 + 1Ix>1 � 1Ix<�1.
As in lemma 2.2, we see that under (�;L;  )-weak dependence with  (h; k; u; v) =
c(u; v)Lip(h)Lip(k) a bound is

Cr;q = max1�m<q c(m; q �m)Mq�2�r:

For non bounded random variables,

Cr;q = c
R �r
0
QXt1

(x)� � � � �QXtq
(x)dx

under (�; I;  )-weak dependence.
An analogous bound is obtained by Rio for strongly mixing sequences (see [26]). The
bound (8) holds for more general r.v's, using moment or tail assumptions.
A �rst consequence of inequality (7) is the following Marcinkiewicz-Zygmund inequality.
Let (Xn)n2IN be a sequence of centered r.v's satisfying the condition

Cr;q = O(r�q=2); (9)

9



then, there is a constant B > 0 not depending on n for which

jIESqnj � Bnq=2: (10)

The following lemma gives moment inequalities whenever q 2 f2; 4g, it was essentially
proved in Billingsley ([5], lemmas 3 and 4, page 172).

Lemma 4.1 ([13]) If (Xn)n2IN is a sequence of centered r.v's, then

IES2
n � 2n

n�1X
r=0

Cr;2; IES4
n � 4!

8<
:
 
n

n�1X
r=0

Cr;2

!2

+ n

n�1X
r=0

(r + 1)2Cr;4

9=
; : (11)

The following Theorems deal with higher order moments.

Theorem 4.2 ([13]) Let q � 2 be some integer. Suppose that dependence coeÆcients
Cr;p associated to the sequence (Xn) satisfy for all integers 0 < p � q and for some
positive constants M , , C

Cr;p = CepMp�2�r, (H1)

then, for any integer n � 2

jIESqnj �
(2q � 2)!

(q � 1)!
eq

8<
:
 
Cn

n�1X
r=0

�r

!q=2

_
 
CMq�2n

n�1X
r=0

(r + 1)q�2�r

!9=
; : (12)

Theorem 4.2 is adapted to work with bounded sequences. De�ne the class I

I =
nOu

i=1
gxi ;xi 2 IR�+; u 2 IN�

o
; where gx(y) = 1Ix�y � 1Iy��x;8x 2 IR�+: (13)

In order to consider the unbounded case, we shall consider (�; I;  )-weak dependence
where  writes  (h; k; u; v) = c(u; v).

Theorem 4.3 ([13]) If (Xn)n2IN is a centered and (�; I;  )-weakly dependent sequence,
set Cq = (maxu+v�q c(u; v)) _ 2: Then

jIESqnj �
(2q � 2)!

(q � 1)!

 
Cq

nX
i=1

Z 1

0

(��1(u) ^ n)q�1Qq
i (u)du _

�
C2

nX
i=1

Z 1

0

(��1(u) ^ n)Q2
i (u)du

�q=2!
:

In the special case of strongly mixing and stationary sequences, this is Theorem 1 in
[26]. The restriction of working with even integer exponents �nds its compensation in
the explicit form of the constants.

Remark. Exponential inequalities may be built by using Theorem 4.2. De�ne

Mq;n = n
n�1X
r=0

(r + 1)q�2Cr;q :

We �rst suppose that for all integers q � 2 and n:

Cr;p = CepMp�2�r; Mq;n � An
q!

�q
;

where � is some constant and An is a sequence independent of q, then

10



8x 2 IR�+; IP
�jSnj � x

p
An

� � A exp
��Bp�x�, (DP )

with A = e4+1=12
p
8�; and B = e5=2�=2: This exponential inequality is analogous to

??? Let (Xn) be a sequence of centered r.v.'s, this holds if Cr;q = C�2Mq�2eqe�br for
constants C; �; ; b > 0, if kXnk1 � M and kXnk2 � �, for any integer n � 0. In this
case An = n�2. E.g. this holds under (�;L;  )-weak dependence if �r = O(e�br) and
 (h; k; u; v) � eÆ(u+v)Lip(h)Lip(k)) for some Æ � 0.

The use of combinatorics in those inequalities makes them relatively weak. E.g. Bern-
stein inequality, valid for independent sequences allows to replace the term

p
x in the

previous inequality by x2 under the same assumption n�2 � 1; in mixing cases analogue
inequalities are also obtained by using coupling arguments which are not available here.

5 Limit theorems

5.1 The Donsker line

Consider a stationary sequence (Xn)n2ZZ. We assume that this sequence is integrable,
centered at expectation, and that

IEX0 = 0:

Denote by [x] the integral part of a real number x ([x] � x < [x] + 1), the Donsker
line (Dn(t))t2[0;1] is de�ned for any sample with size n as the following continuous time
process

Dn(t) =

[nt]X
k=1

Xk + (nt� [nt])X[nt]+1:

Let (Wt)t2[0;1] be a Brownian motion, that is W denotes the centered Gaussian real
valued process with covariance

IEWsWt = min fs; tg:

We consider the following convergence result in the space C([0; 1]) of continuous functions
on the unit interval when the sample size n grows to in�nity:

Theorem 5.1 Suppose that the stationary sequence (Xn)n2ZZ satis�es IEjX0j4+Æ < 1
for some Æ > 0. Assume a (�; I;  )-weak dependence condition with the function
 1(h; k; u; v) (respectively  2) and �r = O(r�a) with a � 2 + 4=Æ (respectively a > 2).
Then the following functional convergence holds in the space C([0; 1]) :

1p
n
Dn(t)! �Wt:

The following series is assumed to be convergent

�2 =

1X
�1

Cov(X0; Xk):

The case �2 = 0 is detailed by [24]. We shall assume here that �2 6= 0:

11



Remark. Without any regularity condition on innovations, theorem 5.1 holds for a
bounded Lipschitz function of a linear process Xn =

P1
k=�1 ak�n�k if ak = O(k�D)

when D > 3. The latter doesn't need to be causal while Ho and Hsing need this causal-
ity assumption in [16].

Proof of Theorem 5.1. Lemma 4.2 and a maximal inequality by Moricz et alii
(see [11], page 40) yield

IEjSnj2+Æ = O
�
n1+Æ=2

�
(14)

as soon as for any increasing sequence of integers 0 � i < j < k � l

1X
m=0

mIEjX0Xmj <1 and Cov (XiXj ; XkXl) = O �(k � j)�2
�
: (15)

Moreover, this entails that �2 = n�1Var(Sn) > 0 and the �nite dimensional (�di)
convergence follows. The tightness of the process is a consequence of (15). The �rst

part of (15) follows from the covariance bound jCov (X0; Xr) j =) = O
�
�
(2+Æ)=(4+Æ)
r

�
:

The latter bound follows from Cov (XiXj ; XkXl) = O
�
�
Æ=(4+Æ)
k�j

�
:

Remark. Let Æ > 0: Assume the existence of a moment of order (2 + Æ) for X0. The
Donsker functional CLT holds in the strong mixing case if

P1
n=0 n

2=Æ�n <1 (see [26]).
The condition

P1
n=0 �(2

n) < 1 with IEX2
0 < 1 implies the functional convergence, as

Shao proved [30].

Remark. Here we consider conditions in terms of conditional expectations with re-
spect to an adapted �ltration. We �rst recall that theorem 5.1 holds for martingales
with stationary square integrable increments IEX2

0 <1 (see [5]). Let (Mn) be a �ltra-
tion adapted to the process (Xn)n2ZZ: Xn is Mn-measurable for any n 2 ZZ. Dedecker
and Rio [9] prove that for a centered, square integrable process, such that the sumP1

n=0X0 IE (XnjM0) is convergent in IL1, the sequence IE(X2
0 + 2X0SnjI) converges in

IL1 to some random variable �. The �-�eld I is the tail �-�eld. Moreover, conditionally
to I, Dn(t)=

p
n converge to a Brownian motion �Wt.

� This result provides a functional CLT to a limit process which is not Gaussian
(see [6] for results related to the latter case).

� Note that ergodicity implies the triviality of the tail �-�eld and a standard Donsker
theorem follows.

� Standard results prove this theorem under a more restrictive IL2 assumption: both
series 1X

n=0

IE(XnjM0) and

1X
n=0

(Xn � IE(XnjM0))

converge.

� As a new result yielded by this theorem, consider a stationary Markov sequence
(�n)n2ZZ with stationary distribution � and transition operator P . Let Xn = g(�n)
be centered at expectation, nonlinear functionals of (�n). Then the assumption
writes as the convergence of the series

P1
n=0 gP

ng in IL1(�).

12



� The previous result concerning strongly mixing sequences appears also as a con-
sequence of this theorem.

