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Abstract

This paper reports the results from an experiment on two-unit sequen-
tial auctions with and without a buyer's option (which gives the �rst-
auction winner the right to buy the second unit at the winning price).
The 4 main auction institutions (�rst-price, Dutch, second-price, English)
are studied. Observed bidding behavior is closer to risk-neutral Nash equi-
librium bidding in the second auction than in the �rst auction. In Dutch
and �rst-price auctions, the deviations from theory can be attributed to
risk aversion among buyers; in the English and second-price auctions,
they are a consequence of either myopic or punitive behavior. The rev-
enue ranking of the 4 auction institutions is the same as in single-unit
experiments. The buyer's option decreases (resp. increases) revenue in
�rst-price (resp. second-price) auctions, but there is no signi�cant e�ect
in the \oral" auctions. The buyer's option causes declining price patterns
in our experimental auctions.
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1 Introduction

In sales of multiple units of a particular good, auction houses often choose to
sell the items sequentially, i.e. the items are auctioned separately, one after the
other. The advantage of a sequential auction is that it well �ts the needs of both
small and large buyers, whereas the alternative auction procedure that consists
in selling all available units simultaneously, in one shot, typically excludes buyers
who set low values on the items, thereby reducing competition at auction. The
main disadvantage of a sequential method is that it can be very time-consuming,
especially when the total number of units on sale is large. For this reason,
auctioneers sometimes provide a so-called buyer's option, which gives the winner
of the �rst auction the right to buy any number of units (1, 2, ..., or all units
available). For each unit he/she must pay the winning price established at the
�rst auction. If the winning bidder decides to purchase only part of the total
quantity, the remaining items are reauctioned, in the same manner, through a
second auction; and this scheme is repeated until all units are eventually sold.

The buyer's option thus clearly o�ers the best of both worlds: it allows the
auctioneer to speed up sales, while keeping the auction mechanism suÆciently
exible to be of interest for di�erent types of buyers. Not surprisingly therefore,
the buyer's option is used in many auctions throughout the world. Cassady
(1967) describes how the buyer's option is practiced in fur auctions in Leningrad
and London, and �sh auctions in English port markets. At the auction market in
Aalsmeer, the Netherlands, huge quantities of owers are sold through sequential
descending auctions with a buyer's option (see van den Berg, van Ours, and
Pradhan (1999)). Well-known auction houses such as Christie's and Sotheby's
(see Ashenfelter (1989) and Ginsburgh (1998)) and Drouot (see F�evrier, Roos,
and Visser (2001)) systematically use the buyer's option in their sequential
ascending auctions of �ne wines.

Despite the practical importance of the buyer's option, little attention has
been paid to the subject in the literature. The only theoretical article we are
aware of is Black and De Meza (1992). They consider the Independent Private
Value (IPV) paradigm, and derive optimal bidding strategies in two-unit se-
quential second-price auctions with and without the buyer's option. All buyers
in their model have decreasing demand for the two units (the additional value
of the second unit is less than the value of the �rst unit), or at demand (both
units are valued the same). Empirical studies are also rare. Ashenfelter (1989)
and Ginsburgh (1998) report that the option is exercised by many buyers in
ascending wine auctions at Christie's and Sotheby's.1 Van den Berg, van Ours,
and Pradhan (1999) study price patterns at sequential descending auctions of
roses and argue that the presence of the option is the main determinant of the
observed price decline. Finally, F�evrier, Roos, and Visser (2001), using data on

1Ashenfelter (1989) claims that auctioneers feel uneasy and uncomfortable about revealing
the declining price phenomenon (the fact that in sequential auctions of identical items suc-
cessive prices tend to decline) to buyers, and use the option as a device for hiding it. The
auctioneers with whom we have discussed at Drouot argue, however, that speed is the main
reason for making the option available.

2



ascending auctions of wine held at Drouot, structurally estimate their optimal
bidding model and use their estimations to analyze the impact of the option on
revenue.

The main contribution of this paper is to study both theoretically and experi-
mentally the role of the buyer's option in two-unit sequential auctions. We adopt
the IPV paradigm and assume that the 2 units are sold to 2 risk-neutral buyers.
Buyers desire both units, and their demand for the items is either decreasing,
at, or increasing (implying that the value of the second unit exceeds the value
of the �rst unit). The 4 main auction institutions are considered: �rst-price,
descending (Dutch), second-price (Vickrey), and ascending (English) auctions.
Although there are apparently no �eld examples of �rst-price and second-price
sequential auctions with or without a buyer's option,2 it is nonetheless of inter-
est to study these sealed-bid auctions. Like in standard one-unit auction theory,
it is shown in this paper that �rst-price (resp. second-price) and Dutch (resp.
English) sequential auctions with or without a buyer's option are theoretically
isomorphic. Furthermore the 4 auction formats generate the same expected rev-
enue. By analogy with experimental studies on single-unit auctions (see Kagel
(1995)) for a survey), our experimental design thus allows us to test whether
bidding behavior is identical and whether there is an equivalence in revenue.

Many other theoretical predictions are confronted with the experimental
data. For each auction institution with and without buyer's option, and each
form of the demand curve, we test if observed bidding behavior corresponds
to risk-neutral Nash equilibrium bidding. We analyze to what extent the ex-
perimental subjects exercise their buyer's option. Referring to the title of the
paper, we thus analyze to what extent winners of the �rst auction directly buy

the second unit, or instead wait and attempt to obtain the additional unit (at a
lower price!) in the second auction. Observed frequencies of buying/waiting are
compared with optimal frequencies. Predictions on the degree of eÆciency of
auction outcomes are also tested. Finally we compare observed price patterns
with their predicted counterparts. The design of our experiment is such that
all types of price patterns are theoretically possible. Depending on the auc-
tion mechanism, the form of the demand function, and the presence or not of
the buyer's option, theory predicts that successive prices are either decreasing,
constant, or increasing.

Experimental work on sequential auctions is still very rare.3 Burns (1985)
considers sequential English auctions. The experiment is designed to mimic
the Australian wool market, and the paper's main objective is to study the
e�ect of market size on auction prices. The paper is essentially theory-free in
that observed behavior is not confronted with any equilibrium bidding behavior.

2Cassady (1967, p. 197) describes the electronic auction market in Osaka, Japan, where
lots of fruit and vegetables are sold via sequential �rst-price auctions, but he never explicitly
mentions that the successive lots on sale are identical.

3Spurred by the recent FCC auctions, experimental papers on all sorts of simultaneous

multi-demand auctions are, however, ourishing (see for example Kagel and Levin (2001) and
the references therein, and the special issue of the Journal of Economics & Management

Strategy (1997, Number 3)).
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Keser and Olson (1996) consider sequential �rst-price auctions and suppose that
buyers have single-unit demand functions. Their main objective is to compare
observed price-sequences with the predicted patterns derived in Weber (1983),
under di�erent design parameters. Similarly as in Burns, the paper focuses on
one particular auction mechanism, and no attempt is made to examine outcomes
under alternative institutions. Robert and Montmarquette (1999) do consider
several auction institutions, and also provide theoretical foundations for each of
them. In their models, the number of items desired by each buyer is a random
variable and demand functions are decreasing. They consider sequential Dutch,
English and mixed auctions, and compare observed behavior with predicted
behavior. None of these 3 experimental papers on sequential auctions analyzes
the buyer's option.

The paper proceeds as follows. In the next section the theoretical background
is presented. In deriving the risk-neutral Nash equilibrium bidding functions and
the expected revenues in the di�erent auction institutions, we partly draw on
Black and De Meza (1992), Donald, Paarsch, and Robert (1997) and a recent
paper by F�evrier (2000). But most results in this section are actually new.
Section 3 describes the experimental design, section 4 the experimental results,
and section 5 concludes.

2 Theoretical background

Suppose that 2 units of a good are auctioned to 2 potential buyers. Each buyer
is assumed to be risk-neutral and desires to purchase both units. Adopting the
IPV paradigm, let vi denote the value that buyer i places on the �rst unit. The
value vi and the value of i's opponent are independently drawn from a uniform
distribution on the interval [0; v]. It is assumed that the value that i places on
the second unit is kvi. The parameter k can take three values: k 2

�
1
2 ; 1; 2

	
.

The value of k is common knowledge. Note that k = 1
2 implies that the second

unit is valued less than the �rst unit (decreasing demand), k = 1 that both units
are valued the same (at demand), and k = 2 that the second unit is valued
more than the �rst (increasing demand).

The 2 units are sold sequentially. The �rst unit of the good is sold in the
�rst auction. The manner in which it is auctioned depends on the auction
institution. Let a indicate the auction institution, a 2 fD;E; F; Sg, where D
stands for Dutch auction, E for English auction, F for First-price auction, and
S for Second-price auction, and let p1 denote the price the winner of the �rst
auction has to pay for the �rst unit. When a 2 fD;Eg, the unit is auctioned
using a clock. When a = D, the clock starts very high, and descends until one of
the players stops the clock. This player wins the unit and p1 equals the price at
which the clock was stopped. When a = E, the clock starts at 0, and increases
until one of the players stops the clock. Here the winner of the auction is the
player who did not stop the clock. The price p1 he/she has to pay for the �rst
unit is again the amount at which the clock stopped. When a 2 fF; Sg, the
unit is sold via sealed-bid auctions. Both players submit their sealed bid to the
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auctioneer who awards the unit to the highest bidder. When a = F the winner
pays his/her own bid, i.e. p1 equals the highest submitted bid. When a = S
the winner pays the bid of his opponent, i.e. here p1 equals the second highest
submitted bid. For all institutions a, the price p1 is revealed to both players
once the �rst auction has ended.

