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Abstract We investigate the application of particle �ltering methodol-
ogy to discrete state-space models, that is models which involve a condition-
ing on an unobserved discrete process. We �rst focus on the case where the
states are Markov (hidden Markov models). In that setting, following Doucet
et al. (2000), we show how to marginalize out the states zt of the considered
posterior distribution, in order to reduce the volatility of the particle weights.
The corresponding algorithm can be seen as a Monte Carlo generalization of
the HMM �lter. We then propose a sequential state number determination
procedure, in order to detect the number of distinct states that have actu-
ally appeared at time t. Within this approach, we show how to make an
improper prior modeling possible. Finally we consider to which extent these
results apply to hidden semi-Markov models, and to change-point models.
Key-words: change-point models, HMM �lter, Hidden Markov Models, Hid-
den Semi-Markov Models, Metropolis-Hastings, MCMC.

Résumé Nous nous intéressons à l'application de la méthodologie des
�ltres particulaires aux modèles à espace-état discret (modèles conditionnés
à un processus discret non observé). Lorsque le processus discret (zt) est
Markovien, nous montrons, à la suite de Doucet et al. (2000), comment in-
tégrer sur ces zt la loi a posteriori considérée. L'algorithme correspondant
est une généralisation Monte Carlo du �ltre HMM. Une procédure de déter-
mination du nombre d'états est proposée, qui permet d'évaluer le nombre de
régimes ayant réellement apparu dans la série étudiée. Nous prouvons que
cette approche est compatible avec une modélisation a priori impropre. Une
généralisation de ces résultats aux modèles semi-Markoviens, et aux modèles
à points de changement est considérée.
Mots-clefs: �ltre HMM, MCMC, Metropolis-Hastings, modèles à chaîne de
Markov cachée, modèles à points de changement.



1 Introduction

Discrete state-space models have proven to be a valuable tool in a variety of
areas, ranging from econometrics to genetics, from �nance to speech process-
ing. They are mostly designed to conveniently capture homogeneous sub-
sequences in time series featuring global heterogeneity. The core hypothesis
for this class of models is the existence of an underlying, unobserved discrete
process (zt), which gives the state of the system (regime) at time t. Each
time zt change its value, a shift in the behaviour of the observed process
occurs. In some applications, the hidden process has a clear interpretation,
but in others, it is just an artifact for modeling heterogeneity.

More formally, we adopt the following mixture representation. Given the
state zt, the observed process at time t, t � 1, veri�es

ytjfzt = k; y1; :::; yt�1g � f�k(ytjy1:t�1); (1)

where �1; :::; �K are parameters corresponding to a given parametric family
ff�(:j:); � 2 �g of conditional densities (with respect to an appropriate mea-
sure), K is the cardinal of the state-space, and y1:t�1 stands for the sequence
of observations y1; :::; yt�1 (for ; if t = 1). In the same manner, z1:t de-
notes the sequence z1; :::; zt. Most obviously, (1) also includes conditionally
independent models. In that case, f�(ytjy1:t�1) reduces to f�(yt).

Equation (1) is commonly denoted the observation equation. The model
speci�cation is completed by the system equation, which states the inner
dynamics of the hidden process (zt). For instance, if the zt's are Markov, we
have

P (zt+1 = ljzt = k) = pkl; (2)

where (pkl)1�k;l�K is a given transition probability matrix (hidden Markov
models), but other dynamics are possible (semi-Markov models, change point
models) as we will see further.

Discrete state-space models, being dynamic models, lend themselves nat-
urally to a Bayesian sequential analysis. In this setting, a new inference is
drawn at each time t, which takes account of the available observations
y1; :::; yt. More speci�cally, a sequential analysis may comprise at time t
estimations of the past states z1; :::; zt�1 (smoothing), the current state zt
(�ltering), the next state zt+1 (forecast), and the �xed estimates (forming a
vector denoted �).

The algorithms presented in this paper are devoted to a sequential Baye-
sian analysis of the discrete state-space models: the posterior distributions of
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the form �(z1:t; �jy1:t), or some marginals of these distributions, are sequen-
tially approximated by Monte Carlo sampling schemes. Note however that
these algorithms are perfectly suited for a �direct� analysis of data, that is in
applications where the whole sample y1; :::; yT is available at once, and the
only distribution of interest is �(z1:T ; �jy1:T ). In that case, only the �nal out-
put of the algorithm is considered. In such a setting, the methods proposed
here seem to outperform classical inference algorithms (namely the MCMC
techniques in a Bayesian framework) in many cases, in terms of execution
time.

Another interesting problem is to determine the cardinal of the discrete
state-space, which gives the number of distinct regimes. In a sequential set-
ting, this problem is rather intricate, since at time t, it may be that only some
of the regimes appeared, while the others will appear later. Thus, it seems
more sensible to evaluate the number which appeared for the time being. We
will call such a procedure �sequential state number determination�. As we
will see, a strong appeal of this approach is that it overcomes in some cases
the well-known incompatibility of discrete state-space models with improper
priors, and therefore allows for a less informative prior modeling.

This paper is structured as follows. Section 2 recalls the basics of the
particle �lter methodology. Section 3 describes the Monte Carlo HMM �lter,
a particle �lter method specially dedicated to the sequential analysis of the
hidden Markov models. Section 4 presents the sequential state number de-
termination procedure, and shows how to handle an improper prior within
such a procedure. Section 5 provides some illustrative applications. Sec-
tion 6 investigates how these results may be extended to semi-Markov and
change-point models.

2 Particle �lters

We give now a brief overview of particle �lter methodology. For a more
extensive survey, see for instance Doucet et al. (2001). A particle �lter
is an algorithm able to provide iterative Monte Carlo approximations for
a given sequence of distributions of interest (�t). In particular, a particle
�lter makes possible a sequential analysis of dynamic models. In such a
setting, the distributions of interest are the posterior distributions of the
form �t = �(�; z1:tjy1:t) (following the notations of the previous section).
Other applications exist (such as the estimation of static models, see Chopin,
2000), but will not be treated here.