5.2 Empirical process

Let us consider a stationary sequence (Xn)n2ZZ. We assume without loss of generality
that the marginal distribution of this sequence is the uniform law on [0; 1]. The empirical
repartition process of the sequence (Xn) at time n is de�ned as 1p

n
En(x) where

En(x) =
Pn

k=1

�
1I(Xk�x) � IP(Xk � x)

�
:

Note that En = n (Fn � F ) if Fn; F respectively denote the empirical d.f. and the
marginal d.f. We consider the following convergence result in the Skohorod space D(IR)
when the sample size n converges to in�nity:

1p
n
En(x)! �B(x):

Here ( �B(x))x2IR is the dependent analogue of a Brownian bridge, that is �B denotes the
centered Gaussian process with covariance given by

IE �B(x) �B(y) =

1X
k=�1

(IP(X0 � x; Xk � y)� IP(X0 � x)IP(Xk � y)) : (16)

Note that for independent sequences with a marginal repartition function F , this only
writes �B(x) = B(F (x)) for some standard Brownian Bridge B; this justi�es the name
of Generalized Brownian Bridge.
Let (Xn) be a stationary sequence assumed to satisfy the following weak dependence

condition.

sup
f2F

�����Cov
 

2Y
i=1

f(Xti);

4Y
i=3

f(Xti)

!����� � �r; (17)

where F = fx! 1Is<x�t; for s; t 2 [0; 1]g, 0 � t1 � t2 � t3 � t4 and r = t3 � t2 (in this
case a weak dependence condition holds for a class of functions IRu ! IR working only
with the values u = 1 or 2).

Proposition 5.2 Let (Xn) be a stationary sequence such that (17) holds. Assume that
there exists � > 0 such that

�r = O(r�5=2�� ): (18)

Then the sequence of processes
�

1p
n
fEn(t); t 2 [0; 1]g

�
n>0

is tight in the Skohorod space

D([0; 1]).

Theorem 5.3 Suppose that the stationary sequence (Xn) is (�;L1;  j)-weakly depen-
dent, with either j = 1 and �r = O(r�15=2�� ), or j = 2 and �r = O(r�5�� ). Then the
following empirical functional convergence holds true in the Skohorod space of numerical
c�adl�ag functions on the real line, D(IR):

1p
n
En(x)! �B(x):

13



If the sequence (Xn) is i.i.d., then equation (16) reduces to zero-index term. This
covariance has essentially 1=2 order Holder regularity. If the second order marginals
(X0; Xk) have a joint, continuous density, then the k�order term is a C2-function.
Hence the regularity of the covariance is driven by the central term. In any case the
process �B is perhaps not derivable in quadratic mean.

Proof of Theorem 5.3. Thanks to the Rosenthal inequality in Theorem 4.2

kEn(t)�En(s)k4 � C
p
n

n�1X
r=0

min
n
r�5=2�� ; jt� sj

o
+

 
n

n�1X
r=0

(r + 1)
2
�r

!1=4

� p
n
�
jt� sj(a�1)=2a + n(2�a)=4

�
:

The conclusion follows from Shao and Yu' tightness lemma [32]. The �di convergence
is due to a CLT Lemma by blocks by Ibragimov [17].

Remark. If the sequence is strongly mixing, the summability condition
P1

n=0 �n <1
implies �di convergence. The empirical functional convergence holds if, moreover, for
some a > 1, �n = O(n�a) (see [26]). In a absolutely regular framework, Doukhan, Mas-
sart and Rio (see [26]) obtain the empirical functional convergence when, for some
a > 2; �n = O(n�1(logn)

�a
): Shao and Yu [32] obtain the empirical functional

convergence theorem when the maximal correlation coeÆcient satisfy the conditionP1
n=0 � (2

n) <1.

5.3 A triangular CLT: Lindeberg-Rio's method

Let Xn;j ; 1 � j � n be a triangular array. We shall omit the �rst index n when possible
without confusion. Consider a sequence (Wj)j2IN of i.i.d. r.v.'s with standard normal

law, and independent from (Xn)t2ZZ. De�ne

�2n = Var (Sn)

Sk =

kX
j=1

Xj ; 1 � k � n; and S0 = 0;

�k =

nX
j=k

p
vn;jWj =

nX
j=k

Vj ; 1 � k � n; and �n+1 = 0;

where we assume that vn;j = Var (Sj)�Var (Sj�1) > 0:
Once one has proved that �2n ! �2, it remains to prove that for any three times

di�erentiable function with bounded derivatives up to order 3, ' say,

�n(') = IE' (Sn)� IE' (W0)! 0: (19)

Consider the following:

Uj = Sj�1 + �j+1; Rj(x) = ' (Uj + x)� ' (Uj)� vj
2
'00 (Uj) (1 � j � n):

Clearly, we have

�n(') =
nX

k=1

�n;k(')
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�n;k(') = IERk(Xk)� IERk(Vk)

= �1
k(')��2

k('):

A Taylor expansion yields

�2
k(') = IE

�
' (Uk + Vk)� ' (Uk)� Vk'

0 (Uk)� V 2
k

2
'00 (Uk)

�

=
1

6
IE
�
V 3
k '

(3) (Uk + #kVk)
�
; with 0 < #k < 1;���2

k(')
�� � C (vk)

3=2
:

Moreover,

�1
k(') = IE

�
' (Uk +Xk)� ' (Uk)� vk

2
'00 (Uk)

�
= IE

�
Xk'

0 (Uk) +
1

2

�
X2
k �

vk
2

�
'00 (Uk) +

1

6
X3
k'

(3) (Uk + #kXk)

�
; with 0 < #k < 1:

It then follows that

nX
k=1

�1
k(') =

nX
k=1

k�1X
j=1

Cov ('00 (Sk�1�j + �j+1)Xk�j ; Xk)

+
1

2

nX
k=1

k�1X
j=1

Cov
�
'(3) (Sk�1�j + �j+1 + #k�jXk�j)X2

k�j ; Xk

�

+

nX
k=1

Cov (Xk; '
0 (�k+1)) +

1

2

nX
k=1

IE
�
'00 (Uk)

�
X2
k � IEX2

k

��

+ IE

0
@n�1X

k=1

Cov (X0; Xk)

nX
j=k+1

'00 (Uj)

1
A+

1

6

nX
k=1

IE
�
'(3) (Uk + �kXk)X

3
k

�

= E1 +E2 +E3 +E4 +E5 +E6: (20)

The term E3 is null. The other ones are controlled in two ways: by uniform bounds
on one hand, by dependence covariance bounds on the other hand. See [7] for further
details.
We can apply this method to density estimation on IR. Consider a stationary sequence

(Xt)t2ZZ with marginal density f: Assume that the densities of the pairs (X0; Xk),
k 2 ZZ+, exist, and are uniformly bounded : sup

k>0
kf(k)k1 <1.

Let K be some kernel function with integral 1, Lipschitzian and compactly supported.
The kernel density estimator is de�ned by

f̂(x) = f̂n;h(x) =
1

nh

nX
t=1

K

�
x�Xt

h

�
:

Theorem 5.4 Suppose that the stationary sequence (Xt)t2ZZ is (�;L1;  
0
j)-weakly de-

pendent, with either j = 1; 2 and �r = O(r�a); a > 2+j, or (�;L1;  j)-weakly dependent
j = 1; 2 and �r = O(r�a); a > 2 + j + 1=Æ, where nÆh ! 1 for some Æ 2]0; 1[. If
f(x) > 0; then

p
nh

�
f̂(x)� IEf̂(x)

� D! N
�
0; f(x)

Z
K2(u)du

�
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Remark. In order to obtain a CLT for time series, it seems that the �rst paper
using the Bernstein blocking technique in due to Dehling, see [10]. This method is also
described in [11] and it is used in [13]. The technique consists in dividing a sample
fZ1; : : : ; Zng into blocks Um = fZkgk2Km

which are almost independent and such that
Card (f1; : : : ; ng nSmKm) = o(n) as n!1. This condition essentially allows to work
with the variables Tm =

P
k2Km

Zk (built from those blocks) exactly as in the classical
Lindeberg method of the independent case.

Proof of Theorem 5.4. The details of the proof follow [3].

6 Functional estimation

We consider a stationary processes (Zt)t2ZZ with Zt = (Xt; Yt) where Xt; Yt 2 IR. The
quantity of interest is the regression function r(x) = IE(Y0jX0 = x). Let K be some
kernel function with integral 1. Assume that K is a Lipschitz function with a compact
support. The kernel estimator is de�ned by

f̂(x) = f̂n;h(x) =
1

nh

nX
t=1

K

�
x�Xt

h

�
; ĝ(x) = ĝn;h(x) =

1

nh

nX
t=1

YtK

�
x�Xt

h

�
;

r̂(x) = r̂n;h(x) =
ĝn;h(x)

f̂n;h(x)
if f̂n;h(x) 6= 0; r̂(x) = 0 otherwise:

Here h = (hn)n2IN is a sequence of positive real numbers. We always assume that
hn ! 0; nhn !1 as n!1.