The way in which the second unit is sold depends on whether the buyer's
option is available or not. Let o be the indicator for the availability of the
buyer's option, o = N if it cannot be used, and o = Y otherwise. For any
auction institution a, if o = N the second unit is auctioned under the prevailing
rules of institution a. Let p2 be the price paid for the second unit. If instead
o = Y the winner of the �rst auction has the option to buy 1 or 2 units, at the
price of p1 per unit. When he decides to purchase only 1 unit, a second auction
is held under the conditions of institution a. When he/she exercises the buyer's
option, no second auction is held. Note that in this case we automatically have
p2 = p1.

The theoretical model presented here is essentially based on the framework
built by Black and De Meza (1992). These authors, however, only considered
the second price auction (a = S) and they do not analyze the case of increasing
marginal valuation (k = 2). The hypothesis that each bidders' valuation for the
second unit is connected, in a deterministic way, to the valuation of the �rst
unit, is certainly restrictive, and might no necessarily reect behavior at real
auctions. The hypothesis on the number of players is also restrictive as real
world auctions the number of participant is typically larger than two. These
simplifying hypotheses are, however, needed to ease solving for the equilibrium
strategies. Also, as mentioned in the introduction, this is the �rst experimental
paper on the buyer's option, justifying a rather simple setup, that can be re�ned
and generalized in future work.

For any given value of a; o; and k, let G (a; o; k) denote the bayesian two-stage
game described above. We are looking for perfect bayesian equilibria of the game
G (a; o; k) with pure and symmetric strategies in the �rst auction. Let b1 (v)
denote the equilibrium strategy of the bidders in the �rst auction. If o = Y , let
bo (p1) 2 f0; 1g indicate whether the winner exercises the buyer's option or not
given the auction price p1, with bo (p1) = 1 meaning that he/she uses his/her
option, and bo (p1) = 0 that he/she does not. Finally, let bw2 (v; p1) denote the
second auction strategy of the winner of the �rst auction, and bl2 (v; p1) the
second auction strategy of the loser of the �rst auction. For practical reasons
given in section 4.3, these strategies are only confronted with the data when the
buyer's option is not available. In the following proposition, the strategies are
therefore only given for o = N . But in the proof of the proposition (given in
the appendix), explicit use is made of the strategies for o = Y .

Proposition 1. A symmetric-�rst-auction perfect bayesian equilibrium of the

game G (a; o; k) is:

1. If a 2 fE; Sg, o = N , and k 2
�
1
2 ; 1; 2

	
, then b1 (v) = kv, bl2 (v; p1) = v,

bw2 (v; p1) = kv.
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2. If a 2 fD;Fg, o = N , and k 2
�
1
2 ; 1

	
, then no such equilibrium exists.

3. If a 2 fD;Fg, o = N , and k = 2, then b1 (v) = 1
2v, bl2 (v; p1) =

bw2 (v; p1) = v.

4. If a 2 fE; Sg, o = Y , and k = 1
2 , then b1 (v) is solution of b1 (v) �

v
2 =

2� (v � b1 (v)) b
0

1 (v), with � = 0 if b1 (v) �
1
2v and � = 1 otherwise;

bo (p1) = 1 if p1 �
1
2v and bo (p1) = 0 if p1 >

1
2v.

5. If a 2 fE; Sg, o = Y , and k = 1, then b1 (v) = v, bo (p1) 2 [0; 1].

6. If a 2 fE; Sg, o = Y , and k = 2, then b1 (v) = 2v, bo (p1) = 0.

7. If a 2 fD;Fg, o = Y , and k 2
�
1
2 ; 1; 2

	
, then b1 (v) =

1+k
4 v, bo (p1) = 1.

Let us �rst comment on the predictions for the English and second-price
auctions. As mentioned in the introduction, the behavioral predictions are al-
ways the same for these 2 mechanisms. When o = N , theory requires bidders
to bid kv in the �rst auction, that is they have to bid the value for the second
unit. While this result is intuitive for at demand, it is less so when demand is
decreasing or increasing. With decreasing demand, bid shading is required be-
cause losing the �rst auction is not necessarily bad news, as it implies a weaker
rival in the second auction. With increasing demand, over-bidding is required
as the winner of the �rst auction is also going to be the winner of the second
auction. In the second auction (still when o = N), it is a dominant strategy for
each player to bid the value of the unit for which he/she is bidding. That is, the
loser of the �rst auction should bid v, and the winner of the �rst auction kv.

When o = Y and k 2 f1; 2g, optimal �rst-auction bidding is the same as in
the absence of the buyer's option. Put in other words, the buyer's option has
no e�ect on �rst-auction bidding behavior. However, when k = 1

2 , �rst-auction
bidding should be more aggressive than in the absence of the option. The
optimal use of the buyer's option is fairly simple when k = 1

2 or k = 1. In the
former case it should be used if the �rst-auction price is lower than the second
unit value, and in the latter case the �rst-auction winner is indi�erent between
exercising the option or not, which is the meaning of bo (p1) 2 [0; 1]. When
k = 2 it is not optimal to use the option because the loser of the �rst auction
is expected to bid less aggressively in the second auction, so the �rst-auction
winner has a higher expected gain by waiting for the second auction.

Let us next comment on the predictions for the Dutch and �rst-price auc-
tions. Again theory predicts that behavior is strictly identical under the 2
institutions. When o = N , there does not exist a symmetric pure strategy equi-
librium for k = 1

2 ; 1. An explanation for this result is the following. If such
an equilibrium were to exist, the loser of the �rst auction would learn the val-
uation of the winner (since p1 is revealed at the end of the �rst auction). The
�rst-auction winner would then clearly be in an uncomfortable situation in the
second auction. The equilibrium in the second auction would take the following
form: the winner of the �rst auction would play a mixed strategy and the loser
a pure strategy. However, this second-auction equilibrium is not compatible
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with a �rst-auction pure strategy, since we can show that there always exists a
pro�table deviation. This means that both players should hide their valuation
by playing a mixed strategy in the �rst auction.

When o = N and k = 2, a symmetric pure strategy equilibrium does exist
for the Dutch and the �rst-price auctions. This equilibrium is not simple to
compute and is not very intuitive as it implies a relatively low �rst-auction bid.
At �rst sight one might indeed think that it should be rewarding for player 1 to
deviate from equilibrium by bidding x

2 (with x > v1) in the �rst auction in order
to increase the probability to win the �rst unit, and thereby to enter the second
auction with a stronger valuation 2v1. But this deviation is not pro�table.
Indeed, this deviation decreases the expected gain in the �rst auction (since
bidding half of one's valuation is optimal in a single-unit auction), and, as can
be shown, it does not a�ect the expected gain in the second auction. Note
that the equilibrium given in the proposition is such that the winner of the �rst
auction, say bidder 1, automatically wins the second auction: his/her valuation
for the second unit is 2v1 while his/her opponent's valuation for the �rst unit
is4 v2 � v1, so by bidding v1 he/she wins the second auction with probability
one. Therefore, in equilibrium it is as if both bidders only compete for the �rst
unit.

When o = Y , a symmetric pure strategy equilibrium does exist for all values
of k. Note that in equilibrium, bidders behave exactly as in standard single-unit
Dutch or �rst-price auctions. Indeed, in equilibrium each player bids 1+k

4 v in
the �rst auction and the winner always exercises his/her option. It is thus as
if players submit a single bid equal to 1+k

2 v, for a \single good" with a value
(1 + k)v.5 Note �nally that for k = 2, �rst-auction bidding should be more
aggressive when the option is available than when it is not available.

3 Experimental design

The experiment was conducted on 28 and 29 March 2001 at the Ecole Na-

tionale de Statistique et de l'Administration Economique (ENSAE).6 Students
were recruited through personal emails, and iers that we dispatched in their
mailboxes. Seventy four students (out of roughly 360 students that studied at
the time at ENSAE) actually participated in the experiment. We organized a
total of 10 experimental sessions in the computer rooms at ENSAE, and each
student took part in only one session. Only one type of auction mechanism was
used per session. Table 1 lists for each session the type of auction mechanism
that was studied and the number of participants. From Table 1 it can be seen

4Because the �rst-auction strategy is symmetric.
5Recall that, given our model assumptions, the optimal single-unit bid (in �rst-price and

Dutch auctions) for a good valued at v is 1

2
v.

6The ENSAE is one of the leading French institutions of higher learning in the �elds of
statistics, economics, �nance, and actuarial sciences. After completing the three-year curricu-
lum of this school, graduates have a training comparable to the level attained by �rst-year
Ph.D. students at a good North American university.
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Table 1: Sessions

Session Type of auction Number of subjects

1 First-price 8
2 Second-price 8
3 Dutch 6
4 English 6
5 Dutch 10
6 English 8
7 First-price 8
8 Second-price 8
9 Dutch 6
10 English 6

that 22 students participated in the Dutch auctions, 20 in the English auctions,
16 in the �rst-price auctions, and 16 in the second-price auctions.