More formally, a particle �lter algorithm produces a sequence of weighted
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Monte Carlo realizations (the particles), denoted here (�(j); z
(j)
1:t ), with weights

wj , which, at every time t, targets the distribution �t, in the sense that

lim
H!+1

PH
j=1wjh(�

(j); z
(j)
1:t )PH

j=1wj

= E�t [h(�; z1:t)] almost surely (3)

holds for any function h such that the expectation in the limit term is de�ned.
The simplest particle �lter scheme is the sequential importance sampling

algorithm (SIS). It consist in iterating two operations:

(E) extend the space: simulate z
(j)
t+1 � q(:j�(j); z

(j)
1:t ) and add this compo-

nent to the particles

(�(j); z
(j)
1:t )! (�(j); z

(j)
1:t+1):

(R) reweight: compute the incremental weights

ut+1(�
(j); z

(j)
1:t+1) =

�t+1(�
(j); z

(j)
1:t+1)

�t(�(j); z
(j)
1:t )q(z

(j)
t+1j�

(j); z
(j)
1:t )

;

and update the weights

wj ! wj � ut+1(�
(j); z

(j)
1:t+1):

Particles are usually initially simulated from �0 (in this case, weights

are initialized to 1). Note that q(zt+1j�(j); z
(j)
1:t ) is merely a instrumental

distribution, in that it can be set to virtually any imaginable distribution.
An �ideal� choice is the true conditional density P (zt+1jy1:t+1; �), since it
simpli�es the computation of the incremental weights, and minimizes the
conditional variance of the weights (in order to reduce the system degeneracy,
see further), but this distribution is not always tractable. For more details
on the SIS �lter and derived methods, see Liu and Chen (1998).

It is well known that the SIS �lter su�ers from a progressive degeneracy :
each iteration adds to the variability of the estimates. In fact, since particles
always keep the same values, less and less particles are in a region of high
�t probability, when �t is moving away from �0, while more and more get
an insigni�cant weight, and therefore contribute very weakly to the current
inference.
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The SIS �lter can be accelerated by occasional resampling of the parti-

cles. Resampling consists in replacing each particle (�(j); z
(j)
1:t ) by nj of its

replicates (nj may be equal to zero). The new weights are set to 1. The nj
must be determined in such a way that condition (3) is still ful�lled. The
most famous selection scheme is the multinomial resampling (Gordon et al.,
1993), but more recent schemes (residual resampling, Liu and Chen, 1998;
strati�ed resampling, Carpenter et al., 1999) seem today preferable, for they
reduce the Monte Carlo variability of the estimates.

Resampling the particles from time to time discards particles of insigni�-
cant weight, and therefore saves further execution time. However, it does not
prevent the particle system from degenerating, since no new particle value
is created. To counter this, Gilks and Berzuini (2001) proposed to move the
resampled particles, by applying a transition kernel with stationary distribu-
tion �t. This kernel is usually chosen in the standard toolkit of the MCMC
(Monte Carlo Markov Chains) methodology (see Robert and Casella, 1999,
for a thorough presentation). Moving the particles is clearly an appealing
idea, since it replaces nj identical replicates of a single particle by the same
number of �fresh� particles, without modifying the current target �t of the
system.

To conclude, particle refer algorithms now refer to iterative algorithms
alternating the three following stages:

1. Extend and reweight:
Apply steps (E) and (R) (t0 � t) times, from date t to date t0 > t

2. Resample (according to a given selection scheme):

(�(j); z
(j)
1:t0 ; wj)! (e�(j); ez(j)1:t0 ; 1);

for j = 1; :::;H, where the (e�(j); ez(j)1:t0)'s are the resampled particles.

3. Move:

(e�(j); ez(j)1:t0)! Kt0(e�(j); ez(j)1:t0);

for j = 1; :::;H,where Kt0 is a transition kernel of invariant measure
�t0

Important parameters for these algorithms are the choice of proposal dis-
tribution for the space extension q(:j�; z1:t), and of the MCMC kernel for the
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move step, which both strongly a�ect the e�ciency of the algorithm. An-
other tuning to consider is the resample-move schedule. Usually, particles are
resampled-moved when some empirical degeneracy criterion is ful�lled, for
instance when the empirical variance of the weights reaches a given threshold
(Liu and Chen, 1998). For more elaborate criteria, see for instance Carpenter
et al. (1999, �5) or Chopin (2000, �4.2).

3 The Monte Carlo HMM �lter

We now restrict ourselves to hidden Markov models. Thus, we consider a
model speci�ed by equations (1) and (2). The vector � of the �xed parame-
ters comprises the mixture parameters �1; :::; �K and the components of the
transition matrix P = (pkl)1�k;l�K .

3.1 HMM �lter

Suppose � is known, so that we merely need to infer the states (past, present
or future) from the current observations. Remarkably, the corresponding
distributions can be derived exactly, through iterative formulae (Hamilton,
1989). More precisely, since a state zt0 is discrete, it follows, conditionally
on a given set of observations y1:t, a multinomial distribution St

0

t (�). Denote
St0
t (�) the vector of the corresponding probabilities P (zt0 = kjy1:t; �), for

k = 1; :::;K.
At time t, the forecast probabilities St+1

t (�) can be derived from the
�ltering probabilities St+1

t (�) with

St+1
t (�) = P 0St

t(�); (4)

where P is the transition matrix de�ned by the corresponding components
of �. Then, the �lter probabilities at time t + 1 can be obtained from the
forecast St

t(�)

St+1
t+1(�) / Ot+1(�)
 St+1

t (�); (5)

where Ot+1(�) is the vector containing the observation densities f�k(yt+1jy1:t; �),
for k = 1; :::;K, and 
 denotes the element-by-element product of two vec-
tors. The later formula gives St+1

t+1(�) up to a multiplicative constant which
can retrieved by normalization (the probabilities sum to one). The right term
Ot+1(�)
S

t+1
t (�) is a vector containing the densities P (zt+1 = k; yt+1jy1:t; �),

for k = 1; : : : ;K, and equation (5) is a Bayes formula in disguise.
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Finally, the state zt can be smoothed at time t+1 (Kitagawa, 1987) with

St
t+1(�) / St

t(�)
 [POt+1(�)] ; (6)

and more generally, for k � 0,

St�k
t+1 (�) / St�k

t�k (�)

n
P
h
St�k+1
t+1 (�)� St�k+1

t�k (�)
io

; (7)

where St�k+1
t+1 (�) � St�k+1

t�k (�) denotes the element-by element division of

St�k+1
t+1 (�) by St�k+1

t�k (�). The algorithm which sequentially forecasts and
�lters through formulae (4) and (5) is usually referred to the HMM �lter.
If smoothing steps are added, we will rather speak of the Kitagawa-HMM
�lter. The matrix formulation of equations (4) to (7) is adapted from Ryden
(2000).