De�nition 6.1 Let � = a + b with (a; b) 2 IN�]0; 1]. De�ne the set of �-regular func-
tions C� by

C� =
n
u : IR! IR; u 2 Ca and 9A � 0 ju(a)(x) � u(a)(y)j � Ajx� yjb

for all x; y in any compact subset
o
:

Here, Ca is the set of a-times continuously di�erentiable functions.

If g 2 C�, one can choose a kernel function K of order � such that uniformly on any
compact subset of IR

bh(x) = IE(ĝ(x)) � g(x) = O(h�)
uniformly on any compact subset of IR. In view of asymptotic analysis we assume that
the marginal density f(:) of X0 exists and is continuous. Moreover f(x) > 0 for any
point x of interest and the regression function r(:) = IE(Y0jX0 = :) exists, is continuous.
At last, for some p � 1, x! gp(x) = f(x)IE(jY0jpjX0 = x) exists and is continuous. We
set g = fr with obvious short notation. Moreover, assume one of the following moment
assumptions. Either,

IEjY0jS <1; for some S � p (21)

or

IE exp (jY0j) <1: (22)
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6.1 Second Order Properties

We consider �rst the properties of ĝ(x). We also consider the following conditionally
centered equivalent of g2 appearing in the asymptotic variance of the estimator r̂,

G2(x) = f(x)Var (Y0jX0 = x) = g2(x)� f(x)r2(x):

Assume that the densities of the pairs (X0; Xk), k 2 ZZ+, exist, and are uniformly
bounded : sup

k>0
kf(k)k1 <1. Moreover, uniformly over all k 2 ZZ+, the functions

r(k)(x; x
0) = IE

�
jY0YkjjX0 = x;Xk = x0

�
(23)

are continuous. Under these assumptions, the functions g(k) = f(k)r(k) are locally
bounded.

Theorem 6.2 Suppose that the stationary sequence (Zt)t2ZZ is (�;  j ;L)-weakly depen-
dent with �r = O(r�a) and a > 2 + j, for j = 1 or j = 2. Assume that it satis�es the
conditions (22) and (23) with p = 2. Suppose that nÆh ! 1 for some Æ 2]0; 1[. Then
uniformly in x belonging to any compact subset of IR,

Var (ĝ(x)) =
1

nh
g2(x)

Z
K2(u)du + o

�
1

nh

�

and

Var
�
ĝ(x) � r(x)f̂ (x)

�
=

1

nh
G2(x)

Z
K2(u)du+ o

�
1

nh

�
:

6.2 Central limit theorems

We �rst consider the density estimator.

Theorem 6.3 Suppose that the stationary sequence (Xt)t2ZZ is either (�;L1;  
0
j)-weakly

dependent, with �r = O(r�a); a > 2 + j, or (�;L1;  1)-weakly dependent with �r =
O(r�a); a > 3(1 +

p
5)=2, or (�;L1;  2)-weakly dependent with �r = O(r�a); a > 6. If

where nh!1 and f(x) > 0; then

p
nh

�
f̂(x)� IEf̂(x)

� D! N
�
0; f(x)

Z
K2(u)du

�
:

Proof of Theorem 6.3. The CLT is obtained by Lindeberg Rio method here above
described and by Bernstein's blocking technique described in [17]. The Theorem follows
by comparing the rates obtained by both methods. See [3] for more details.

Theorem 6.4 Assume that the stationary sequence (Zt)t2ZZ is (�;  j ;L)-weakly depen-

dent with �r = O(r�a) with a > min
�
max (2 + j; 3(2 + j)Æ) ;max

�
2 + j + 1

Æ ;
2+2(2+j)Æ

1+Æ

��
;

for j = 1 or j = 2. Assume moreover that it satis�es the conditions (22) and (23) with
p = 2. Consider a positive kernel K: Let f; g 2 C� for some � 2]0; 2], and nh1+2� ! 0.
Then, for all x belonging to any compact subset of IR,

p
nh
�
r̂(x)� r(x)

� D! N
�
0;

G2(x)

f2(x)

Z
K2(u)du

�
:
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Proof of Theorem 6.4. See [3]. They also prove the following

Proposition 6.5 Assume that the stationary sequence (Zt)t2ZZ is (�;  j ;L)-weakly de-
pendent with �r = O(r�a) with a > 9 for j = 1 and a > 12 for j = 2: Suppose that the
stationary sequence (Zt)t2ZZ satis�es the conditions (22) and (23) with p = 2. Consider
a positive kernel K: Let f; g 2 C� for some � 2]0; 2], and nh ! 1. Then, for all x
belonging to any compact subset of IR,

p
nh
�
r̂(x) � IEr̂(x)

� D! N
�
0;

G2(x)

f2(x)

Z
K2(u)du

�
:

Remark. The CLT convergence theorem 6.4 for the regression function holds true for
strongly mixing sequences, under the moment assumption (21) if hn ! 0; nhn=log(n)!
1, �n = O(n�a) with � > 2S=(S � 2) ([27]). No positivity assumption on the kernel
K is required.

6.3 Almost sure convergence

For the sake of simplicity, we only consider the geometrically dependent case.

Theorem 6.6 Let (Zt)t2ZZ be a stationary sequence satisfying the conditions (22), (23)
with p = 2, and that it is either (�;  1;L)- or (�;  2;L)-weakly dependent with �r � ar

for some 0 < a < 1.

(i) If nh= log4(n)!1, then for any M > 0, almost surely,

sup
jxj�M

jĝ(x) � IEĝ(x)j = O

�
log2(n)p

nh

�
:

(ii) For any M > 0, if f; g 2 C� for some � 2]0;1[, h �
�
log4(n)

n

�1=(1+2�)

and

inf jxj�M f(x) > 0, then, almost surely,

sup
jxj�M

jr̂(x) � r(x)j = O

(�
log4(n)

n

��=(1+2�)
)
:

Remark. Liebscher [19] proves the uniform almost sure convergence in a strongly

mixing framework, at the optimal rate O
��

log(n)
n

��=(1+2�)
�
, if �r = O(r�a), with

a > 4 + 3=�:
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Weak dependence :
models and applications.

Patrick Ango Nze and Paul Doukhan

Abstract We are aimed to develop a systematic introduction to a new weak depen-
dence condition. We show that some popular models hold this property : stationary
Markov models, bilinear models, and more generally, Bernoulli shifts. In some cases
no mixing properties can be expected without additional regularity assumption of in-
novation's distribution where as weak dependence conditions can be easily derived. We
also develop some of its standard applications. First, probabilistic results : weak in-
variance principle for Donsker line and empirical process. We also present a statistical
application to kernel estimates for density and regression functions.

R�esum�e Nous d�eveloppons ici une introduction systematique �a une nouvelle condi-
tion de d�ependance faible. Nous montrons en particulier que quelques mod�eles tr�es
populaires en s�eries chronologiques v�eri�ent cette condition : des châ�nes de Markov
stationnaires, des mod�eles bilin�eaires ou plus g�en�eralement des sch�emas de Bernoulli.
On ne peut, en g�en�eral, esp�erer que ces mod�eles satisfassent �a des conditions de m�elange.
Quelques applications classiques sont aussi envisag�ees. Nous prouvons d'abord des

th�eor�emes limite probabilistes : le principe de Donsker et le th�eor�eme de limite centrale
empirique. Nous obtenons aussi le comportement asymptotique d'estimations �a noyau
d'une densit�e et d'une fonction de r�egression; leur convergence uniforme presque sûre
ainsi que leur comportement asymptotiquement gaussien sont prouv�es comme dans le
cas de suites ind�ependantes.
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1 Introduction

In this paper we are aimed to provide a real alternative to the standard mixing condi-
tions (see e.g. [24]) for modelling some of the stationary sequences commonly used in
statistics.
We deal with sequences of random variables. We do not assume independence.

Asymptotic results obtained do not need to be analogous to that of independent se-
quences: this is a �rst but complicated way to de�ne weak dependence.
We are thus turning to much simpler conditions:
{ The �rst preoccupation we bear in mind is to obtain conditions, simple enough

to check on the really used models; our experience (see [11] and [2]) proves the real
diÆculty to handle strong mixing or absolute regularity conditions.
{ The second condition expected from a tractable weak dependence condition is that

the planned applications may ensue from such condition.
Our �rst concern was to establish two probabilistic limit theorems: the Donsker

invariance principle and the empirical CLT. They are used in statistical applications:
to determine change point estimation in the mean of a stationary sequence or to obtain
Kolmogorov-Smirnov tests for distributions. Kernel functional estimation problems
provide other statistical applications.