Each session was made up of two parts. The �rst part was devoted to
sequential auctions without a buyer's option, and the second part to sequential
auctions with a buyer's option.

We start by describing the �rst part of a session. We began by reading
aloud the instructions about the auction's rules without a buyer's option. Writ-
ten versions of the instructions were distributed to the participants and could
be consulted at any time during the experimental session.7 The �rst part had
12 periods. Since we focus in this paper on auctions with 2 buyers, participants
were told that they were in competition with a single person. At the begin-
ning of each period the computer randomly matched each student to another
student present in the room (all sessions had an even number of participants),
so participants were aware of the fact that their opponent di�ered from period
to period. Participants were also told that in each period 2 units of a �ctitious
good were sold at auction to each couple.

At the start of each period, valuations were independently drawn from a uni-
form distribution on [0;v]=[0;FFr50.00]. On the computer screen of participant
i appeared his/her valuation for the �rst unit of the good vi, the prevailing value
of k, and his/her valuation for the second unit kvi. The value of k changed every
4 periods (k = 1

2 in periods 1-4, k = 1 in periods 5-8, and k = 2 in periods 9-12).
Participants could observe this information for 30 seconds, after which the �rst
auction started (but the information remained on the screen even during the
auction). The manner in which participants could bid depended on the type
of auction mechanism that was used during the session. The auction-speci�c
bidding devices will be described later on.

Once the �rst auction was over, some information concerning the �rst auction
was added to the screen of each subject i. It indicated whether i was the winner
or not, his/her own bid (if any), the winning price p1, i.e. the price he/she or

7The instructions can be obtained from the authors upon request.
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his opponent had to pay for the �rst unit, and his/her gain associated with the
auction (vi�p1 if i was the winner, 0 otherwise). Since the identity of the winner
of the �rst auction is crucial knowledge in our experiment, we emphasized this by
coloring the box marked \Winning bid" blue if i had won the �rst auction, and
red otherwise. Note that the exact nature of information released between the
two auctions di�ered slightly with the type of auction mechanism. For instance,
for the winner of an English auction the box marked \Your bid" remained empty,
while for the winner of a Dutch auction this box indicated the price at which
he had stopped the clock.

Before the start of the second auction, participants again had a thirty-
seconds reection period during which they could, if they wished, consult all
information on their screen (again, all information remained visualized during
the second auction). The second auction functioned in the same way as the �rst
auction. We stressed the fact that the gain associated with the second auction
depended on the outcome of the �rst auction. Thus, winner i of the second
auction had a gain of kvi � p2 if he had also won the �rst auction, and a gain
equal to vi � p2 if he had lost the �rst auction. Once the second auction was
terminated for all couples in the room, we proceeded with the next period.

The 12 periods of the �rst part of each experimental session were preceded by
6 \dry" periods (2 for each value of k). This gave participants the opportunity
to familiarize themselves with the bidding method, determine their strategy for
the di�erent values of k, and ask questions to the experimenter.

Next we describe the second part of the session, the one that was designed
to study the buyer's option. We began by reading aloud the instructions about
this part of the experiment. Like the �rst part it consisted of 12 periods. Each
period started exactly like in the �rst part of the experiment: the valuations
and the value of k (the values of k alternated as in the �rst part) showed up
on the screen, the �rst auction started after 30 seconds, and once the �rst
auction was over for player i and his/her rival, their screens updated them
on the relevant auction results. Unlike the �rst part of the session, subjects
were told that the winner of the �rst auction could, if he/she desired, use the
buyer's option. If winner i chose to execute his/her option, the period was
over for him and his/her opponent, and his/her total gain in the period was
(vi � p1) + (kvi � p1) = (1 + k)vi � 2p1. If he/she choses not to do so, his/her
gain associated with the �rst auction was vi�p1, and a second auction was held
after the thirty-seconds pause. The second auction was in all respects identical
to the second auction conducted in the �rst part of the experiment.

The 12 \wet" periods of the second part of each experimental session were
again preceded by dry periods, but now just 3 of them (1 for each value of k)
since, at least from a practical point of view, the second part di�ered little from
the �rst.

As mentioned above, the way in which participants had to submit their bids
depended on the auction format. In the �rst-price and second-price auctions
participants could submit their bid by entering a number in a box marked
\Submit your bid here". The number could be any positive real integer, i.e. we
did not forbid subjects to bid in excess of their valuations.
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In the Dutch and English auctions bidding took place via numerical clocks.
After the 30-seconds reection period, the clock appeared on the screens of the
participants. In the English auctions the clock started at 0.00FFr, augmented
continuously at a rate of 50.00FFr per minute, and stopped automatically at
FFr120.00. The clock started and operated simultaneously on the screens of
participant i and his/her rival. They could stop the clock at any time by pressing
the \Enter" key or \Space bar", or click on a window marked \Stop the clock".
If neither i nor his rival had stopped the clock before it reached FFr120.00, the
computer randomly selected i or his/her rival as the winner (actually this never
happened during our experiments). In the Dutch auctions the clock started at
FFr60.00 (if k = 1

2 or k = 1) or FFr120.00 (if k = 2), descended continuously
at the speed of 50.00FFr per minute, and stopped automatically at FFr0.00.
The Dutch clock started and operated simultaneously for subject i and his/her
opponent and they could stop it, at any time, as the English clock. If neither i
nor his/her rival had stopped the clock before it reached FFr0.00, there was no
auction winner (again, this never occurred during our experiments). Note that
as in the sealed-bid auctions, subjects could bid above their valuations (up to a
reasonable limit) in the clock auctions.

At the start of an experimental session, i.e. at the beginning of the �rst
period, all participants were given a capital balance of FFr50.00. At the end of
each period, the gains made during the period were added to the balance, and
losses were subtracted from it. We informed the experimental subjects that if
the end-of-period balance of a participant was negative (as a result of his/her
bidding behavior in the period), the balance would immediately be readjusted
to 0. We stressed that balances would only be readjusted at the end of a
period, in view of the end-of-period balance, and not at some point during a
period. The reason for censoring the start-of-period balances at 0 is to incite
subjects to play well all along the experiment.8 As it turned out, for none of
the experimental subjects the capital balance went negative, so it was never
necessary to implement the readjustment procedure.

At the end of the session participants were paid in cash their �nal capital
balance divided by two. This 50% cut does not a�ect bidding behavior and
could be interpreted by the participants as a tax due to the auctioneer. On
average we paid FFr229 to the students, the minimum payment was FFr60, and
the maximum payment FFr360. Experimental sessions lasted between 1.5 and
2 hours.

Before turning to the experimental results, we want to comment on the
number of treatment levels in our experiment. In each session subjects went
through 2� 3 di�erent treatments (with or without a buyer's option and three
forms of the demand function). A drawback of our design is this high number
of treatment levels as it might have made the subjects susceptible to hysteresis
e�ects. However, we do not think that this occurred. Each change in the value
of k was clearly indicated both on the screen and orally by the experimenter.

8Had we not done this, a subject with a balance of say minus FFr300 at the beginning of
period 24, would clearly not have been incited to behave optimally in this last period.
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Moreover, the introduction of the buyer's option was made very clear since we
began the second part of the experiment by oral instructions about the rules of
this mechanism. Therefore, subjects have not been confused nor by the shifts in
the value of k nor by the introduction of the buyer's option. Instead, the frequent
changes in the treatment helped to keep the subjects alert and attentive. On
the other hand, the advantage of having several treatments within a session is
that the estimation of treatment e�ects is facilitated since it is not necessary to
control for inter-individual di�erences.

4 Experimental results

4.1 Bidding behavior in the �rst auction

Figures 1-12 show all �rst-auction bids for the di�erent values of k for the 4
auction formats without buyer's option. The �gures thus graph all �rst-auction
bids submitted during the �rst part of the experiment, that is during periods
1-12. They depict the losing bids for the English auctions, the winning bids
for the Dutch auctions, and both winning and losing bids for the sealed bid
auctions. Whenever there is a theoretical prediction (see Proposition 1), the
optimal equilibrium bid function b1(:) is drawn in green. For instance, in Figure
2 (second-price auction, k = 1

2 ) the green line is the function b1(v) = 1
2v,

but in Figure 1 (�rst-price auction, k = 1
2 ) no green line is drawn since no

prediction is available. Since all optimal bidding strategies are linear functions
of the valuations, equal to zero when v = 0, each �gure also shows, in red, the
�tted line �̂v where �̂ is the OLS estimate of the coeÆcient in the regression
b1it = �vit + "it where b1it and vit are i's bid and valuation in period t, and "it
an error term that is assumed independent over i and t. A comparison of the
green and red lines is therefore a quick eyeball test of the theoretical predictions.