3.2 Particle �ltering for the HMMs

Suppose now � is unknown, and assign some prior distribution �. In com-
parison with the �naïve� particle �lter proposed in �2, we present here an
integrated �lter, which marginalizes out the states zt of the sequence of the
target distributions. The key idea is to follow the evolution of numerous
HMM �lters running in parallel, each of which is initiated with a distinct
value �(j) for the �xed parameter �. These �(j), along with the correspond-
ing HMM �lters, are the particles of our system. We call this integrated
particle �lter algorithm the Monte Carlo HMM �lter (MCHF). Note this
marginalizing technique, along with the Rao-Blackwell argument presented
in �3.3, can be seen as a particular case of the more general particle �lter
Rao-Blackwellisation scheme developed in Doucet et al. (2000).

More formally, we design a particle �lter algorithm which tracks the se-
quence of posterior distributions �(�jy1:t). Thus, the considered distributions
and the corresponding particles are now of constant dimension, and the (E)
step (Extend the space) presented in �2 is no longer necessary. The �rst
stage of a particle �lter algorithm reduces in this setting to the (R) step
(reweight), which consists in multiplying the weights by some incremental
weights ut+1(�

(j)),

ut+1(�
(j)) /

�(�(j)jy1:t+1)

�(�(j)jy1:t)

/ P (yt+1jy1:t; �
(j)) /

KX
k=1

P (zt+1 = k; yt+1jy1:t; �
(j));
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and this sum is derived in the following way. Let (�(j); wj)j=1;:::;H, a set
of particles currently targeting �(�jy1:t), and suppose we have at our dis-
posal the corresponding �lter probabilities St

t(�
(j)). Compute the forecast

probabilities St+1
t (�(j)), through (4), and, when the next observation yt+1 is

available (at time t+1) compute the new �lter probabilities St+1
t+1(�

(j)), with

(5). Then ut+1(�
(j)) is a direct by-product of the later computation, since

it is the multiplicative constant induced by the normalization of St+1
t+1(�) in

(5) (see previous subsection). The parallel HMM �lters and the weights of
the particles are updated simultaneously.

The Monte Carlo HMM �lter will consist in iterating the reweighting
scheme described above. It can also include occasional resample-move steps,
as explained in �2. In that case, kernels of invariant measure of the form
�(�jy1:t) must be designed (see �3.4).

The Monte Carlo HMM �lter provides sequential estimations for the
�xed parameter �, but also for the �lter and forecast distributions. For �,
any expectation of the form E�(�jy1:t)[h(�)] can be consistently estimated by

the corresponding Monte Carlo weighted average
PH

j=1wjh(�
(j))=

PH
j=1wj .

The �lter distribution �(ztjy1:t) and the forecast distribution �(zt+1jy1:t) are
multinomial distributions, and the vectors of the corresponding probabilities,
respectively denoted St

t and St+1
t , are consistently estimated by :

bSt
t =

PH
j=1wjS

t
t(�

(j))PH
j=1wj

; bSt+1
t =

PH
j=1wjS

t+1
t (�(j))PH

j=1wj

: (8)

Note that it is also possible to estimate the smoothing distributions
�(zt�kjy1:t) (for k > 0), by applying the smooth step of the Kitagawa-HMM
�lter, presented in the previous section, and then marginalizing out �, as in
(8). In that case, we will rather speak of the Monte Carlo Kitagawa-HMM
�lter (MCKHF). This second algorithm is more memory demanding (the in-
termediary St

t(�
(j))'s must be stored) and is more intensive (at each iteration

t, step (7) is applied t times). In applications where the execution time of
one iteration must be kept constant, it is more reasonable to restrict the
smoothing to the m later states zt�m:t�1 (�xed-lag smoothing).

3.3 Advantages of the integrated �lters

The integrated �lters (MCHF and MCKHF) must be preferred to the equiv-
alent �standard� particle �lters (as described in �2) for two reasons. First,
they strongly reduce the Monte Carlo sampling space dimension. This im-
plies considerable memory savings, especially for the MCHF: for standard �l-
ters, particle dimension increases linearly in time, while for integrated �lters,
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it keeps a constant value. In fact, to be more precise, it is possible to devise
a constant dimension standard �lter in case smoothing is not necessary: in
that case, �(zt; �jy1:t) is the target at time t, and the reweighting from t to

t+1 consist this time in drawing a z
(j)
t+1 for each particle, then computing the

corresponding incremental weight, and �nally discard the component z
(j)
t for

each particle. However, as we will explain more broadly in next subsection,
a move strategy is hardly implementable with such a �lter. Alternatively,
for the MCKHF, the memory requirements keep increasing linearly, since
the vectors St

t(�
(j)) must be stored along with the particles �(j), for fur-

ther smoothing operations. However, if only a constant-horizon smoothing
is applied, important memory savings are still achievable.

The second reason for preferring the integrated �lters is that they allow
for a smaller variability of the particle weights, and therefore are likely to
degenerate more slowly. This can be seen by a simple Rao-Blackwell argu-
ment. Suppose we have, at time 0, particles �(j) targeting �(�) (the prior
distribution). The �rst iteration of the algorithm induces a reweighting with
incremental weights uI(�

(j)) = �(�(j)jy1)=�(�(j)), for an integrated �lter,

and uS(�
(j); z

(j)
1 ) = �(�(j); z

(j)
1 jy1)=q(z

(j)
1 j�(j))�(�(j)) for a standard �lter,

where z
(j)
1 was simulated from some given proposal conditional distribution

q(:j�(j)). We have

E[uS(�
(j); z

(j)
1 )j�(j)] =

Z
�(�(j); z

(j)
1 jy1)

q(z
(j)
1 j�(j))�(�(j))

q(z
(j)
1 j�(j))dz

(j)
1 = uI(�

(j))

and therefore V [uI(�
(j))] = V fE[uS(�

(j); z
(j)
1 )j�(j)]g � V [uS(�

(j); z
(j)
1 )] (Rao-

Blackwell inequality).

Obviously, the inequality V [uI(�
(j))] � V [uS(�

(j); z
(j)
1:t )] stands more gen-

erally at any time t. Since the incremental weights at each stage shows a
lesser volatility in an integrated �lter, the weights themselves tend to vary
less.