This paper is organized as follows.
A �rst section is devoted to the de�nitions our new version of a weak dependence

conditions. The main source is the seminal works [13] and [4].
A second section provides the weak dependence properties (in this sense) of some

of the classical stationary sequences used in statistics: Markovian models, associated
sequences, and Bernoulli shifts. As a by-product, this new dependence condition gives
access to some classes of models which could not be studied with former tools (mixing,
for instance).
After this we turn to some moment inequalities to be used in the sequel. This is

a �rst application of those weak dependence conditions. Indeed, a moment inequality
for sums may be proved by combinatorial arguments. This condition also yields some
sub-exponential inequalities described in the application to functional estimation.
Another technical trick is the Lindeberg-Rio (see [26]) method, easily handled in

this weak dependence frame. The latter method is compared with Bernstein's blocking
technique (see [17]). Each method provides a CLT. The dependence rates for CLT
convergence are compared later on in the functional estimation frame. Surprisingly,
there is not an uniformly best method.
We then turn to the Donsker invariance principle and the empirical CLT.
Finally we consider functional estimation. Besides the convergence results which are

of a proper interest, this frame allows to compare
{ the weak dependence conditions with the standard mixing.
{ the methods for proving CLTs.
{ the obstructions in view of optimal almost sure convergence of kernel estimators

(that is the i.i.d. rates).
The number of applications is relatively limited due to the fact that the conditions are

quite recent. We hope that this panorama of statistical applications may be enlarged
in the years to come.
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2 Independence and dependence

2.1 Independence and correlation

Recall that random variables (r.v.), taking values in IRd are independent in case

8f; g bounded measurable : Cov (f(X); g(Y )) = 0:

It is enough to consider classes of continuous or more regular functions.
Mixing conditions (recalled hereafter) were introduced by weakening such conditions:

the null, right hand side term above is made "small".
Note that in some cases, orthogonality yields independence.

� a) Bernoulli r.v's (that is r.v.'s with two points support.)

� b) Gaussian vectors : (X;Y ) 2 IRa+b:

� c) Associated random vectors.

The �rst case yields only pairwise independence but not independence, in the case of
more than two r.v.'s; it follows from orthogonality of the four couples (X;Y ), (X; 1�Y ),
(1�X;Y ) and (1�X; 1�Y ) if the couple (X;Y ) is orthogonal and the variables (X;Y )
are both supported in f0; 1g.
Except for the �rst case, properties inherited from covariances are not easy to translate

into properties of subjacent sigma-�elds.
In the two latter cases b) and c), additional inequalities may be proved for Lipschitz

functions. They take the form

jCov (f(X); g(Y )) j � c(f; g)
X
i;j

jCov (Xi; Yj)) j:

2.2 The weak dependence conditions

As the covariances of the initial r.v.'s are much easier to to compute than mixing co-
eÆcients, we introduce dependence properties (rather than sigma-�elds) for a process
(Xn)n2ZZ. Set IL1 for the set of numerical bounded measurable functions on some space
IRu and k � k1 the corresponding norm. We de�ne the Lipschitz modulus of a function
h : IRu ! IR

Lip(h) = sup
x6=y

jh(x)� h(y)j
kx� yk1 ; where k(z1; : : : ; zu)k1 = jz1j+ � � �+ jzuj:

De�ne
L = fh 2 IL1; khk1 � 1;Lip(h) <1g : (1)

De�nition 2.1 (Doukhan and Louhichi [13]) The sequence (Xn)n2ZZ is called (�;L;  )-
weakly dependent if there exists a sequence � = (�r)r2IN decreasing to zero at in�nity, and
a function  with arguments (h; k; u; v) 2 L2� IN2 such that for any u-tuple (i1; : : : ; iu)
and any v-tuple (j1; : : : ; jv) with i1 � � � � � iu < iu + r � j1 � � � � � jv, one has

jCov(h(Xi1 ; : : : ; Xiu); k(Xj1 ; : : : ; Xjv ))j �  (h; k; u; v)�r (2)

if the functions h and k are de�ned respectively on IRu and on IRv.
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The examples of interest involve the function  01(h; k; u; v) = vLip(k) (e.g. in causal lin-
ear processes),  1(h; k; u; v) = uLip(h) + vLip(k); (e.g. in non causal linear processes),
 2(h; k; u; v) = uvLip(h)Lip(k) (e.g. in associated processes), and  02(h; k; u; v) =
vLip(h)Lip(k):
Notice that the sequence � depends on both the class L and the function  . The

function  may really depend on all its arguments, in contrast with the case of bounded
mixing sequences. This de�nition is hereditary through images by convenient functions,
as it was noticed by [35] in view to check more easily a weak dependence property.
The following example, due to Rosenblatt ([29]) describes the case where mixing fails

to hold. This is the (Markov) AR(1)-process with binomial innovations (IP(�0 = 0) =
IP(�0 = 1) = 1

2 ) :

Xn =
1

2
(Xn�1 + �n):

This is also the Bernoulli shift (see de�nition below ) Xn = H(�n) with H(x) =P1
k=0 2

�(k+1)xk. This model has the stationary uniform distribution on the interval
but it satis�es no mixing condition (the past may entirely be recovered from present).
For a more rigorous proof see [17], page 375.
De�ne also the class,

I =
nOu

i=1
gxi ;xi 2 IR�+; u 2 IN�

o
; where gx(y) = 1Ix�y � 1Iy��x;8x 2 IR�+: (3)

The following lemma links I-weak dependence with L-weak dependence. Indeed, ex-
amples are proved to satisfy a weak dependence condition w.r.t. the class L. Consider
the weaker L0 \ C1b -weak dependence condition de�ned with

L0 =
nOu

i=1
fi; fi 2 L; fi : IR! IR; i = 1; : : : ; u; u 2 IN�

o
:

Here C1b stands for the set of partially di�erentiable functions with bounded partial
derivatives and the function  is either  1 or  2. This latter condition will thus imply
I-weak dependence under concentration assumptions.

Lemma 2.2 Let (Xn) be a sequence of r.v's. Suppose that, for some real � > 0

C(�) = sup
x2IR

sup
i
IP (x � Xi � x+ �) � C��: (4)

Suppose that the sequence (Xn) is

� (�;L0 \ C1b ;  1)-weakly dependent, then it is (�I ; I;  )-weakly dependent with

�I;r = �
�

1+�
r and  (h; k; u; v) = 2(8C)

1
1+� (u+ v):

� (�;L0 \ C1b ;  2)-weakly dependent, then it is (�I ; I;  )-weakly dependent with

�I;r = �
�

2+�
r and  (h; k; u; v) = (8C)

2
2+� (u+ v)

2(1+�)
2+� :

In order to understand better the mechanism of proofs we recall the proof of this lemma.

Proof of Lemma 2.2. First recall the following useful inequality, valid for real
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numbers 0 � xi; yi � 1, jx1 : : : xm � y1 : : : ymj �
Pm

i=1 jxi � yij: Let g; f 2 I, then
g(y1; : : : ; yu) = gx1(y1) : : : gxu(yu); and f(y1; : : : ; yv) = gx0

1
(y1) : : : gx0v(yv) for some

u; v 2 IN� and xi; x0j � 0. For �xed x > 0 and a > 0 let

fx(y) = 1Iy>x � 1Iy��x +
�y
a
� x

a
+ 1
�
1Ix�a<y<x +

�y
a
+
x

a
� 1
�
1I�x<y<�x+a:

Therefore Lip(fx) = a�1 and kfxk1 = 1 and Lip(h) � a�1, Lip(k) � a�1 if we set

h(y1; : : : ; yu) = fx1(y1) : : : fxu(yu); k(y1; : : : ; yv) = fx01(y1) : : : fx0v(yv):

Consider i1 � : : : � iu � iu + r � j1 � : : : � jv and set

Cov(h; k) := Cov(h(Xi1 ; : : : ; Xiu); k(Xj1 ; : : : ; Xjv )):

� (�;L0 \C1b ;  1) (resp. (�;L0 \C1b ;  2))-weak dependence implies, with either c(u; v) =
(u+ v) or c(u; v) = (u+ v)2,

jCov(h; k)j � 1

a
c(u; v)�r

�
resp. jCov(h; k)j � 1

a2
c(u; v)�r

�
:

� Inequality (4) yields jCov(g; f) � Cov(h; k)j � 8Ca�(u + v). Hence jCov(g; f)j �
8Ca�(u+ v) + 1

ac(u; v)�r (resp. jCov(g; f)j � 8Ca�(u+ v) + 1
a2 c(u; v)�r):

The Lemma follows by setting

a =

�
c(u; v)�r
8C(u+ v)

�1=(1+�)  
resp. a =

�
c(u; v)�r
8C(u+ v)

�1=(2+�)!
:

2.3 Mixing

For the completeness sake, we recall here the de�nitions of the main mixing coeÆcients.
For more details, the reader is deferred to Doukhan [11].
Let (
;A; IP) be a probability space and let U ;V be two sub �-algebras of A, various

measures of dependence between U and V have been introduced; among them let us
recall

�(U ;V) = supfjIP(U \ V )� IP(U)IP(V )j;U 2 U ; V 2 Vg;
�(U ;V) = IE supfjIP(V jU)� IP(V )j;V 2 Vg;
�(U ;V) = supfjCorr(u; v)j;u 2 IL2(U); v 2 IL2(V)g;
�(U ;V) = supfjIP(V jU)� IP(V )j;U 2 U ; V 2 Vg:

Those coeÆcients are respectively Rosenblatt's [28] strong mixing coeÆcient, �(U ;V),
Wolkonski and Rozanov's absolute regularity coeÆcient in [36], �(U ;V), Kolmogorov
and Rozanov' maximal correlation coeÆcient �(U ;V) [18], and �(U ;V) the uniform
mixing coeÆcient from Ibragimov [17].
Let X = (Xn)n2ZZ be a discrete time stationary process. We set XA = fXt; t 2 Ag if
A � ZZ for the A-marginal of X . At last �(Z) will denote the sigma-algebra generated
by a random variable Z.
For any coeÆcient previously de�ned, say c(�; �), we shall call the process X a c-mixing
process if limk!1 cX;k = 0 where cX;k = c(�(X]�1;0]); �(X[k;+1[).