Looking at Figures 1-12, one can distinguish, roughly speaking, three types
of graphs. First there are graphs where the �tted and predicted lines more
or less coincide, suggesting that observed bidding behavior is coherent with
theory. This is the case for Figures 6 and 8, i.e. the English and second-price
auctions with at demand. In the second category of graphs, the red and green
lines are distinct and the large majority of bids is closely concentrated around
the red line, suggesting that most subjects deviate, in the same manner, from
optimal behavior. This is the case for Figures 9, 10, 11 and 12. In the third
category of graphs the red and green lines are again distinct, but part of the
bids is now closely concentrated around the green line. Apparently there is a
group of subjects that bid according to theory. Another part of the bids is
clearly not located near the optimal bidding line. The bids are closely scattered
however, so there is again the impression that the subjects who deviate behave
quite similarly. There is not a \continuum" of types of observed behavior, but
instead the number of di�erent behavioral strategies that can be observed seems
limited. Figures 2 and 4 �t in this category.

Table 2 reports the OLS results of the bid regressions, that is the red lines in
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Table 2: First auction without buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 64 0.46 ( 0.03) 0.78 ; ;
Second-price 64 0.83 ( 0.04) 0.87 0.5 No
Dutch 44 0.49 ( 0.02) 0.93 ; ;
English 40 0.64 ( 0.04) 0.85 0.5 No

k = 1

First-price 64 0.55 ( 0.03) 0.8 ; ;
Second-price 64 1.03 ( 0.02) 0.98 1 Yes
Dutch 44 0.54 ( 0.01) 0.97 ; ;
English 40 1.00 ( 0.02) 0.98 1 Yes

k = 2

First-price 64 1.01 ( 0.04) 0.91 0.5 No
Second-price 64 1.36 ( 0.05) 0.93 2 No
Dutch 44 0.90 ( 0.04) 0.94 0.5 No
English 40 1.30 ( 0.06) 0.92 2 No

Figures 1-12. The table also reports the predicted slopes of the optimal bidding
strategies and test results of the hypothesis that observed behavior is in line with
predicted behavior. The null hypothesis can be tested simply by testing whether
the coeÆcient � equals some speci�c value. For example, the OLS estimate �̂
equals 0.83 for the second-price auctions with decreasing demand, the estimated
standard error is 0.04, the number of observations in the regression is 64 (16
subjects �4 periods), the R2 is 0.87 (de�ned for a regression model without
a constant), the predicted slope is 1

2 , and the null hypothesis that � = 1
2 is

rejected at the 5% level.
As Table 2 shows, the null is accepted just 2 out of 8 times. Theory is

accepted precisely in the two cases where the optimal strategies are relatively
transparent; subjects have indeed understood that in second-price and English
auctions with at demand it is optimal to bid the value v in the �rst auction.
However, in second-price and English auctions with decreasing (resp. increasing)
demand, subjects had a tendency to over-bid (resp. under-bid); although sub-
jects have understood that optimal behavior calls for bid shading (resp. bidding
above value), the extent to which they did this was too modest. In �rst-price
and Dutch auctions with increasing demand, observed bidding is on average
close to v, whereas optimal behavior requires agents to bid 1

2v. Note that as
predicted in Proposition 1, observed behavior in respectively the �rst-price and
Dutch auctions, and second-price and English auctions, is very similar.

Figures 13-24 show all �rst-auction bids for the di�erent values of k for the
4 auction formats with buyer's option, i.e. they are based on all �rst-auction
bids submitted during periods 13-24 of the experiment. Table 3 presents the
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corresponding estimation and test results. For second-price and English auctions
with decreasing demand the solution (approximated using simulations) of the
di�erential equation given in Proposition 1 is b1(v) = 0:99v � 0:009v2. This
explains why the green line in Figures 14 and 16 is curved. The red line in
each of these pictures is the �tted line �̂1v+ �̂2v

2 where �̂1 and �̂2 are the OLS
estimates of the coeÆcients in the regression b1it = �1vit +�2v

2
it + "it. The test

of the theory in these 2 cases amounts to testing, using a standard Fisher-test,
the joint hypothesis that �1 = 0:99 and �2 = 0:009.

The results for the �rst auctions with buyer's option are quite similar to
those obtained for the �rst auctions without the option. Indeed, as Table 3
shows, the theoretical predictions are again rejected in most cases: the null
is accepted only 2 out of 12 times. Theory is again accepted for the English
auction with at demand, and now also for the English auction with decreasing
demand (not at the 5% level, but at the 1% level, which is indicated by \Yes�" in
the table). Unlike the �rst-auction results without the option, observed bidding
behavior is not in line with theory for the second-price auction with at demand.
Observed bidding in this case is on average slightly above the value v. As in
the �rst auctions without option, the degree of bid shading is too modest in
the second-price auctions with decreasing demand; the degree of over-bidding
is too modest in the English and second-price auctions with increasing demand.
Table 3 shows that in all Dutch and �rst-price auctions, observed bidding is
on average above equilibrium bidding. Note �nally that there is again much
behavioral similarity between Dutch and �rst-price auctions on the one hand,
and English and second-price auctions on the other.

The impact of the buyer's option on �rst-auction bidding behavior can be
studied by comparing the results of Table 2 and Table 3. Let us �rst consider the
Dutch and �rst-price auctions. Here the theoretical e�ect of the buyer's option
can be confronted with the data only for k = 2. With increasing demand, theory
predicts that bidders should be more aggressive when the option is available (the
predicted slope is 0.75 with the option, and 0.50 without). However, running an
appropriate regression model and testing for a buyer's option e�ect,9 it turns out
that bidding behavior in the Dutch auction is not a�ected by the presence of a
buyer's option, whereas bidding in the �rst-price auction is actually signi�cantly
less aggressive when the option is available.

Concerning the English and second-price auctions, we only test for an impact
of the buyer's option when k = 1 and k = 2. In these cases, theory predicts that
the buyer's option does not modify �rst-auction bidding behavior. Performing
the same kind of tests as described just before, we �nd that for both auction
institutions the theory is veri�ed when demand is at. When demand is in-
creasing, the data are again in line with theory for the English auction but not
for the second-price auction. In the latter case, �rst-auction bidding is actually
more aggressive when the buyer's option is available.

9Pooling all �rst-auction bids submitted in the Dutch (resp. �rst-price) auctions, we con-
sider the model b1it = �vit+vit1foit = Y g+"it, with 1f.g the indicator function and oit the
option indicator for individual i in period t, and check for the buyer's option e�ect in Dutch
(resp. �rst-price) auctions by testing whether  = 0.
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Table 3: First auction with buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 64 0.51 ( 0.02) 0.92 0.375 No
Second-price 64 1.25 (.09) -0.008 (.002) 0.95 0:99 � 0:009 No
Dutch 44 0.48 ( 0.02) 0.95 0.375 No
English 40 1.02 (.06) -0.008 (.001) 0.94 0:99 � 0:009 Yes�

k = 1

First-price 64 0.61 ( 0.01) 0.97 0.5 No
Second-price 64 1.09 ( 0.03) 0.95 1 No
Dutch 44 0.59 ( 0.02) 0.97 0.5 No
English 40 0.99 ( 0.02) 0.99 1 Yes

k = 2

First-price 64 0.91 ( 0.03) 0.95 0.75 No
Second-price 64 1.48 ( 0.03) 0.97 2 No
Dutch 44 0.88 ( 0.03) 0.96 0.75 No
English 40 1.33 ( 0.05) 0.94 2 No

4.2 The buyer's option

In this subsection we study to what extent the buyer's option has been ex-
ercised by the subjects in our experiment. The results can be found in Ta-
ble 4. The second column reports the relative number of times the buyer's
option has been used for each auction institution. For ease of presentation,
the third column recalls the optimal frequencies given in Proposition 1. Let
us �rst discuss the results for the Dutch and �rst-price auctions. For each
value of k, Nash equilibrium behavior requires that the �rst-auction winner
should always use the buyer's option. Table 4 shows that observed behavior is
quite well in line with this prediction for at and increasing demand. However,
when the demand function is decreasing, the observed frequency of exercising
the option is much too low (only 32% in the Dutch auctions and 41% in the
�rst-price auctions). Given that in both these auction institutions many �rst-
auction bids are clearly out of equilibrium (see Figures 13 and 15), the ques-
tion arises whether the deviating bidders are responsible for the low frequency
observed in our data. To answer this question, we have run the logit model
Prob(boit = 1) = 1=(1 + exp[�1 + �21fb1it \close" to b1(vit)g]) with boit = 1 if
i uses the buyer's option in period t and 0 otherwise, and the observed bid b1it
is \close" to the optimal bid b1(vit) if the relative di�erence between the two is

smaller than 30%. The ML estimate �̂2 (standard error) is -1.70 (0.75) for the
Dutch auction and -2.61 (0.94) for the �rst-price auction. In both cases the co-
eÆcient is negative and signi�cant, suggesting that subjects whose �rst-auction
bids are at or close to equilibrium are more likely to exercise the buyer's option,
and are thus more likely to remain coherent with theory. See also the discussion
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Table 4: The buyer's option

Auction Relative frequency1 Prediction

k = 0:5

First-price 41% bo(p1) = 1
Second-price 93% bo(p1) = 1 if p1 � 0:5v

0% bo(p1) = 0 if p1 > 0:5v
Dutch 32% bo(p1) = 1
English 96% bo(p1) = 1 if p1 � 0:5v