This second reason can be stated more intuitively. In fact, both kinds
of �lters perform very similar computations of probabilities of multinomial
distributions. The di�erence is that an integrated �lter carries forward these
probabilities and use them in later computations, while a standard �lter
only keeps one simulated realization from this multinomial distribution and
discards these probabilities. Obviously, more precise results are expected
from a method able to pro�t from a richer information, such as for instance
when taking into account the exact knowledge of a given distribution rather
than a single realization of it.
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3.4 Move strategies

For the move step, various advantages of moving the particles through an
independent Hastings-Metropolis kernel, rather than any other MCMC strat-
egy, have been discussed in Chopin (2000). Among others, it allows for an
easier and more e�cient control of the current level of degeneracy of the
particle system. The proposal distribution for Hastings-Metropolis kernels
may be set according to the considered problem, but a convenient all-purpose
proposal, such as for instance a joint distribution with Gaussian parts for the
�i's and Dirichlet parts for the lines of the transition matrix, properly �tted
through the moments of the particle system itself (in the same manner than
in Chopin, 2000) should do in many settings. Besides, such an instrumental
distribution makes the algorithm a �black-box�, in that the internal machin-
ery of the algorithm is not model-dependent, and therefore the adaptation
cost to a new model reduces to modify some external routines dedicated to
evaluating the observation likelihood f�(:j:) or the prior density.

Notice that performing a Hastings-Metropolis move of particles targeting
�(�jy1:t) requires to be able to compute this density for any � (up to a mul-
tiplicative constant), in order to derive the acceptance probability. This is
done by computing iteratively the ratio �(�jy1:t0+1)=�(�jy1:t0), whose deriva-
tion was already described in �3.2. Besides, as we indicated in previous
subsection, a move strategy would be hardly implementable for a constant
dimension standard �lter, that is targeting at each time t �(�; ztjy1:t): a
Hasting-Metropolis move would require to compute the density �(�; ztjy1:t),
which cannot be done anyhow without marginalizing the previous states as
in an integrated �lter, whereas a Gibbs move would need in most cases to
simulate the previous states z1:t�1 (hence the memory saving would be lost).

4 Sequential state number determination

4.1 Prior modeling for the hidden Markov models

Recall the parameter � comprises for the hidden Markov models the mix-
ture components �1; :::; �K and the transition probabilities (pkl)1�k;l�K of
the hidden Markov process. The kth line (pk1; :::; pkK) of the transition ma-
trix will be denoted pkj from now on. We suppose the prior distribution on
� factorizes in the following way:

�(�) /
KY
k=1

�(�k)

KY
k=1

�(pkj)D(�1; :::; �K); (9)
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where D(�1; :::; �K) is a discriminating factor between the K components,
that is a continuous function which veri�es D(�1; :::; �K) 2 [0; 1] and
D(�1; :::; �K) = 0 as soon as two components take the same value. As dis-
cussed more broadly in �4.4, such a factor allows for penalizing weak identi-
�ability regions in the parameter space. However, introducing D(�1; :::; �K)
in the prior does not modify its major features, notably its (im)propriety,
since it is a bounded quantity.

Two problems arises with such a prior distribution. First, a mixture
model is invariant by permutation of its components, and therefore is not
fully identi�ed with (9). Usually a ordering constraint on the �k's (�1 <
::: < �K) or a given coordinate of the �k's (if they are multi-dimensional) is
added to force the distinction between components. Unfortunately, such a
constraint often hinders inference (Celeux et al., 2000). Secondly, a mixture
model is in most cases incompatible with a fully non-informative approach.
In particular, an improper distribution for �(�) in (9) will commonly lead to
an improper posterior distribution.

When no prior information is available on the parameters, an �objective�
inference can still be achieved by specifying a partially proper prior, in the
same spirit than Diebolt and Robert (1994) and Wasserman (2000). Given a
prior �(�) for the components, which is supposed to be improper of order k,
that is k is the smallest integer such that, for any y1:t, 1 � t1 � ::: � tk = t,Z

�(�)
kY
i=1

f�(yti jy1:ti�1) d� < +1

the whole posterior distribution is made proper by conditioning on the fact
that at least k observations of the whole sample are assigned to each compo-
nent (see the appendix for a proof of this claim). Wasserman (2000) showed
that this approach was equivalent to specifying a data-dependent prior.

The two raised problems are more acute in a sequential context. At
early stages, when only a small amount of observations is at our disposal, it
is likely that some of the K components have not appeared yet. An order-
ing constraint has no clear meaning in that setting, since only the already
detected components can be ordered, and we have no clue where the later
components should be inserted in this partial ordering. Thus, the posterior
distribution will show some intricate mixture structure which does not have
a clear interpretation. But above all, a data-dependent prior has not sense
here, since all data are not available at once.

Clearly, a new prior speci�cation is required in our setting. It is in
fact more sensible to sort the components by order of appearance, and to
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provide, at time t, a joint estimation of m, the number of components that
have appeared for the time being, and the corresponding �1; :::; �m. We
will call this procedure sequential state number determination. We present
this procedure in the following section, and show it makes less informative
prior speci�cation possible. Such a procedure can even be made deliver an
inference on K itself, the total number of components, as we will see in �4.4.

4.2 Sequential reparameterization

We now propose a sequential reparameterization of the hidden Markov mod-
els. The observation equation is unchanged

ytjfzt = k; y1; :::; yt�1g � f�k(ytjy1:t�1);

but the system equation now features an additional hidden process (Mt),
where Mt stands for the number of components appeared at time t

z1 = 1;

P (zt+1 = ljzt = k;Mt = m) =

8<:
pkl if k; l � m � K;PM

l0=m+1 pkl0 if l = m+ 1 � K;
0 otherwise;

M1 = 1;

Mt+1 = max(Mt; zt+1):

When at time t, with zt = k and Mt = m (k � m), the next regime
can be either an already visited regime l (l � m) with probability pkl, or
a new regime, which will be labelled m + 1. Since the remaining regimes
are not distinguishable at time t, the probability of appearance is indeedPM

l0=m+1 pkl0 . If a new regime appears, we have Mt+1 = zt+1 = m + 1, if
not, Mt+1 = m, hence in general Mt+1 = max(Mt; zt+1).

Since the hidden process (zt;Mt) is clearly Markov and discrete (lying
in a space of cardinal K(K + 1)=2), this reparameterized model can still be
analyzed as a hidden Markov model. But this time the complete posterior
�(�jy1:t) is not a distribution of direct interest. Rather, following the lines
of the sequential state number determination procedure presented in the
previous section, and denoting �1:m the partial vector (�1; :::; �m; p1j; :::; pmj),
we merely need to evaluate the following marginals, for 1 � m � K

�(Mt = mjy1:t), �(�1:mjMt = m; y1:t); (10)

in order to recover the components that have appeared for the time being.