��mixing ) ��mixing ) ��mixing; and ��mixing ) ��mixing) ��mixing

and no other implication holds.
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3 Models

3.1 Markovian Models

Let (�n)n2ZZ be an i.i.d. sequence and let M be some measurable function. We turn our
attention to models driven by the equation

Xn =M(Xn�1; :::; Xn�p; �n): (5)

In order to justify the title of this section, remark that the vector valued sequence

(X
(p)
n )n2ZZ, where X

(p)
n = (Xn�1; :::; Xn�p) is Markovian.

Such models are associated with ergodic Markov chains (see [21] for a review of the
main models). Thus the stationarity assumption is reachable. An interesting subclass
of examples is given by two functions R and S and two mutually independent i.i.d.
sequences (�n) and (�n)

Xn = R(Xn�1; :::; Xn�p; �n) + S(Xn�1; :::; Xn�p)�n:

Here the function S satis�es S(x1; :::; xp) � s > 0 for some s 2 IR, and any real numbers
x1; :::; xp and the functions R and S essentially satisfy contraction assumptions (see [11],
[14], [2] or [34] for developments).
For instance ARMA(p; q) processes

Yn =

pX
i=1

aiYn�i + �n +

qX
j=1

bj�n�j ;

have such a Markov representation. Indeed Xn = (Yn; Yn;n�1 : : : ; Yn;n�`), where Yn;j =
IE [Yn j Yn+i : i � n], and ` = maxfp; q+1g, is a Markov process. The mixing properties
of these models are developed in [22].
Lipschitzian models are shown to be exponentially L-weakly dependent.

Proposition 3.1 ([14]) . Let a vector valued Markov model be de�ned through the
recurrence relation (5). Assume that

IEkM(x; �n)�M(y; �n)kS � akx� ykS and IEkM(0; �n)kS <1;

for some 0 � a < 1 and S � 1.
Then the sequence (Xn)n2ZZ is (�;L;  )-weakly dependent with �r = O(ar) and  (h; k; u; v) =
vLipk:

Only recall that here stationarity is not required.
More general AR(p) nonlinear models, Xn =M(Xn�1; : : : ; Xn�p; �n), have the same

properties: if, for example, IEjM(0; �n)j < 1 and, for some constants aj � 0; 1 � j � p
with

Pp
j=1 aj < 1,

IEjM(x1; : : : ; xp; �n)�M(y1; : : : ; yp; �n)j �
Pp

j=1 aj jxj � yj j:
This model is geometrically (�;L;  )-weakly dependent with  (h; k; u; v) = min fuLiph; vLipkg
as proved in [13].
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Remark. Under the assumption that �0's distribution has an almost sure non vanish-
ing density f and is integrable the additive model

M(Xn�1; : : : ; Xn�p; �n) = R(Xn�1; : : : ; Xn�p) + �n

is shown to be ergodic and mixing. More precisely, if the function R is continuous, and
jR(x1; : : : ; xp)j � A+a1jx1j+ � � �+apjxpj with a1+ � � �+ap < 1; under the invariant
initial distribution, the sequence is absolutely regular with �n = O(e�bn) (see [8]).

3.2 Bernoulli shifts

De�nition 3.2 Let (�i)i2ZZ be a sequence of i.i.d. real valued r.v's and the function
H : IRZZ ! IR be measurable. The sequence (Xn)n2ZZ is called a Bernoulli shift if it is
de�ned by Xn = H(�n�j ; j 2 ZZ):

Causal shifts write as Xn = H(�n; �n�1; �n�2; : : : ; �0; ��1; ��2; : : :), i.e. H : IRIN ! IR.
Such shifts provide natural examples of weakly dependent, but not mixing sequences
(see [27]).
Notice that a stationary Markov setting provides such causal sequences. In fact,

consider a Markov process driven by the recurrence equation Xt = M(Xt�1; �t); for
some i.i.d. sequence (�t)t2ZZ. Then the function H is de�ned, if it exists, implicitly
by the relation H(x) = M(H(x0); x0); where x = (x0; x1; x2; : : :); x

0 = (x1; x2; x3; : : :):
Control theory yields tools to provide explicit Bernoulli shift representations (see [22]
and [21]).

3.2.1 Chaotic representations

We now specialize in chaotic expansions associated with the discrete chaos generated by
the sequence (�i)i2ZZ; in a condensed formulation we write H(x) =

P1
k=0H

(k)(x); where

H(k)(x) denotes the k-th order chaos contribution, H(0)(x) = a
(0)
0 is only a centering

constant, and

H(k)(x) =
1X

j1=�1

1X
j2=�1

: : :
1X

jk=�1
a
(k)
j1;:::;jk

xj1 � xj2 � : : :� xjk

or in short, in a vectorial notation, H(k)(x) =
P

j2ZZk a
(k)
j xj :

In contrast with mixing conditions, it may be proved that even non causal sequences
may admit a L-weakly dependent behaviour. This is a by-product of the proposition
3.4 to follow.

De�nition 3.3 For any integer k > 0, we denote Æk any number such that

sup
i2ZZ

IEjH(�i�j ; j 2 ZZ)�H(�i�j1Ijjj<k; j 2 ZZ)j � Æk:

Such sequences (Æk)k2ZZ+ are related to the modulus of uniform continuity of H . If,
for instance, for positive constants (ai)i2ZZ; 0 < b � 1, the inequality jH(ui; i 2 ZZ) �
H(vi; i 2 ZZ)j �Pi2ZZ aijui � vijb holds for any sequence (ui); (vi) 2 IRZZ and if the se-

quence (�i)i2ZZ has a �nite b-th order moment, then one can choose Æk =
P
jij�k aiIEj�ijb.

Proposition 3.4 ([13]) Bernoulli shifts are (�;L;  )-weakly dependent with �r = 2Ær=2,
and with the function  (h; k; u; v) = 4 (ukkk1Lip(h) + vkhk1Lip(k)). Under causality,
this holds with �r = Ær and  (h; k; u; v) = 2vLipkkhk1.
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Processes associated with a �nite number of chaotic terms (i.e. H(k) = 0 if k > k0)
are also called Volterra processes. A suitable bound for Ær corresponds here with the
stationarity condition

Ær =
1X
k=0

8<
:

X
j2ZZk;kjk1>r

���a(k)j

���
9=
; IEj�0jk <1:

The �rst example of such a Volterra process is clearly the class of linear processes
Xt =

P1
�1 ak�t�k. A suitable sequence is �r = 2IEj�0j

P
jkj>r=2 jakj with the previous

function  1.
The simple bilinear process, Xt = (a + b�t�1)Xt�1 + �t; is stationary if c = IEja +
b�0j < 1 (see [33]). It is a Bernoulli shift with H(x) = x0 +

P1
j=1 xj

Qj
s=1(a + bxs);

for x = (xi)i2IN. We truncate the previous series up to rank r in order to obtain
Ær = �r = cr(r + 1)=(1� c).
Giraitis, Koul and Surgailis have introduced ARCH(1)�models (from Giraitis, Koul
and Surgailis in [15]. We are given a nonnegative sequence (bj)j�1 and a i.i.d. sequence
of nonnegative random variables (�j)j�0: The process (if it exists) is ruled through the
recurrence relation

Xt =

2
4a+ 1X

j=1

bjXt�j

3
5 �t:

Such models are proved to have a stationary representation with the chaotic expansion

Xt = a

1X
`=1

1X
j1=0

� � �
1X

j`=0

bj1 � � � bj`�t�j1 � � � �t�[j1+���+j`]

under the simple assumption IE�0
P1

j=1 bj < 1: They extend the standard ARCH(p)

model (bj = 0 if j > p). Here we have �r =
�
IE�0

P1
j=1 bj

�r
.

3.2.2 Association

De�nition 3.5 The sequence (Zt)t2ZZ is associated, if for all coordinatewise increasing
real-valued functions h and k,

Cov(h(Zt; t 2 A); k(Zt; t 2 B)) � 0

for all �nite subsets A and B of ZZ.