0% bo(p1) = 0 if p1 > 0:5v

k = 1

First-price 91% bo(p1) = 1
Second-price 78% bo(p1) 2 [0; 1]
Dutch 84% bo(p1) = 1
English 68% bo(p1) 2 [0; 1]

k = 2

First-price 81% bo(p1) = 1
Second-price 69% bo(p1) = 0
Dutch 98% bo(p1) = 1
English 70% bo(p1) = 0
1 Relative number of times the buyer's option is used.

in section 4.5.1.
Next consider the English and second-price auctions. Under decreasing de-

mand the observed frequencies are very close to the frequencies predicted by the
theory. Subjects have well understood that the option should be exercised when
p1 �

1
2v, and inversely that it should not be used when p1 >

1
2v. That the last

prediction is veri�ed may seem somewhat obvious (exercising the option while
p1 >

1
2v implies a loss on the second unit acquired) but is nonetheless reassur-

ing since it means that subjects have apparently well understood the rules of
the game. Under at demand the theory predicts that the winner of the �rst
auction is indi�erent between using or not using the buyer's option, so in this
case there is no testable implication of the theory. Under increasing demand the
theory predicts that the winner should never use the option, but should instead
wait and try to win the second unit of the good in the second auction. This
prediction is mostly rejected by the data since 70% (resp. 69%) of the winners
in the English (resp. second-price) auctions did use the buyer's option.10

10Figures 22 and 24 show that for the English and second-price auctions with increasing
demand practically all bids appear out of equilibrium. Performing the logit analysis would
therefore not make sense in these 2 cases.
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Table 5: Second auction (for loser of �rst auction) without buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 32 0.57 ( 0.03) 0.93 ; ;
Second-price 32 0.95 ( 0.03) 0.96 1 Yes
Dutch 18 0.55 ( 0.03) 0.95 ; ;
English 26 0.97 ( 0.03) 0.97 1 Yes

k = 1

First-price 32 0.76 ( 0.03) 0.96 ; ;
Second-price 32 1.07 ( 0.03) 0.97 1 Yes�

Dutch 15 0.74 ( 0.03) 0.74 ; ;
English 38 0.99 ( 0.03) 0.99 1 Yes

k = 2

First-price 32 1.04 ( 0.06) 0.91 1 Yes
Second-price 32 1.21 ( 0.08) 0.88 1 No
Dutch 5 1.12 ( 0.14) 0.94 1 Yes
English 40 1.29 ( 0.06) 0.92 1 No

4.3 Bidding behavior in the second auction

We only discuss the second-auction results for the 4 auction formats without
buyer's option, that is we focus on second-auction bids submitted during pe-
riods 1-12 of the experiment. The reason is that the buyer's option has been
frequently used by our experimental subjects, so relatively few second auctions
were actually held during periods 13-24, leaving us, in most cases, with too few
data to reliably estimate the second-auction bidding strategies.11 Since winners
and losers of the �rst auction should generally behave di�erently in equilibrium,
the results for the 2 groups are presented separately.

Let us �rst describe second-auction bidding behavior for the losers of the
�rst auction. They are presented in Table 5.12 Unlike the �rst-auction results,
the majority of predictions are now veri�ed by the data: the null hypothesis is
accepted 6 out of 8 times. In the Dutch and �rst-price auctions with increasing
demand, we again �nd the by now familiar pattern, namely that observed bid-
ding in these 2 auction formats is on average in excess of equilibrium bidding.
However, the deviations from optimality are not signi�cant here.

In English and second-price auctions, and for each value of k, it is a dominant
strategy for the �rst-auction loser to bid v in the second auction. Thus, like in
standard single-unit English and second-price auctions, it is optimal for bidders
to reveal their valuation. Because of this theoretical equivalence, it is of interest
to compare our results with those obtained in the experimental literature on
single-unit English and single-unit second-price auctions (see Coppinger, Smith,

11This is especially true for the auction periods with at or increasing demand.
12To economize on space, the �gures depicting the second-auction bids are not given here.
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and Titus (1980), Cox, Roberson, and Smith (1982), Kagel, Harstad, and Levin
(1987), and Kagel and Levin (1993)).13 It should be stressed however that
bidding in our experiment and bidding in the single-unit experiments took place
in slightly di�erent contexts. First because our experimental subjects were more
informed about their opponents (when subjects in our experiment submitted
their second-auction bid, they knew the �rst-auction price p1) than subjects in
the single-unit experiments. And also because, under decreasing and increasing
demand, bidders in the second auction are no longer symmetric as in the single-
unit experiments. Therefore, any di�erences between the results obtained in the
single-unit auction literature and our's can be attributed to these contextual
di�erences.

For k = 1
2 and k = 1 we �nd the same results as in the experimental single-

unit literature: in English and second-price auctions bidders play the dominant
strategy as predicted by the theory. For k = 2 we �nd that bidding in English
auctions is signi�cantly above value, contradicting both the theory and the
results from the single-unit experiments. Bidding in the second-price auctions
is also signi�cantly above value, which is contradictory to theory but coherent
with the single-unit experiments. Kagel, Harstad, and Levin (1987) explain
over-bidding in their single-unit second-price auctions by arguing that bidding
above value does not necessarily entail losses and increases the probability of
winning, so that subjects can have the illusion that such a strategy increases
expected pro�ts. It is unlikely that this explanation also holds in our experiment
since it is incompatible with the fact that for second-price auctions with k = 1

2
or k = 1 we do not observe over-bidding. A more plausible explanation for
overbidding in English and second-price auctions is given in section 4.5.

Next we describe second-auction bidding behavior for the winners of the �rst
auction. They can be found in Table 6. Observed behavior is again in line with
theory in the majority of cases: the null is accepted 5 out of 7 times. In English
and second-price auctions, and for all values of k, the dominant strategy for the
�rst-auction winner is to reveal his/her value for the second unit, i.e. 2v. In all
English and second-price auctions, observed behavior is in line with theory and
the single-unit literature (except the English auction with k = 1, but here there
are just 2 observations, and the result is probably not very reliable; for k = 2
there are no observations at all for the English auction, so theory can not be
tested). In the �rst-price auction with increasing demand, the data are in line
with theory at the 1% level, but in the Dutch auction observed bidding is below
equilibrium bidding.

13This literature shows that subjects bid according to equilibrium behavior in single-unit
English auctions. Regarding the single-unit second-price auctions, Coppinger, Smith, and
Titus (1980) and Cox, Roberson and Smith (1982) �nd that average bidding is below (but
not always signi�cantly) value; Kagel, Harstad, and Levin (1987) and Kagel and Levin (1993)
�nd, however, that the subjects in their study bid signi�cantly above value. They point out
that a likely explanation for these conicting �ndings is that, unlike their experiments (and
our's!), the designs of Coppinger, Smith, and Titus (1980) and Cox, Roberson and Smith
(1982) did not allow subjects to bid in excess of their valuation.
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Table 6: Second auction (for winner of �rst auction) without buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 32 0.41 ( 0.01) 0.98 ; ;
Second-price 32 0.53 ( 0.02) 0.94 0.5 Yes
Dutch 26 0.34 ( 0.02) 0.95 ; ;
English 14 0.54 ( 0.03) 0.96 0.5 Yes

k = 1

First-price 32 0.61 ( 0.02) 0.97 ; ;
Second-price 32 1.00 ( 0.01) 0.99 1 Yes
Dutch 29 0.57 ( 0.02) 0.96 ; ;
English 2 0.98 ( 0.00) 0.99 1 No

k = 2

First-price 32 1.05 ( 0.02) 0.99 1 Yes�

Second-price 32 2.34 ( 0.23) 0.77 2 Yes
Dutch 39 0.93 ( 0.03) 0.97 1 No
English 0 - ( - ) - 2 ;

4.4 EÆciency, price patterns, and revenue comparisons

We start this subsection by comparing observed revenues with their theoretical
counterparts. Results are given separately for auctions without a buyer's option
(Table 7) and auctions with a buyer's option (Table 8). The third column in
these tables gives the revenues as predicted by the theory. These predictions
follow from Proposition 1. In the absence of a buyer's option, and for each value
of k, the 4 auction institutions are equivalent in terms of the expected revenue
they generate. When the buyer's option is available, there is again revenue-
equivalence when k = 1 and k = 2. However, when k = 1

2 , the �rst-price
and Dutch auctions generate more revenue than the English and second-price
auctions. Comparing Table 7 and Table 8, it can be seen that in theory the
buyer's option has no e�ect on expected revenue. The only exceptions are the
English and second-price auctions with decreasing demand. In these cases the
buyer's option increases expected revenue.

To test the revenue predictions, we de�ne for each couple and for each period
the seller's revenue REV = p1 + p2. For each value of k and each auction
mechanism the empirical average of REV is calculated, and using a T-test we
test the hypothesis that REV has a mean equal to the predicted revenue. For
instance, in Table 7, the average revenue in English auctions without a buyer's
option when k = 2 (the average is thus calculated over 10 couples �4 periods =
40 observations) equals 40.95 (standard error equal to 5.45), and the hypothesis
that the mean of REV equals the predicted value 50.00 is accepted at the 5%
level.