11



4.3 Towards a non-informative prior modeling

If we specify a proper prior distribution for the �k's, the sequential state num-
ber determination procedure reduces to apply the Monte Carlo HMM �lter on
the reparameterized model. In particular, the probabilities �(Mt = mjy1:t)
can be estimated when �ltering the state (Mt; zt) (see �4.5 for implementa-
tion details). However, our aim here is to show more generally that this new
writing of the model allows for less informative prior speci�cation. In fact,
we show now that an improper distribution �(�) for the components, while
making the complete posterior distribution improper, can still allow for a
satisfying de�nition of the true quantities of interest in (10). Let

�(�1:m) /
mY
k=1

�(�k)
mY
k=1

�(pkj)Dm(�1; :::; �m); (11)

�(�1:mjMt = m; y1:t) / �(�1:m)P (Mt = mj�1:m)

P (y1:tjMt = m; �1:m); (12)

�(Mt = mjy1:t) /

Z
�(�1:m)P (Mt = mj�1:m)

P (y1:tjMt = m; �1:m) d�1:m; (13)

where Dm(�1; :::; �m) is a partial discriminating factor between the m �rst
components (see �4.4), �(�1:m) is somehow the marginal prior distribution
of �1:m (while rigorously speaking the marginals of an improper distribution
are not de�ned), P (Mt = mj�1:m) in fact only depends on p1j; :::; pmj, and is
given by the system equation, and P (y1:tjMt = m; �1:m) is the likelihood of
the observations, given that the m �rst components are visited at least once,
and the (K �m) remaining components are not.

Lemma 1 Provided �(�) is improper of order 1, the distributions �(Mtjy1:t)
and �(�1:mjMt = m; y1:t), as de�ned through equations (11) to (13), are

proper.

A proof is given in the appendix.
Alternatively, a non-informative inference can be managed through a

smart hierarchical modeling. Consider for instance this appealing Gaussian
hierarchical prior, in case the �k's are univariate:

�(�; �2) /
1

�2
, �1; :::; �K jf�; �

2g
iid
� � N (�; �2):

12



This hierarchical structure generally does not allow for a proper inference in
a mixture context, but through the simple reformulation

�(�1) / 1; �(�2j�1) /
1

�2
; �jf�1; �

2g � N (�1; �
2);

�2; :::; �K jf�; �
2; �1g

iid
�N (�; �2);

we get, as shown by the following lemma, consistent de�nitions for the quan-
tities produced by our sequential order choice procedure. Note that � was
kept in the second formulation only for an illustrative purpose, but we now
discard it, by marginalizing � out in the last equation:

�(�1) / 1; �(�2j�1) /
1

�2
; �2; :::; �K jf�1; �

2g
iid
� N (�1; 2�

2) (14)

More generally, if we want to assign to the components a hierarchical
improper prior of the form

�(�1)�(�j�1)
KY
k=2

�(�kj�1; �);

where � is the hyper-parameter, the sequential state number determination
procedure be adapted in the following way. Let �(�1) = �(�1)�(p1j) and for
m > 1,

�(�1:m; �) = �(�1)�(�j�1)
mY
k=2

�(�kj�1; �)
mY
k=1

�(pkj)Dm(�1; :::�m);

then replace in equations (12) and (13) the term �1:m by (�1:m; �) when
m > 1.

Lemma 2 The sequential state number determination for an hierarchical

improper prior, as de�ned above, provides proper de�nitions for the distri-

butions �(Mtjy1:t) and �(�1:m; �jMt = m; y1:t), provided that, for any y1:t,
t � m, 1 < t2 < ::: < tm � t, m = 2; :::;K,Z

�(�1)f�1(y1) d�1 < +1;

Z
�(�1)�(�j�1)

mY
k=2

�(�kj�1; �)Dm(�1; :::�m)

mY
k=1

f�k(ytk jy1:tk�1) d�d�1:::d�m < +1:

13



In particular, for the Gaussian hierarchical prior of (14), where � = �2, the

previous conditions are equivalent to, respectively,Z
f�1(yt1 jy1:t1�1) d�1 < +1;

Z " mX
k=2

(�k � �1)
2

#�m�1

2

Dm(�1; :::; �K)
mY
k=1

f�k(ytk jy1:tk�1) d�1:::d�m < +1;

for any y1:t, 1 < t1 < ::: < tm � t, m = 2; :::;K.

For a proof, see the appendix.

4.4 From sequential state number determination choice to

global state number determination

The design of the sequential state number procedure we presented above is
in fact incomplete. Since a state number determination is performed at each
stage, a balance between the �t of the data and the parsimony of the model
must be devised. If not, our sequential state number determination proce-
dure may tend to saturate quicker that necessary the number of components
Mt to K, by creating vaguely distinct components. This would eventually
endanger the following estimation stages.

From a decisional point of view, it is the decision maker task to spec-
ify to which extent two components can be distinguished, for instance by
introducing in the prior distribution a discriminating factor of the like

D(�1; :::; �K) =
Y

1�i<j�K

[1� exp(�C�(�i; �j)
�)]; (15)

where �(�i; �j) is some distance between components �i and �j, and C and
� are tuning parameters.

Accordingly, the partial discriminating factor Dm(�1; :::; �m) needed in
the non-informative state number determination procedure of �4.2 may be
de�ned as the marginal discriminating factor of the m �rst components,
by marginalizing out the supplementary components against some proper
distribution q(�):

Dm(�1; :::; �m) =

Z
D(�1; :::; �K)q(�m+1):::q(�K) d�m+1:::d�K : (16)

This may seem an arbitrary de�nition at �rst, for it depends of the choice of
q. This dependence will be negligible however, provided the support of q is
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large enough, and besides all it allows for a much simpler implementation,
as we will see in �4.5.

Note Lemma 2 in the previous section gives another justi�cation for in-
troducing a discriminating factor between the components, since the related
integrals whose �niteness ensure the consistency of a hierarchical improper
prior modeling diverge as �k ! �1, k > 1, without a (correctly set) partial
discriminating factor Dm(�1; :::; �m) in the integrand.

A sensible choice for �(�i; �j) is the (expected) Kullback-Leibler di-
vergence between the observation densities f�i(ytjy1:t�1) and f�j (ytjy1:t�1),
provided this quantity is tractable. By Kullback-Leibler divergence be-
tween two densities g and h, we mean the sum of the Kullback informa-
tions IK(gjh) + IK(hjg), where IK(gjh) = Eglog[g(X)=h(X)]. The quantity
�(�i; �j) somehow measures to which extent two distinct components �i and
�j predict a distinct behaviour for the observations. See �5 for a derivation
of �(�i; �j) in a practical case.