Associated sequences are (�;  2;L)-weakly dependent with �r = supk�r Cov(X0; Xr)
(see [13]). Note that broad classes of examples of associated processes result from
the fact that any independent sequence is associated and that monotonicity preserves
association (for this, see [23]).
The case of Gaussian sequences is analogous by setting �r = supk�r jCov(X0; Xk)j.

Also, one may consider combinations of sums of Gaussian and associated sequences, or
Bernoulli shifts driven by stationary, associated, instead of i.i.d. sequences.
Note that for associated or Gaussian sequences,  02 replaces  2 if �r = supk�r jCov(X0; Xk)j

is replaced by �r =
P

k�r jCov(X0; Xk)j.
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Remark. The causal linear process Xn =
P1

t=0 at�n�t; satis�es a �-mixing condition
if �0's density and (for some Æ > 0) the 1 + Æ order moment exist, together with the

condition
P1

t=�1 jatjÆ < 1. Then [25] prove that �n � C
P1

l=n (
P1

k=l jakj)Æ=1+Æ , for
some C > 0. If, for instance aj = O(j�a), then under the previous regularity and
moment conditions yields if a > 2 + 1=Æ, �n � n�b with b = (a � 2)Æ=(1 + Æ): For
instance,

P1
n=0 �n <1 if a > 3 + 2=Æ. If Æ = 1 this writes a > 5. If Æ =1 this writes

a > 3.

4 Algebraic moments of sums (see [13])

Let (Xn)n2IN be a sequence of centered r.v's and let Sn =
Pn

i=1Xi: In this section,
we give moment bounds for jIESqnj, when q 2 IN and q � 2. Let (Xn) be a sequence of
centered r.v's and de�ne for positive integer r coeÆcients of weak dependence as non
decreasing sequences (Cr;q)q�2 such that��Cov �Xt1 � � � � �Xtm ; Xtm+1 � � � � �Xtq

��� � Cr;q ; (6)

for all the successions ft1; : : : ; tqg such that 1 � t1 � : : : � tq � n and, for some integer
1 � m < q, tm+1 � tm = r: Explicit bounds Cr;q are provided by [13] in order to build
inequalities for the partial sums Sn. Two kinds of bounds are considered, either��Cov �Xt1 � � � � �Xtm ; Xtm+1 � � � � �Xtq

��� � cqM q�2�r (7)

or,

��Cov �Xt1 � � � � �Xtm ; Xtm+1 � � � � �Xtq

��� � c

Z �r

0

QXt1
(x)� � � � �QXtq

(x)dx; (8)

where QX still denotes the X 's quantile function and c;  � 0 denote real numbers.
In the examples, the previous bound (7) holds for bounded sequences such that kXnk1 �
M: Under (�;L;  )-weak dependence, this yields the bound

Cr;q = max
1�m<q

 (j
m; j
(q�m);m; q �m)Mq�r

where j(x) = x1Ijxj�1 + 1Ix>1 � 1Ix<�1.
As in lemma 2.2, we see that under (�;L;  )-weak dependence with  (h; k; u; v) =
c(u; v)Lip(h)Lip(k) a bound is

Cr;q = max1�m<q c(m; q �m)Mq�2�r:

For non bounded random variables,

Cr;q = c
R �r
0
QXt1

(x)� � � � �QXtq
(x)dx

under (�; I;  )-weak dependence.
An analogous bound is obtained by Rio for strongly mixing sequences (see [26]). The
bound (8) holds for more general r.v's, using moment or tail assumptions.
A �rst consequence of inequality (7) is the following Marcinkiewicz-Zygmund inequality.
Let (Xn)n2IN be a sequence of centered r.v's satisfying the condition

Cr;q = O(r�q=2); (9)

9



then, there is a constant B > 0 not depending on n for which

jIESqnj � Bnq=2: (10)

The following lemma gives moment inequalities whenever q 2 f2; 4g, it was essentially
proved in Billingsley ([5], lemmas 3 and 4, page 172).

Lemma 4.1 ([13]) If (Xn)n2IN is a sequence of centered r.v's, then

IES2
n � 2n

n�1X
r=0

Cr;2; IES4
n � 4!

8<
:
 
n

n�1X
r=0

Cr;2

!2

+ n

n�1X
r=0

(r + 1)2Cr;4

9=
; : (11)

The following Theorems deal with higher order moments.

Theorem 4.2 ([13]) Let q � 2 be some integer. Suppose that dependence coeÆcients
Cr;p associated to the sequence (Xn) satisfy for all integers 0 < p � q and for some
positive constants M , , C

Cr;p = CepMp�2�r, (H1)

then, for any integer n � 2

jIESqnj �
(2q � 2)!

(q � 1)!
eq

8<
:
 
Cn

n�1X
r=0

�r

!q=2

_
 
CMq�2n

n�1X
r=0

(r + 1)q�2�r

!9=
; : (12)

Theorem 4.2 is adapted to work with bounded sequences. De�ne the class I

I =
nOu

i=1
gxi ;xi 2 IR�+; u 2 IN�

o
; where gx(y) = 1Ix�y � 1Iy��x;8x 2 IR�+: (13)

In order to consider the unbounded case, we shall consider (�; I;  )-weak dependence
where  writes  (h; k; u; v) = c(u; v).

Theorem 4.3 ([13]) If (Xn)n2IN is a centered and (�; I;  )-weakly dependent sequence,
set Cq = (maxu+v�q c(u; v)) _ 2: Then

jIESqnj �
(2q � 2)!

(q � 1)!

 
Cq

nX
i=1

Z 1

0

(��1(u) ^ n)q�1Qq
i (u)du _

�
C2

nX
i=1

Z 1

0

(��1(u) ^ n)Q2
i (u)du

�q=2!
:

In the special case of strongly mixing and stationary sequences, this is Theorem 1 in
[26]. The restriction of working with even integer exponents �nds its compensation in
the explicit form of the constants.

Remark. Exponential inequalities may be built by using Theorem 4.2. De�ne

Mq;n = n
n�1X
r=0

(r + 1)q�2Cr;q :

We �rst suppose that for all integers q � 2 and n:

Cr;p = CepMp�2�r; Mq;n � An
q!

�q
;

where � is some constant and An is a sequence independent of q, then

10



8x 2 IR�+; IP
�jSnj � x

p
An

� � A exp
��Bp�x�, (DP )

with A = e4+1=12
p
8�; and B = e5=2�=2: This exponential inequality is analogous to

??? Let (Xn) be a sequence of centered r.v.'s, this holds if Cr;q = C�2Mq�2eqe�br for
constants C; �; ; b > 0, if kXnk1 � M and kXnk2 � �, for any integer n � 0. In this
case An = n�2. E.g. this holds under (�;L;  )-weak dependence if �r = O(e�br) and
 (h; k; u; v) � eÆ(u+v)Lip(h)Lip(k)) for some Æ � 0.

The use of combinatorics in those inequalities makes them relatively weak. E.g. Bern-
stein inequality, valid for independent sequences allows to replace the term

p
x in the

previous inequality by x2 under the same assumption n�2 � 1; in mixing cases analogue
inequalities are also obtained by using coupling arguments which are not available here.

5 Limit theorems

5.1 The Donsker line

Consider a stationary sequence (Xn)n2ZZ. We assume that this sequence is integrable,
centered at expectation, and that

IEX0 = 0:

Denote by [x] the integral part of a real number x ([x] � x < [x] + 1), the Donsker
line (Dn(t))t2[0;1] is de�ned for any sample with size n as the following continuous time
process

Dn(t) =

[nt]X
k=1

Xk + (nt� [nt])X[nt]+1:

Let (Wt)t2[0;1] be a Brownian motion, that is W denotes the centered Gaussian real
valued process with covariance

IEWsWt = min fs; tg:

We consider the following convergence result in the space C([0; 1]) of continuous functions
on the unit interval when the sample size n grows to in�nity:

Theorem 5.1 Suppose that the stationary sequence (Xn)n2ZZ satis�es IEjX0j4+Æ < 1
for some Æ > 0. Assume a (�; I;  )-weak dependence condition with the function
 1(h; k; u; v) (respectively  2) and �r = O(r�a) with a � 2 + 4=Æ (respectively a > 2).
Then the following functional convergence holds in the space C([0; 1]) :

1p
n
Dn(t)! �Wt:

The following series is assumed to be convergent

�2 =

1X
�1

Cov(X0; Xk):

The case �2 = 0 is detailed by [24]. We shall assume here that �2 6= 0:

11



Remark. Without any regularity condition on innovations, theorem 5.1 holds for a
bounded Lipschitz function of a linear process Xn =

P1
k=�1 ak�n�k if ak = O(k�D)

when D > 3. The latter doesn't need to be causal while Ho and Hsing need this causal-
ity assumption in [16].