As Table 7 and Table 8 show, the results for all the English auctions are
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Table 7: Seller's revenue without buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 31.41 ( 2.00) ; ;
Second-price 27.52 ( 2.45) 20.83 No
Dutch 29.81 ( 1.75) ; ;
English 20.12 ( 2.46) 20.83 Yes

k = 1

First-price 46.46 ( 2.80) ; ;
Second-price 33.22 ( 3.75) 33.33 Yes
Dutch 37.82 ( 1.74) ; ;
English 31.10 ( 3.33) 33.33 Yes

k = 2

First-price 70.91 ( 4.79) 50.00 No
Second-price 38.91 ( 4.13) 50.00 No
Dutch 64.43 ( 3.81) 50.00 No
English 40.95 ( 5.45) 50.00 Yes

Table 8: Seller's revenue with a buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 33.98 ( 2.09) 25.00 No
Second-price 29.15 ( 3.14) 23.65 Yes
Dutch 27.07 ( 1.93) 25.00 Yes
English 24.56 ( 2.70) 23.65 Yes

k = 1

First-price 39.85 ( 2.69) 33.33 Yes�

Second-price 37.48 ( 4.93) 33.33 Yes
Dutch 37.86 ( 2.51) 33.33 Yes
English 30.27 ( 3.69) 33.33 Yes

k = 2

First-price 59.49 ( 4.48) 50.00 Yes�

Second-price 45.49 ( 5.94) 50.00 Yes
Dutch 63.87 ( 2.63) 50.00 No
English 39.84 ( 4.19) 50.00 Yes�
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in line with the theoretical predictions. Concerning the Dutch, �rst-price and
second-price auctions, the null is generally accepted when the buyer's option is
available, but rejected when it is not. In most cases where the null hypothesis is
rejected, mean revenue is signi�cantly above the predicted revenue. These de-
viations from theory are sometimes considerable. For instance, when a buyer's
option is not proposed by the auctioneer, a �rst-price auction (k = 2) gener-
ates almost FFr21 more per period than predicted by the theory. Table 7 and
Table 8 also indicate that generally the �rst-price auction generates the high-
est revenue, followed by the Dutch auction, then the second-price auction, and
lastly the English auction. Note that our revenue-ranking of auction formats
is exactly identical to the ordering found by Cox, Roberson and Smith (1982)
in their experimental study on one-unit auctions.14 Two-sample T-tests on the
equality of mean revenues (not reported in the Tables) suggest that the di�erence
between respectively the Dutch and �rst-price auctions and the �rst-price and
second-price auctions are signi�cant at the 5% level, but the di�erence between
the second-price and English auctions is generally not signi�cant. Two-sample
T-tests also suggest that the buyer's option signi�cantly decreases (resp. in-
creases) revenue in �rst-price (resp. second-price) auctions; the buyer's option
does not signi�cantly a�ect expected revenue in Dutch or English auctions.

Table 9 and Table 10 report for each value of k and each auction mechanism
the mean and standard deviation of the di�erence in prices p2� p1. The Tables
also indicate the theoretical predictions on the expected value of p2 � p1 and
whether these predictions are rejected by the data or not. The predicted price
variations follow immediately from Proposition 1.

As shown in Table 10, the winning price p1 is expected to be equal to the
winning price p2 when the buyer's option is available. The only exceptions are
the second-price and English auctions for k = 1

2 and k = 2 where on average
the sequence of prices is expected to be declining. Note that expected price
variations in second-price and English auctions for k = 2 are almost 19 times
larger compared to the predicted variations for k = 1

2 . Note also that in the case
of �rst-price and Dutch auctions with buyer's option the prediction of constant
prices is not surprising since, according to Proposition 1, winners of the �rst
auction should always execute their buyer's option. Table 9 shows that in the
absence of a buyer's option the theoretical predictions vary considerably with
the auction format and the value of k. The sequence of prices in second-price
and English auctions is expected to be increasing when k = 1

2 , and constant
when k = 1 (no predictions for �rst-price and Dutch auctions for these values
of k). It is quite striking that for k = 2 the predicted patterns in the �rst-price
and Dutch auctions are completely opposite to those of the second-price and
English auctions: in the former two auction formats the theory predicts a price
increase of FFr16.67, while in the latter two auction types a price decline of
FFr16.67 is expected.

Table 9 and Table 10 show that for k = 1 the results are in line with the

14Cox et al. experimentally study �rst-price, second-price, and Dutch auctions, but not the
English auctions.
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Table 9: Price variation (p2 � p1) without buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price -1.09 ( 1.17) ; ;
Second-price -1.18 ( 1.28) 4.17 No
Dutch -3.53 ( 0.81) ; ;
English 0.57 ( 0.75) 4.17 No

k = 1

First-price 0.99 ( 1.49) ; ;
Second-price 0.75 ( 0.83) 0.00 Yes
Dutch 1.40 ( 0.43) ; ;
English -0.39 ( 0.49) 0.00 Yes

k = 2

First-price 2.02 ( 2.24) 16.67 No
Second-price 0.41 ( 1.28) -16.67 No
Dutch 1.95 ( 1.03) 16.67 No
English 0.11 ( 1.50) -16.67 No

Table 10: Price variation (p2 � p1) with a buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price -3.74 ( 1.00) 0.00 No
Second-price -5.29 ( 1.11) -0.88 No
Dutch -3.31 ( 0.64) 0.00 No
English -1.00 ( 0.45) -0.88 Yes

k = 1

First-price -0.18 ( 0.14) 0.00 Yes
Second-price -0.07 ( 0.13) 0.00 Yes
Dutch -0.94 ( 0.40) 0.00 Yes�

English -0.72 ( 0.77) 0.00 Yes

k = 2

First-price -0.71 ( 0.34) 0.00 Yes�

Second-price -0.30 ( 0.89) -16.67 No
Dutch -0.07 ( 0.07) 0.00 Yes
English -3.77 ( 1.73) -16.67 No
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theoretical predictions for all auction institutions, with and without buyer's op-
tion: when demand is at, observed price di�erences are indeed not signi�cantly
di�erent from 0. For k = 1

2 and k = 2 the results are somewhat less satisfactory.
When the buyer's option is not available, theory predicts (strong) decreasing or
increasing price patterns, but the hypothesis that prices remain constant can
never be rejected; when the buyer's option is available, the observed price pat-
terns are in line with theory for English auctions with decreasing demand, and
Dutch and �rst-price auctions with increasing demand.

Table 9 and Table 10 show that observed price sequences are mostly con-
stant when the buyer's option is not available, but signi�cantly decreasing when
it is available. These �ndings are compatible with the �eld-data studies men-
tioned in the introduction: they are in support of Van den Berg, Van Ours, and
Pradhan (1999), who think that the buyer's option is responsable for the price
declines in their Dutch auctions of owers; and they are in line with the stud-
ies on sequential English auctions of wine at Christie's, Drouot and Sotheby's,
(see Ashenfelter (1989), Ginsburgh (1998), and F�evrier et al. (2001)), where
successive prices are generally found to be declining.

In the last part of this subsection we study auction eÆciency. The results
can be found in Table 11 and Table 12. For each k and auction mechanism, the
�rst column reports the mean and standard deviation of the relative eÆciency
RE = 1

2 (RE1 +RE2), where REj is the value that the j -th unit winner places
on unit j, divided by the maximum of this value and his/her rival's value. For
example, if bidder 1 wins the �rst unit, and bidder 2 the second unit, RE =
1
2 (

v1
max(v1;v2)

+ v2
max(kv1;v2)

). We also report the predicted values of RE (these

predictions follow from Proposition 1), and whether the predictions are accepted
or not in the data.

As Table 11 and Table 12 show, all auction institutions are, in theory, ef-
�cient mechanisms. The only exceptions are the auctions with buyer's option
and decreasing demand. The auction institutions are slightly ineÆcient in these
cases since the buyer's option allows the �rst-auction winner to buy the second
unit while having a lower valuation than his opponent. Actual eÆciency is gen-
erally remarkably close to predicted eÆciency, and theory is accepted in most
cases. In spite of the high degree of out-of-equilibrium behavior observed in the
data, the 4 auction institutions are highly eÆcient in our experiments.