When studying a �nite sample of size T , a �global� state number deter-
mination can be performed by simply estimating MT at the last stage of
the algorithm. Note however that such a procedure will provide biased re-
sults if the pkl's are assigned �standard� prior distributions, such as Dirichlet
distributions. With such a prior, the event that the observed sequence is
produced from a sub-model of order K 0 < K, that is the probabilities pkl,
for K 0 < l � K, are null, is assigned a null probability, and accordingly MT

is assumed to converge to K as T goes toward in�nity with probability one.
In this connection, a mixture Dirichlet prior for the pkl's of the form

K 0 � U [1;K]; and, conditionally on K'=k',

(pk1; :::pkk0) � D(�
(k0)
k1 ; :::; �

(k0)
kk0 ); pk(k0+1) = ::: = pkK = 0 almost surely

is more appropriate for managing a global state number determination.
When dealing with vectors of transition probabilities, most authors pre-

scribe a symmetric prior such like a Dirichlet D(1; :::; 1). We feel however
that the probabilities pkk of staying in a given state k should be distin-
guished from the probabilities pkl, l 6= k of leaving this state k. In fact, it is
common (prior) knowledge that the diagonal terms of the transition matrix
are close to 1 in most interesting settings, or, to put it in another way, that
components with a small staying probability pkk, and therefore a very short
staying time, would be hardly identi�able and interpretable in practice. In

this connection, we advice to set �
(k0)
kl = �

(k0)
! , for k 6= l, and �

(k0)
kk = �

(k0)
	 ,

with �
(k0)
	 � �

(k0)
! .
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4.5 Implementation issues

In the simplest setting, when the prior distribution is proper, the Monte
Carlo HMM �lter can be applied straightforwardly to the reparameterized
version of a hidden Markov model. In particular, by summing over k the
�ltering densities P (zt = k;Mt = mj�(j); y1:t), 1 � k � m � K, and then
marginalizing out � by computing the corresponding weighted Monte Carlo
average

P
wjP (Mt = mj�(j); y1:t)=

P
wj , we get a consistent estimate for

the quantity P (Mt = mjy1:t), m = 1; :::;K. Moreover, since, for any m,
1 � m � K,

�(�jMt = m; y1:t)

�(�jy1:t)
/ P (Mt = mj�; y1:t);

we can derive from the current particle system (�(j); wj), targeting �(�jy1:t), a

supplementary partial particle system (�
(j)
1:m; w

(m)
j ), for each m, targeting the

conditional posterior distribution �(�1:mjMt = m; y1:t), through the simple

reweighting scheme w
(m)
j = wjP (Mt = mj�(j); y1:t).

For handling an improper prior �(�) for the components, in the lines
of the non-informative inference procedure presented in �4.2, a distinctive
strategy must be derived. First consider an improper prior �(�) which ful�lls
conditions of Lemma 1. Replace �(�) by a proper, instrumental prior q(�),
and apply the Monte Carlo HMM Filter. Denote q(�jy1:t) the target at time
t, that is the posterior distribution corresponding to prior q, then through
the following reweighting scheme

u
(m)
t (�) /

�(�1:mjMt = m; y1:t)

q(�jy1:t)
/

�(�1):::�(�m)

q(�1):::q(�m)
P (Mt = mj�; y1:t)

we get, as above, consistent inference from the partial posteriors �(�1:mjMt =
m; y1:t). Note that we assume the instrumental prior q is also the proper dis-
tribution from which are derived in (16) the marginal discriminating factors
Dm(�1; :::; �m) (see �4.4). Besides, the �(Mt = mjy1:t)'s are also easily eval-
uated through the following lemma.

Lemma 3 A consistent estimate of �(Mt = mjy1:t) (up to a multiplicative

constant, which does not depend on m) is the weighted averagePH
j=1w

(m)
j P (Mt = mj�(j); y1:t)PH

j=1w
(m)
j

;

where the particle system (�(j); wj) is assumed to target q(�jy1:t) and the
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w
(m)
j 's verify

w
(m)
j / wj

�(�1):::�(�m)

q(�1):::q(�m)

See the appendix for a proof.
The instrumental distribution q should be set so that the incremental

weights de�ned above does not vary too much over the support of q(�jy1:t).
A minimal requirement seems to check the existence of moment of order 2

of u
(m)
t (�) over q(�jy1:t). In that case, we will speak of a valid reweighting

operation. The following lemma gives a su�cient condition for ensuring the
validity of the reweighting operation from q to �.

Lemma 4 Assume �(�) is improper of order 1, andZ
�(�)2

q(�)
f�(ytjy1:t�1) d� < +1

holds for any sequence y1:t, then the reweighting operation de�ned above is

valid.

For a proof, see the appendix.
Alternatively, for a hierarchical improper prior which ful�lls conditions of

Lemma 2, start again the algorithm with a proper instrument q(�). At time
t, extend the space in �, by drawing for each particle �(j) a �(j) from some
conditional instrumental distribution qm(�j�1; :::; �m), and reweight through

�(�1jMt = 1; y1:t)

q(�jy1:t)
/

�(�1)

q(�1)
P (Mt = 1j�; y1:t);

�(�1:m; �jMt = m; y1:t)

q(�jy1:t)qm(�j�1; :::; �m)
/

�(�1)�(�j�1)
Qm

k=2 �(�kj�1; �)

q(�1):::q(�m)qm(�j�1; :::; �m)
P (Mt = mj�; y1:t);

in order to infer from the partial posteriors �(�1jMt = 1; y1:t) and �(�1:m; �jMt =
m; y1:t), m > 1. Similarly, consistent estimates of the �(Mt = mjy1:t) are
derived through the same lines as in Lemma 3, where this time the weights

w
(m)
j are set to

w
(1)
j / wj

�(�1)

q(�1)
; w

(m)
j / wj

�(�1)�(�j�1)
Qm

k=2 �(�kj�1; �)

q(�1):::q(�m)q(�j�1; :::; �m)
:

Finally, a su�cient condition for the validity of this reweighting operation
is given by the following lemma.
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Lemma 5 Suppose conditions of Lemma 2 are ful�lled, andZ
�(�1)

2

q(�1)
f�1(y1) d�1 < +1;

Z
[�(�1)�(�j�1)

Qm
k=2 �(�kj�1; �)]

2

q(�1):::q(�m)qm(�j�1; :::; �m)
Dm(�1; :::; �K)

mY
k=1

f�k(ytk jy1:tk�1) d�d�1:::d�m < +1:

hold for any y1:t, t � m, 1 < t2 < ::: < tm � t, m = 2; :::;K, then the

reweighting strategy de�ned above for a hierarchical improper prior is valid.