Proof of Theorem 5.1. Lemma 4.2 and a maximal inequality by Moricz et alii
(see [11], page 40) yield

IEjSnj2+Æ = O
�
n1+Æ=2

�
(14)

as soon as for any increasing sequence of integers 0 � i < j < k � l

1X
m=0

mIEjX0Xmj <1 and Cov (XiXj ; XkXl) = O �(k � j)�2
�
: (15)

Moreover, this entails that �2 = n�1Var(Sn) > 0 and the �nite dimensional (�di)
convergence follows. The tightness of the process is a consequence of (15). The �rst

part of (15) follows from the covariance bound jCov (X0; Xr) j =) = O
�
�
(2+Æ)=(4+Æ)
r

�
:

The latter bound follows from Cov (XiXj ; XkXl) = O
�
�
Æ=(4+Æ)
k�j

�
:

Remark. Let Æ > 0: Assume the existence of a moment of order (2 + Æ) for X0. The
Donsker functional CLT holds in the strong mixing case if

P1
n=0 n

2=Æ�n <1 (see [26]).
The condition

P1
n=0 �(2

n) < 1 with IEX2
0 < 1 implies the functional convergence, as

Shao proved [30].

Remark. Here we consider conditions in terms of conditional expectations with re-
spect to an adapted �ltration. We �rst recall that theorem 5.1 holds for martingales
with stationary square integrable increments IEX2

0 <1 (see [5]). Let (Mn) be a �ltra-
tion adapted to the process (Xn)n2ZZ: Xn is Mn-measurable for any n 2 ZZ. Dedecker
and Rio [9] prove that for a centered, square integrable process, such that the sumP1

n=0X0 IE (XnjM0) is convergent in IL1, the sequence IE(X2
0 + 2X0SnjI) converges in

IL1 to some random variable �. The �-�eld I is the tail �-�eld. Moreover, conditionally
to I, Dn(t)=

p
n converge to a Brownian motion �Wt.

� This result provides a functional CLT to a limit process which is not Gaussian
(see [6] for results related to the latter case).

� Note that ergodicity implies the triviality of the tail �-�eld and a standard Donsker
theorem follows.

� Standard results prove this theorem under a more restrictive IL2 assumption: both
series 1X

n=0

IE(XnjM0) and

1X
n=0

(Xn � IE(XnjM0))

converge.

� As a new result yielded by this theorem, consider a stationary Markov sequence
(�n)n2ZZ with stationary distribution � and transition operator P . Let Xn = g(�n)
be centered at expectation, nonlinear functionals of (�n). Then the assumption
writes as the convergence of the series

P1
n=0 gP

ng in IL1(�).
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� The previous result concerning strongly mixing sequences appears also as a con-
sequence of this theorem.

5.2 Empirical process

Let us consider a stationary sequence (Xn)n2ZZ. We assume without loss of generality
that the marginal distribution of this sequence is the uniform law on [0; 1]. The empirical
repartition process of the sequence (Xn) at time n is de�ned as 1p

n
En(x) where

En(x) =
Pn

k=1

�
1I(Xk�x) � IP(Xk � x)

�
:

Note that En = n (Fn � F ) if Fn; F respectively denote the empirical d.f. and the
marginal d.f. We consider the following convergence result in the Skohorod space D(IR)
when the sample size n converges to in�nity:

1p
n
En(x)! �B(x):

Here ( �B(x))x2IR is the dependent analogue of a Brownian bridge, that is �B denotes the
centered Gaussian process with covariance given by

IE �B(x) �B(y) =

1X
k=�1

(IP(X0 � x; Xk � y)� IP(X0 � x)IP(Xk � y)) : (16)

Note that for independent sequences with a marginal repartition function F , this only
writes �B(x) = B(F (x)) for some standard Brownian Bridge B; this justi�es the name
of Generalized Brownian Bridge.
Let (Xn) be a stationary sequence assumed to satisfy the following weak dependence

condition.

sup
f2F

�����Cov
 

2Y
i=1

f(Xti);

4Y
i=3

f(Xti)

!����� � �r; (17)

where F = fx! 1Is<x�t; for s; t 2 [0; 1]g, 0 � t1 � t2 � t3 � t4 and r = t3 � t2 (in this
case a weak dependence condition holds for a class of functions IRu ! IR working only
with the values u = 1 or 2).

Proposition 5.2 Let (Xn) be a stationary sequence such that (17) holds. Assume that
there exists � > 0 such that

�r = O(r�5=2�� ): (18)

Then the sequence of processes
�

1p
n
fEn(t); t 2 [0; 1]g

�
n>0

is tight in the Skohorod space

D([0; 1]).

Theorem 5.3 Suppose that the stationary sequence (Xn) is (�;L1;  j)-weakly depen-
dent, with either j = 1 and �r = O(r�15=2�� ), or j = 2 and �r = O(r�5�� ). Then the
following empirical functional convergence holds true in the Skohorod space of numerical
c�adl�ag functions on the real line, D(IR):

1p
n
En(x)! �B(x):
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If the sequence (Xn) is i.i.d., then equation (16) reduces to zero-index term. This
covariance has essentially 1=2 order Holder regularity. If the second order marginals
(X0; Xk) have a joint, continuous density, then the k�order term is a C2-function.
Hence the regularity of the covariance is driven by the central term. In any case the
process �B is perhaps not derivable in quadratic mean.

Proof of Theorem 5.3. Thanks to the Rosenthal inequality in Theorem 4.2

kEn(t)�En(s)k4 � C
p
n

n�1X
r=0

min
n
r�5=2�� ; jt� sj

o
+

 
n

n�1X
r=0

(r + 1)
2
�r

!1=4

� p
n
�
jt� sj(a�1)=2a + n(2�a)=4

�
:

The conclusion follows from Shao and Yu' tightness lemma [32]. The �di convergence
is due to a CLT Lemma by blocks by Ibragimov [17].

Remark. If the sequence is strongly mixing, the summability condition
P1

n=0 �n <1
implies �di convergence. The empirical functional convergence holds if, moreover, for
some a > 1, �n = O(n�a) (see [26]). In a absolutely regular framework, Doukhan, Mas-
sart and Rio (see [26]) obtain the empirical functional convergence when, for some
a > 2; �n = O(n�1(logn)

�a
): Shao and Yu [32] obtain the empirical functional

convergence theorem when the maximal correlation coeÆcient satisfy the conditionP1
n=0 � (2

n) <1.

5.3 A triangular CLT: Lindeberg-Rio's method

Let Xn;j ; 1 � j � n be a triangular array. We shall omit the �rst index n when possible
without confusion. Consider a sequence (Wj)j2IN of i.i.d. r.v.'s with standard normal

law, and independent from (Xn)t2ZZ. De�ne

�2n = Var (Sn)

Sk =

kX
j=1

Xj ; 1 � k � n; and S0 = 0;

�k =

nX
j=k

p
vn;jWj =

nX
j=k

Vj ; 1 � k � n; and �n+1 = 0;

where we assume that vn;j = Var (Sj)�Var (Sj�1) > 0:
Once one has proved that �2n ! �2, it remains to prove that for any three times

di�erentiable function with bounded derivatives up to order 3, ' say,

�n(') = IE' (Sn)� IE' (W0)! 0: (19)

Consider the following:

Uj = Sj�1 + �j+1; Rj(x) = ' (Uj + x)� ' (Uj)� vj
2
'00 (Uj) (1 � j � n):

Clearly, we have

�n(') =
nX

k=1

�n;k(')
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�n;k(') = IERk(Xk)� IERk(Vk)

= �1
k(')��2

k('):

A Taylor expansion yields

�2
k(') = IE

�
' (Uk + Vk)� ' (Uk)� Vk'

0 (Uk)� V 2
k

2
'00 (Uk)

�

=
1

6
IE
�
V 3
k '

(3) (Uk + #kVk)
�
; with 0 < #k < 1;���2

k(')
�� � C (vk)

3=2
:

Moreover,

�1
k(') = IE

�
' (Uk +Xk)� ' (Uk)� vk

2
'00 (Uk)

�
= IE

�
Xk'

0 (Uk) +
1

2

�
X2
k �

vk
2

�
'00 (Uk) +

1

6
X3
k'

(3) (Uk + #kXk)

�
; with 0 < #k < 1:

It then follows that

nX
k=1

�1
k(') =

nX
k=1

k�1X
j=1

Cov ('00 (Sk�1�j + �j+1)Xk�j ; Xk)

+
1

2

nX
k=1

k�1X
j=1

Cov
�
'(3) (Sk�1�j + �j+1 + #k�jXk�j)X2

k�j ; Xk

�

+

nX
k=1

Cov (Xk; '
0 (�k+1)) +

1

2

nX
k=1

IE
�
'00 (Uk)

�
X2
k � IEX2

k

��

+ IE

0
@n�1X

k=1

Cov (X0; Xk)

nX
j=k+1

'00 (Uj)

1
A+

1

6

nX
k=1

IE
�
'(3) (Uk + �kXk)X

3
k

�

= E1 +E2 +E3 +E4 +E5 +E6: (20)

The term E3 is null. The other ones are controlled in two ways: by uniform bounds
on one hand, by dependence covariance bounds on the other hand. See [7] for further
details.
We can apply this method to density estimation on IR. Consider a stationary sequence

(Xt)t2ZZ with marginal density f: Assume that the densities of the pairs (X0; Xk),
k 2 ZZ+, exist, and are uniformly bounded : sup

k>0
kf(k)k1 <1.