4.5 Understanding deviations from optimal bidding be-

havior

The purpose of this subsection is to understand and interpret the deviations from
optimal behavior described in sections 4.1-4.3. Depending on the type of auction
mechanism, we �nd di�erent explanations for the deviations. In the Dutch and
�rst-price auctions, observed bidding behavior turns out to be compatible with
risk-averse Nash equilibrium theory. As in single-unit auction experiments (see
Kagel (1995) for a survey), the deviations from theory can thus be attributed
to risk aversion among experimental subjects. Risk aversion is modeled as in
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Table 11: Relative eÆciency without buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 0.93 ( 0.02) ; ;
Second-price 0.98 ( 0.01) 1.00 Yes
Dutch 0.96 ( 0.01) ; ;
English 0.98 ( 0.01) 1.00 Yes�

k = 1

First-price 0.95 ( 0.02) ; ;
Second-price 0.99 ( 0.01) 1.00 Yes
Dutch 0.94 ( 0.01) ; ;
English 0.99 ( 0.01) 1.00 Yes

k = 2

First-price 0.97 ( 0.02) 1.00 Yes
Second-price 1.00 ( 0.00) 1.00 Yes
Dutch 0.96 ( 0.01) 1.00 Yes�

English 1.00 ( 0.00) 1.00 Yes

Table 12: Relative eÆciency with a buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 0.94 ( 0.03) 0.92 Yes
Second-price 0.98 ( 0.01) 0.98 Yes
Dutch 0.92 ( 0.03) 0.92 Yes
English 0.96 ( 0.02) 0.98 Yes

k = 1

First-price 0.98 ( 0.01) 1.00 Yes�

Second-price 0.99 ( 0.01) 1.00 Yes
Dutch 0.97 ( 0.01) 1.00 No
English 1.00 ( 0.00) 1.00 Yes

k = 2

First-price 0.99 ( 0.01) 1.00 Yes
Second-price 0.99 ( 0.01) 1.00 Yes
Dutch 1.00 ( 0.00) 1.00 Yes
English 1.00 ( 0.00) 1.00 Yes

23



the single-unit experiments (see for example Cox, Roberson and Smith (1982)
and Kagel, Harstad, and Levin (1987)).15 All agents are thus assumed to have
the same concave utility function u(�) over money income. Furthermore, the
utility function is assumed to be of the form u(x) = x� with � 2 [0; 1). This is
a constant relative risk-aversion (CRRA) model. In analyzing the deviations, it
is assumed that the participants in our experiment have a coeÆcient of relative
risk aversion � equal to 0.6.16

In the English and second-price auctions, most of the Nash equilibrium
strategies (the only exceptions are the auctions with buyer's option and de-
creasing demand) stated in Proposition 1 are robust to the form of risk aversion
that we consider; put in other words, risk-neutral Nash equilibrium bidding be-
havior in English and second-price auctions remains optimal under the CRRA
assumption. The implication of this invariance property is that something other
than risk aversion is responsible for the observed deviations in English and
second-price auctions. As will be seen below, the deviations from theory are
a consequence of either myopic behavior or punitive behavior. By myopic be-
havior is meant that agents' bidding behavior in the �rst auction is identical
to bidding behavior in a single-unit auction. Although agents fully understand
that 2 units are on sale instead of 1 unit, their �rst-auction behavior does not
reect this crucial di�erence. By punitive behavior is meant that �rst-auction
losers attempt to harm their opponents by bidding above their value v in the
second auction (the dominant strategy), thereby reducing the second-auction
pro�ts of their opponents.

4.5.1 Dutch and �rst-price auctions

In sections 4.1-4.3 we have seen that observed bidding behavior in Dutch and
�rst-price auctions is generally above risk-neutral equilibrium behavior. Fur-
thermore, experimental subjects have used the buyer's option much too rarely
when demand is decreasing. In this subsection it is shown that these deviations
can be explained once agents are allowed to be risk-averse. We can thus ratio-
nalize all observed behavior in terms of risk aversion. We give the risk-averse
Nash equilibrium bidding functions in all relevant cases but omit the proofs of
their derivations (obtainable from the authors).

In the absence of a buyer's option and when demand is decreasing, there
again does not exist a symmetric pure Nash equilibrium. When the option
is available an equilibrium does exist, and the �rst-auction optimal bidding
function under CRRA is b1(v; �) = 3

4(1+�)v (note that when � = 1 we �nd

15See Harrison (1989) and the subsequent debate in the American Economic Review, Vol.
82 No 5, pp. 1374-1443, for an alternative explanation for the overbidding phenomenon. In
particular, see Cox, Smith, and Walker (1992) (and the references herein) for an extensive
discussion of risk-aversion models.

16This value is obtained in a somewhat ad hoc way by minimizing, over �, the sum of
squared deviations between observed bids and optimal bids under risk aversion. Our estimate
is a bit higher than the one found in Kagel, Harstad, and Levin (1987). They report an
average estimate of � equal to 0.49, suggesting that students in our experiment were slightly
less risk-averse than their North American counterparts.
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the risk-neutral bidding function b1(v) =
3
8v given in point 7 of Proposition 1).

Taking � = 0:6, we have b1(v; �) = 0:47v, and performing the same tests as in
section 4.1 (i.e. we test whether � = 0:47, etc.), we accept, at the 5% level, for
both the Dutch and �rst-price auctions, the hypothesis that observed bidding
is in accordance with risk-averse bidding behavior.

The question that is still unanswered is whether risk-aversion provides a
rationale for the fact that the option is exercised too rarely under decreasing
demand? Given that under risk aversion it is still optimal to always use the
buyer's option, the answer is no. Note however that the optimal bidding func-
tion under risk aversion b1(v; �) = 0:47v is very close to the threshold curve
0:50v above which it is not pro�table to use the buyer's option. The fact that
risk-neutral equilibrium behavior is accepted of course only means that average
bidding is according to the function b1(v; �), and does obviously not exclude
that part of the observations are located above the nearby located threshold
curve. In our data all persons with bids above the threshold curve did indeed
not use the option (and inversely, those with bids under the threshold curve did
exercise the option), explaining why the observed frequency of using the option
is lower than predicted by optimal behavior under CRRA.

Let us next consider consider the auctions under at demand. Again, an
equilibrium only exists when the buyer's option is available, and the �rst-auction
optimal bidding function under CRRA is now b1(v; �) =

1
(1+�)v. Given � = 0:6

we get b1(v; �) = 0:625v, and again risk-averse equilibrium theory is accepted
for both the Dutch and �rst-price auction. Under CRRA it remains optimal
to always use the option, so regarding the use of the buyer's option, the data
remain in line with theory. Note that the problem that was mentioned above
does not play a role here since the threshold curve here is v, i.e. well above the
optimal function.

Finally consider the auctions under increasing demand. As in the case with
risk-neutrality, equilibria exist for the auctions with and without the buyer's
option. For the auctions without buyer's option, we have b1(v; �) = 2��

(1+�)v,

and taking � = 0:6 we get b1(v; �) = 0:875v. The hypothesis that bidding
behavior is according to equilibrium behavior under CRRA is only accepted
for the Dutch auction. The second-auction strategies are not a�ected by risk-
aversion, so the data remain coherent with the theory except for �rst-auction
winners in the Dutch auction (see Table 5 and Table 6). When the buyer's
option is available, we obtain b1(v; �) =

3
2(1+�)v, and taking � = 0:6 we get

b1(v; �) = 0:938v, implying that equilibrium behavior under CRRA is once
again accepted for both auctions institutions. The optimal use of the buyer's
option is not a�ected by risk-aversion, so observed frequencies remain coherent
with predicted frequencies.

4.5.2 English and second-price auctions

In sections 4.1-4.3 it was shown that subjects' behavior is quite well in line with
the predictions of Proposition 1 when the demand function is at. Important
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deviations are however observed when the demand function is decreasing or
increasing: in the �rst auctions the degree of bid shading (resp. over-bidding)
observed in the data is clearly too small under decreasing (resp. increasing)
demand; in the second auctions with increasing demand, �rst-auction losers are
found to be bidding signi�cantly above the dominant strategy which consists in
revealing the value v; the �nal deviation that needs our attention concerns the
higher-than-optimal use of the buyer's option when demand is increasing. As
in the previous subsection, we discuss each of these deviations separately.

First consider the deviations under decreasing demand. In analyzing the
�rst-auctions without buyer's option, it is helpful to look again at Figures 2
and 4. In both �gures there is evidence of there being 2 groups of bids: one
group of bids closely scattered around the optimal bidding line b1(v) =

1
2v, and

another group of bids concentrated around the line v. Apparently part of the
subjects play the optimal strategy, while others bid in a myopic way.17 This can
be checked more formally by running the following switching regression model

b1it = �1vit + "1it with probability �

b1it = �2vit + "2it with probability 1-�:

The estimates (standard error) of �1 and �2 are 1.04 (0.04) and 0.52 (0.06)
for the second-price auction, and 0.98 (0.01) and 0.49 (0.04) for the English
auction. The estimate (standard error) of the probability � is 0.62 (0.07) for
the second-price auction, and 0.43 (0.09) for the English auction. Our switching
regression estimates thus con�rm that there are 2 groups of agents, one made
up of rational bidders and the other of myopic bidders, and that the proportion
of myopic agents is quite important in the data. The fact that the prevalence
of myopic agents is so high explains the rejection of the theory in section 4.1.

The only strategies that are sensitive to the introduction of CRRA are the
English and second-price auctions with buyer's option (still k = 1

2 ). Under
CRRA, the optimal bid function is the solution of�(v�b1(v; �))

�+( v2 )
� = 2(v�

b1(v; �))
�b01(v; �). As in section 4.1, the solution can be precisely approximated

by a second-order polynomial in v. Taking � = 0:6, and performing the same
tests as in section 4.1, the results are in support of risk-averse Nash equilibrium
behavior, at the 5% level for the second-price auction, and at the 1% level for the
English auction. CRRA does not a�ect the optimal use of the buyer's option,
so observed frequencies remain in line with predictions.