In particular, for the Gaussian hierarchical prior of (14), � = �2, if we set

qm(�
2j�1; :::�m) so that

1

�2
jf�1; :::�mg � �

 
(m� 1)=2;

mX
k=2

(�k � �1)
2=2

!
;

the previous conditions are equivalent to, respectively,Z
1

q(�1)
f�1(y1) d�1 < +1;

Z " mX
k=2

(�k � �1)
2

#�(m+1)
Dm(�1; :::�m)

q(�1):::q(�m)

mY
k=1

f�k(ytk jy1:tk�1) d�d�1:::d�m < +1:

For a proof, see the appendix. Note that the proposed qm(�
2j�1; :::; �m) in

the gaussian case is the �ideal� instrumental distribution, in the sense given
in �2, since it is the exact conditional posterior distribution �(s2j�1:m; y1:t).

Finally, the Monte Carlo HMM �lter may be quite intensive if the number
of componentsK is important, since vector of probabilities of sizeK(K+1)=2
must be manipulated. Execution time savings can be obtained by occasional

conditioning of the particles: draw for each particle an integer M
(j)
t from

the conditional distribution P (Mtj�(j); y1:t), attach this additional compo-
nent to �(j), and carry on the computations for this particle conditionally on

the value taken by M
(j)
t . In that case, the �ltering probabilities correspond-

ing to the states such that Mt < m, where m is the value taken by M
(j)
t ,

are discarded, and the size of the vector of probabilities is reduced. This
conditioning increases the conditional variance of the weights, in the same
manner than a standard particle �lter produces more volatile weights than
an integrated �lter (see �3), and for this reason it should be performed only
from time to time.
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5 Illustrative results

We consider a mean-switching auto-regressive model of order 1, with obser-
vation equation,

y1 =
�1

1� �
+

s

(1� �2)1=2
"1; "1 � N (0; 1) (17)

and, for t � 2, conditionally on zt = k, k = 1; :::;K

yt = �k + �yt�1 + s"t; "t � N (0; 1): (18)

A very similar model was introduced by Billio et al. (1999). The �rst obser-
vation follows in fact the invariant distribution corresponding to the auto-
regressive model without switching, and z1 is set to 1, as required in our
sequential state number determination procedure. Apart from the means
�1; :::; �K and the transitions probabilities, we will also suppose � and s to
be unknown, and include them in the vector parameter �, but obviously the
Monte Carlo HMM �lter is easily adapted to the case where additional pa-
rameters are considered. For this model, the derivation of �(�i; �j) as the
Kullback-Leibler divergence between f(ytjy1:t�1; �i) and f(ytjy1:t�1; �j) (see
�4.4), is straightforward:

�(�i; �j) = (�i � �j)
2=s2: (19)

Therefore, we consider an improper prior distribution of the form

�(�) /
KY
k=1

�(pkj)s
2(�0+1)e��0=s

2

D(�1; :::; �K);

where the close form of D(�1; :::; �K) was given by (15), so that, without
this discriminating factor, each part would marginally follow �(�k) / 1,
�(�) / U ] � 1; 1[ and 1=s2 � �(�0; �0). For the transition probabilities

we take the Dirichlet mixture prior presented in �4.4 , with �
(k0)
! = 1 and

�
(k0)
	 = 3(k0 � 1), for k0 = 1; :::;K.
Since (17) holds, replacing the improper �(�1) / 1 by the proper con-

ditional distribution �(�1js2; �) � N
�
y1(1� �); s2(1� �)2=(1� �2)

�
; trans-

forms the prior distribution above into the posterior distribution at stage 1.
Thus, with this replacement, and starting the algorithm at stage t = 2, only
components �2 to �K are a�ected an improper distribution. While Lemmas
1 and 4 do not apply directly here, since the observation likelihood f�;s;�(:j:)
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this time also depends on extra parameters s and �, it is very easy to see that
the corresponding su�cient conditions simply generalize by incorporating s
and � in the integration variables of the related integrals. In this manner,
through easy derivations, we get that the outputs of our sequential state
number determination procedure are consistently de�ned, and that proper
distributions for the components of the form, for k = 2; :::;K:

q(�k) / C(�0; �
2
0)

allow for a valid reweighting operation, as soon as �0 > 1.
The studied sample is a simulated sequence of T = 200 points, featuring

4 distinct components, and drawn from the model with parameters

s(0) = 0:2;

�(0) = 0:3;

0BBB@
�
(0)
1

�
(0)
2

�
(0)
3

�
(0)
4

1CCCA =

0BB@
0:7
1:4
2:1
2:8

1CCA ; P (0) =

0BB@
0:9 0:1 0 0
0:1 0:85 0:05 0
0 0:05 0:9 0:05
0 0 0:1 0:9

1CCA :

The hyper-parameters of the prior were set to: K = 5, �0 = 2, �0 = 1=8,
�0 = 0, and �0 = 1, the tuning parameters of the discriminating factor to
C = (1=2)� and � = 4 .

Figures 1 gives the plot of the sequence y1:200 over time, along with the
true values of the states z1:200. Figure 2 gives the evolution over time of the
�ltered expectations of Mt, that is E�(Mtjy1:t) =

PK
m=1m�(Mt = mjy1:t),

as estimated by the MCHF algorithm, against the true values of this process.
Figure 3 provides the weighted histogram of the particle system targeting
�(�1:4jMt = 4; y1:t), whereas the estimated value for �(M200 = 4jy1:200) is
0.999. The MCHF algorithm was run with H = 10000 particles. As one can
see, results are more than satisfactory.

6 Extension to other discrete state-space models

Suppose now the hidden process (zt) is semi-Markov, that is it features suc-
cessive regimes s1; :::; si; :::, whose durations are random variables �1; :::�i; :::

zt = su; for t s.t.
u�1X
i=1

�i < t �
uX
i=1

�i:

The si's form a Markov chain of order K (with transitions probabilities
(pkl)1�k;l�K) which never stay in the same state twice in a row (pkk = 0,
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Figure 1: Plot of the simulated sequence y1:200 (solid line), and the corre-
sponding states z1:200 (dotted line)
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Figure 2: Plot of the estimates of E�(Mtjy1:t) (solid line), against the true
values of M1:200 (dotted line)
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Figure 3: Weighted histogram of the particle system targeting �(�1:4jMt =
4; y1:t), t = 200
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k = 1; :::;K). In general, the duration in a given regime is assumed to be
Poisson-distributed:

�ijfsi = kg � P(�k);

and the global parameter comprises this time the �k's (featured by the ob-
servation equation), the �k's and the pkl's. It seems impossible to generalize
the state marginalization implemented in the Monte Carlo HMM �lter to
the semi-Markov models, and therefore we have to fall back on the standard
particle �lters (�2) to estimate this class of models. With such a �lter, it
is possible to simulate the next state zt+1 (when extending the space in the
reweighting step) from the true conditional distribution P (zt+1j�; z1:t; y1:t+1),
since it merely consists in drawing a multinomial realization, with probabil-
ities, for l = 1; :::;K,

P (zt+1 = lj�; z1:t; y1:t+1) / f�l(yt+1jy1:t)P (zt+1 = ljz1:t; �);

where the proportionality constant is again recovered by normalization. The
quantities P (zt+1 = ljz1:t; �) are derived as follows. Suppose z1:t is such that
the later regime si = k has appeared at time t0 + 1, then

P (zt+1 = ljz1:t0�1; zt0 6= k; zt0+1 = ::: = zt = k; �) =�
P (�i > t� t0jsi = k; �) if k = l;
pklP (�i = t� t0jsi = k; �) otherwise.