Let K be some kernel function with integral 1, Lipschitzian and compactly supported.
The kernel density estimator is de�ned by

f̂(x) = f̂n;h(x) =
1

nh

nX
t=1

K

�
x�Xt

h

�
:

Theorem 5.4 Suppose that the stationary sequence (Xt)t2ZZ is (�;L1;  
0
j)-weakly de-

pendent, with either j = 1; 2 and �r = O(r�a); a > 2+j, or (�;L1;  j)-weakly dependent
j = 1; 2 and �r = O(r�a); a > 2 + j + 1=Æ, where nÆh ! 1 for some Æ 2]0; 1[. If
f(x) > 0; then

p
nh

�
f̂(x)� IEf̂(x)

� D! N
�
0; f(x)

Z
K2(u)du

�
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Remark. In order to obtain a CLT for time series, it seems that the �rst paper
using the Bernstein blocking technique in due to Dehling, see [10]. This method is also
described in [11] and it is used in [13]. The technique consists in dividing a sample
fZ1; : : : ; Zng into blocks Um = fZkgk2Km

which are almost independent and such that
Card (f1; : : : ; ng nSmKm) = o(n) as n!1. This condition essentially allows to work
with the variables Tm =

P
k2Km

Zk (built from those blocks) exactly as in the classical
Lindeberg method of the independent case.

Proof of Theorem 5.4. The details of the proof follow [3].

6 Functional estimation

We consider a stationary processes (Zt)t2ZZ with Zt = (Xt; Yt) where Xt; Yt 2 IR. The
quantity of interest is the regression function r(x) = IE(Y0jX0 = x). Let K be some
kernel function with integral 1. Assume that K is a Lipschitz function with a compact
support. The kernel estimator is de�ned by

f̂(x) = f̂n;h(x) =
1

nh

nX
t=1

K

�
x�Xt

h

�
; ĝ(x) = ĝn;h(x) =

1

nh

nX
t=1

YtK

�
x�Xt

h

�
;

r̂(x) = r̂n;h(x) =
ĝn;h(x)

f̂n;h(x)
if f̂n;h(x) 6= 0; r̂(x) = 0 otherwise:

Here h = (hn)n2IN is a sequence of positive real numbers. We always assume that
hn ! 0; nhn !1 as n!1.

De�nition 6.1 Let � = a + b with (a; b) 2 IN�]0; 1]. De�ne the set of �-regular func-
tions C� by

C� =
n
u : IR! IR; u 2 Ca and 9A � 0 ju(a)(x) � u(a)(y)j � Ajx� yjb

for all x; y in any compact subset
o
:

Here, Ca is the set of a-times continuously di�erentiable functions.

If g 2 C�, one can choose a kernel function K of order � such that uniformly on any
compact subset of IR

bh(x) = IE(ĝ(x)) � g(x) = O(h�)
uniformly on any compact subset of IR. In view of asymptotic analysis we assume that
the marginal density f(:) of X0 exists and is continuous. Moreover f(x) > 0 for any
point x of interest and the regression function r(:) = IE(Y0jX0 = :) exists, is continuous.
At last, for some p � 1, x! gp(x) = f(x)IE(jY0jpjX0 = x) exists and is continuous. We
set g = fr with obvious short notation. Moreover, assume one of the following moment
assumptions. Either,

IEjY0jS <1; for some S � p (21)

or

IE exp (jY0j) <1: (22)
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6.1 Second Order Properties

We consider �rst the properties of ĝ(x). We also consider the following conditionally
centered equivalent of g2 appearing in the asymptotic variance of the estimator r̂,

G2(x) = f(x)Var (Y0jX0 = x) = g2(x)� f(x)r2(x):

Assume that the densities of the pairs (X0; Xk), k 2 ZZ+, exist, and are uniformly
bounded : sup

k>0
kf(k)k1 <1. Moreover, uniformly over all k 2 ZZ+, the functions

r(k)(x; x
0) = IE

�
jY0YkjjX0 = x;Xk = x0

�
(23)

are continuous. Under these assumptions, the functions g(k) = f(k)r(k) are locally
bounded.

Theorem 6.2 Suppose that the stationary sequence (Zt)t2ZZ is (�;  j ;L)-weakly depen-
dent with �r = O(r�a) and a > 2 + j, for j = 1 or j = 2. Assume that it satis�es the
conditions (22) and (23) with p = 2. Suppose that nÆh ! 1 for some Æ 2]0; 1[. Then
uniformly in x belonging to any compact subset of IR,

Var (ĝ(x)) =
1

nh
g2(x)

Z
K2(u)du + o

�
1

nh

�

and

Var
�
ĝ(x) � r(x)f̂ (x)

�
=

1

nh
G2(x)

Z
K2(u)du+ o

�
1

nh

�
:

6.2 Central limit theorems

We �rst consider the density estimator.

Theorem 6.3 Suppose that the stationary sequence (Xt)t2ZZ is either (�;L1;  
0
j)-weakly

dependent, with �r = O(r�a); a > 2 + j, or (�;L1;  1)-weakly dependent with �r =
O(r�a); a > 3(1 +

p
5)=2, or (�;L1;  2)-weakly dependent with �r = O(r�a); a > 6. If

where nh!1 and f(x) > 0; then

p
nh

�
f̂(x)� IEf̂(x)

� D! N
�
0; f(x)

Z
K2(u)du

�
:

Proof of Theorem 6.3. The CLT is obtained by Lindeberg Rio method here above
described and by Bernstein's blocking technique described in [17]. The Theorem follows
by comparing the rates obtained by both methods. See [3] for more details.

Theorem 6.4 Assume that the stationary sequence (Zt)t2ZZ is (�;  j ;L)-weakly depen-

dent with �r = O(r�a) with a > min
�
max (2 + j; 3(2 + j)Æ) ;max

�
2 + j + 1

Æ ;
2+2(2+j)Æ

1+Æ

��
;

for j = 1 or j = 2. Assume moreover that it satis�es the conditions (22) and (23) with
p = 2. Consider a positive kernel K: Let f; g 2 C� for some � 2]0; 2], and nh1+2� ! 0.
Then, for all x belonging to any compact subset of IR,

p
nh
�
r̂(x)� r(x)

� D! N
�
0;

G2(x)

f2(x)

Z
K2(u)du

�
:
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Proof of Theorem 6.4. See [3]. They also prove the following

Proposition 6.5 Assume that the stationary sequence (Zt)t2ZZ is (�;  j ;L)-weakly de-
pendent with �r = O(r�a) with a > 9 for j = 1 and a > 12 for j = 2: Suppose that the
stationary sequence (Zt)t2ZZ satis�es the conditions (22) and (23) with p = 2. Consider
a positive kernel K: Let f; g 2 C� for some � 2]0; 2], and nh ! 1. Then, for all x
belonging to any compact subset of IR,

p
nh
�
r̂(x) � IEr̂(x)

� D! N
�
0;

G2(x)

f2(x)

Z
K2(u)du

�
:

Remark. The CLT convergence theorem 6.4 for the regression function holds true for
strongly mixing sequences, under the moment assumption (21) if hn ! 0; nhn=log(n)!
1, �n = O(n�a) with � > 2S=(S � 2) ([27]). No positivity assumption on the kernel
K is required.

6.3 Almost sure convergence

For the sake of simplicity, we only consider the geometrically dependent case.

Theorem 6.6 Let (Zt)t2ZZ be a stationary sequence satisfying the conditions (22), (23)
with p = 2, and that it is either (�;  1;L)- or (�;  2;L)-weakly dependent with �r � ar

for some 0 < a < 1.

(i) If nh= log4(n)!1, then for any M > 0, almost surely,

sup
jxj�M

jĝ(x) � IEĝ(x)j = O

�
log2(n)p

nh

�
:

(ii) For any M > 0, if f; g 2 C� for some � 2]0;1[, h �
�
log4(n)

n

�1=(1+2�)

and

inf jxj�M f(x) > 0, then, almost surely,

sup
jxj�M

jr̂(x) � r(x)j = O

(�
log4(n)

n

��=(1+2�)
)
:

Remark. Liebscher [19] proves the uniform almost sure convergence in a strongly

mixing framework, at the optimal rate O
��

log(n)
n

��=(1+2�)
�
, if �r = O(r�a), with

a > 4 + 3=�:
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