With such a conditional distribution for extending the space, the incre-
mental weights verify

ut+1(�; z1:t+1) /
�(z1:t+1jy1:t+1; �)

�(z1:t; �jy1:t)P (zt+1jz1:t; y1:t; �)

/
P (�; z1:t+1jy1:t+1; �)

P (�; z1:t+1jy1:t; �)

/ P (yt+1jz1:t+1; y1:t; �)

and are given by the observation equation.
A hidden semi-Markov model complies with a sequential reparamateri-

zation, in the same manner than the hidden Markov models. This time, the
reparameterization a�ects the sequence of regimes (si), with

s1 = 1;

P (si+1 = ljsi = k;Mi = m) =

8<:
pkl if k; l � m;PK

l0=k+1 pkl0 if k < l = m+ 1;
0 otherwise,

M1 = 1;

Mi+1 = max(Mi; si+1);

22



where, in that case, Mi stands for the number of components already ap-
peared after i state shifts.

Therefore, the semi-Markov lend themselves to the sequential state num-
ber determination procedure de�ned in �4. The reparameterized version of
the model can still be analyzed as a hidden semi-Markov model (with a
state-space cardinal of K(K + 1)=2), hence a sequential state number de-
termination can be implemented by a simple particle �lter for this class of
model, such as the one presented before. Moreover, the non-informative prior
approach we developed in �4.2 also applies to semi-Markov models, since the
proofs of the corresponding results do not suppose any particular structure
for the hidden process.

The change-point models can be seen as a degenerated version of the
hidden semi-Markov models, with forced transitions from regime i to regime
i+1, that is si = i with probability 1. While somehow arti�cial, this de�ni-
tion clearly indicates that change-point models also allows for a sequential
state number determination procedure, exactly in the same manner than the
semi-Markov models.

7 Conclusion

This paper provides new algorithmic and theoretical tools for the inference of
discrete state-space models, and most especially of hidden Markov models.
For the technical part, the Monte Carlo HMM �lter seems to be a quicker
and more powerful alternative to the currently proposed MCMC based al-
gorithms. In particular, it is more �exible than methods related to Gibbs
sampling techniques, for its internal structure is mostly model-independent.
On a theoretical ground, the (informative or non-informative) sequential
state number determination procedure seems a promising step towards a
more re�ned analysis of sequential heterogeneous data, and obviously calls
to further research on its applicability to other classes of models.

A Proofs

First, note the likelihood P (y1:tj�) of a mixture model with observation equa-
tion (1) takes the following form:

P (y1:tj�) =
X

z1:t2[1;K]t

P (z1:tjP )
tY

i=1

f�zi (yijy1:i�1)
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where the P (z1:tjP )'s are given by the transition equation. Therefore, if an
improper prior �(�) is assigned to the components, that is

R
�(�) d� = +1,

we haveZ
�(�)P (y1:tj�) d� =

X
z1:t2[1;K]t

Z
�(�)P (z1:tjP )

tY
i=1

f�zi (yijy1:i�1)d�

where �(�) factorises as in (9) and, as it is easy to see, the terms correspond-
ing to the sequences z1:t such that one of the components is not visited gives
in�nite integrals.

Denote Ek
t the event "8i 2 [1;K], at least k of the t states takes the

value i". Then, for an improper prior of order k, the conditional posterior
distribution �(�jEk

t ; y1:t) is proper, since in the corresponding likelihood

P (y1:tjE
k
t ; �) =

X
z1:t2[1;K]t

P (z1:tjE
k
t ; P )

tY
i=1

f�zi (yijy1:i�1)

the sequences z1:t that would produce in�nite integrals are exactly such that
P (z1:tjEk

t ; P ) = 0. This to clarify the claim of �4.1 that a proper inference
can be led from an improper prior of order k by conditioning on the event
Ek
t .
In the same manner, conditioning on Mt = m in Lemma 1 is equivalent

to conditioning on the event "The m �rst components are visited at least
once, the others are not.", and the partial likelihood P (y1:tjMt = m; �1:m),
which verify

P (y1:tjMt = m; �1:m) =
X

z1:t2[1;m]t

P (z1:tjMt = m;P )

tY
i=1

f�zt (yijy1:i�1)

obviously only needs to depend on m �rst components, and is such that
the distribution de�ned in (12) is proper. Proofs of Lemmas 2, 4 and 5 are
straightforward through similar likelihood decompositions. Note we are able
to withdraw the partial discriminating factors Dm(�1; :::; �m) in the integrals
of Lemmas 1 and 4, since it is a bounded quantity, but in Lemmas 2 and
5, the Dm(�1; :::; �m)'s remain, since the corresponding integrals cannot be
de�nite without a discriminating factor. The application to the Gaussian
hierarchical prior is obtained by marginalizing out �2 in the corresponding
integrals, through the formula

R
x��1e��x dx = �(�)=��, with x = 1=�2,

� = (m� 1)=2, and � =
Pm

k=2(�k � �1)
2=2.

24



For Lemma 3, note that

q(�jy1:t)P (Mt = mjy1:t; �) / q(�)P (y1:t;Mt = mj�)

/ q(�)P (Mt = mj�)P (y1:tjMt = m; �);

where q(�) is the global prior for �, obtained by replacing �(�) by q(�) in
equation (9), and since P (Mt = mj�) = P (Mt = mjP ), and P (y1:tjMt =
m; �) = P (y1:tjMt = m; �1:m), as explained above, the integralZ

�(�1):::�(�m)

q(�1):::q(�m)
q(�jy1:t)P (Mt = mjy1:t; �) d�

is clearly proportional to �(Mt = mjy1:t), as de�ned in �4.2. Same remarks
apply in the hierarchical case.
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