Next consider the deviations under increasing demand. To understand the
deviations in the auctions without buyer's option, we �rst look at the second-
auction results. As Tables 5 and 6 show, winners of the �rst auction bid
their valuation for the second unit, as predicted by theory, but losers of the
�rst auction bid signi�cantly above the dominant strategy v. As pointed out in

17Subjects are quite consistent in their behavior over the 4 periods for which k = 1

2
and

o = N : most optimal bidders are optimal in all 4 periods, and similarly, most deviators
persistently deviate in all 4 periods.
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section 4.3, the latter result contrasts with the experimental literature on single-
unit auctions. However, unlike single-unit experiments, �rst-auction losers have
information about the value of their opponent (the contextual di�erence men-
tioned in section 4.3), which allows them, without taking any personal risk, to
punish their competitor by bidding above the dominant strategy. This punitive
behavior in the second auction can also explain the deviation observed in the
�rst auction. It can be formally shown that, in anticipation of punitive behavior
in the second auction, players should bid somewhere between v and 2v (depend-
ing on the degree of punitive behavior among subjects) in the �rst auction to
compensate for the smaller gain in the second auction. As Figures 10 and 12
show, this line of reasoning is well supported by the data, since practically all
�rst-auction bids are indeed between v and 2v (with some exceptions for the
second-price auction without buyer's auction).

The deviations that are observed in the auctions with buyer's option can be
explained in the same manner. In the �rst auctions, player's anticipate future
punitive behavior by bidding between v and 2v (Figures 22 and 24 show that
this is indeed the case). Furthermore, under punitive behavior, it can be shown
that it is optimal for �rst-auction winners to always exercise the buyer's option,
justifying why the subjects in our experiment do not wait but buy instead.

5 Conclusion

This paper experimentally studies two-unit sequential auctions with and with-
out the buyer's option. The 2 identical units are sold to 2 potential buyers. Each
buyer desires both units, and their demand function is either decreasing, at,
or increasing. The four best known auction mechanisms are considered: Dutch,
English, �rst-price and second-price auctions. Experimental papers on sequen-
tial auctions are still very rare and none analyzes the buyer's option despite its
practical importance.

Observed bidding behavior in English and second-price auctions is closer to
risk-neutral Nash equilibrium bidding in the second auction than in the �rst
auction. This is not surprising since the �rst-auction strategies are more subtle
and less transparent than the second-auction strategies. In the �rst auction,
buyers face a complex situation because they need to anticipate that the �rst-
auction winning price is revealed, that a second unit is going to be sold, and that
the winner has the right to exercise the buyer's option (if the option is available).
The inexperienced subjects in our experiment have nonetheless understood the
basic strategic e�ects called for by optimal bidding behavior. Subjects have
indeed understood that under at demand it is optimal to bid their valuation
in the �rst auction; under decreasing (resp. increasing) demand, subjects have
understood that optimal behavior requires bid shading (resp. over-bidding), but
the extent to which they did this was too modest. In the second auction, buyers
face a relatively simple situation. As in single-unit English and second-price
auctions, it is a dominant strategy for bidders to reveal their valuation. Apart
from the �rst-auction losers under increasing demand, who bid in excess of their
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valuation, we �nd, as in the experimental literature on single-unit auctions, that
our subjects play according to the dominant strategy. Bidders in our experiment
have exercised the buyer's option quite adequately under decreasing and at
demand, but not when demand is increasing. In the latter case the bidders have
made too much use of the option.

For the Dutch and �rst-price auctions without buyer's option, there only
exists an equilibrium when the demand function is increasing. Compared to the
English and second-price auctions, there are therefore less theoretical predictions
that can be tested. As in the English and second-price auctions, risk-neutral
Nash equilibrium behavior organizes the data better in the second auction than
in the �rst auction. Practically all deviations that we observe share a common
feature which is that bidding behavior is above optimal bidding behavior. This is
a phenomenon that is also observed in experiments on single-unit �rst-price and
Dutch auctions. Bidders in our experiment have exercised the buyer's option
very often under at and increasing demand, as theory predicts them to do, but
too little when demand is decreasing.

Depending on the type of auction mechanism, we �nd di�erent explanations
for the deviations. In the Dutch and �rst-price auctions, observed bidding
behavior turns out to be compatible with risk-averse Nash equilibrium theory.
As in the single-unit auction experiments, the deviations from theory can thus
be attributed to risk aversion among experimental subjects. In the English and
second-price auctions, most of the Nash equilibrium strategies are robust to
the form of risk aversion that we consider. For these auction institutions, the
deviations from theory can be explained by either myopic or punitive behavior.

The paper also looks at the revenue and the price patterns in the di�erent
auction mechanisms with and without buyer's option. It is quite remarkable that
the revenue ranking of the 4 auction institutions is the same as in single-unit
experiments. We also �nd that the buyer's option decreases (resp. increases)
revenue in �rst-price (resp. second-price) auctions, but that there is no signif-
icant e�ect in the clock auctions. Successive prices are found to be declining
in the auctions with buyer's option, but are constant when the option cannot
be used. This result, in conjunction with the fact that subjects in our exper-
iment are found to be risk-averse, suggests that the buyer's option, and not
risk-aversion, is responsable for the declining price anomaly.

In future work we plan to study the e�ect of an increase in the number of
buyers at auction. We also plan to investigate the role of the buyers' option in
the common value paradigm.
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Appendix

A Proof of proposition 1

A.1 a 2 fE; Sg, o = N , and k 2
�
1
2
; 1; 2

	

The second auction strategies are obtained by the standard dominated strategies
argument. Therefore, both the loser and the winner of the �rst auction bid their
valuation:

bl2 (v; p1) = v and bw2 (v; p1) = kv:

To derive the �rst auction equilibrium strategies, we have to distinguish the
English auction from the second-price auction as the available information is
not the same in these two auction institutions.

A.1.1 a = E and k = 1
2 ; 1

See Donald, Paarsch, and Robert (1997).

A.1.2 a = E and k = 2

Let b1 (v) be the �rst auction equilibrium strategy and v1 the value of player 1.
Suppose the clock has reached p (close to b1 (v1)) and player 1 has to decide
to continue or to stop bidding. Let G ("; p) denote the expected total gain (for
the �rst and second auctions) for player 1 if he decides to continue with bidding
until p+ ":

G ("; p) =

Z b
�1

1
(p+")

b
�1

1
(p)

(v1 � b1 (w) + 2v1 � w)
dw

1� b�1
1 (p)

:

The above expression follows because player 1 can only win the �rst auction if
p � b1 (v2) � p+ ", with v2 being the valuation of player 2. If he wins the �rst
auction, he also wins the second auction because, since p is close to b1 (v1), we
have that 2v1 is larger than v2. On the contrary, if he loses the �rst auction he
also loses the second one. Note that the density in the integral is the conditional
density of v2 given v2 � b�1

1 (p). Derivation with respect to " gives:

@G

@"
("; p) =

�
b�1
1 (p+ ")

�0
(p+ ")

v1 � (p+ ") + 2v1 � b�1
1 (p+ ")

1� b�1
1 (p)

:

The equilibrium condition is:

@G

@"
(" = 0; p = b1 (v1)) = 0;

which leads to
b1 (v1) = 2v1:
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To prove that it is indeed a Nash equilibrium, assume that player 2 follows the
strategy b1 (v2) = 2v2 and assume that player 1 deviates from this strategy and
stops at p < v1. In that case he loses the �rst auction and can only win the
second if v2 2

�
p
2 ;

v1
2

�
which would lead to a gain of v1 � 2v2. But in that

case, by bidding until p = v1 player 1 would win both the �rst and the second
auction (because v2 < v1), which leads to a larger pro�t of v1 � 2v2 + 2v1 � v2.
Assume, now, that player 1 stops at p with v1 < p < 2v1. In that case losing
the �rst auction also means losing the second because v1 < p < 2v2 (here in
the second auction player 2 bids 2v2), therefore it is optimal to bid until 2v1.
Finally, a deviation p > 2v1 is weakly dominated: it does not improve the gain
when v2 < v1 while it implies a loss when v1 < v2 <

p
2 as the revenue of player 1

is then 3v1 � 3v2 < 0.

A.1.3 a = S and k = 1
2 ; 1

See Black and De Meza (1992).

A.1.4 a = S and k = 2

In order to characterize the equilibrium strategy b1 (:), assume that player 1
deviates from b1 (v1) by bidding b1 (x), with x close to v1. If he loses the �rst
auction while bidding b1 (x), he is sure to lose the second auction as well. On the
contrary, if he wins the �rst auction he is also sure to win the second auction.
That is, the expected total gain of player 1 playing b1 (x) is:

G (x) =

Z x

0

[v1 � b1 (w) + 2v1 � w] dw:

In equilibrium such a deviation cannot be pro�table which means that:

G0 (x = v1) = 0;

which leads to
b1 (v1) = 2v1:

To prove that it is a Nash equilibrium, assume that player 2 bids 2v2. It is then
obvious that a bid equal to 2x, x < v1, gives player 1 a lower expected gain
than a bid equal to 2v1 as it does not increase the gain when player 1 wins both
auctions but it reduces the probability of winning. Next, a bid equal to 2x,
v1 < x, also reduces the expected gain of player 1 because when player 1 wins
the �rst auction with 2x but not with 2v1 he has a negative total gain.

A.2 a 2 fD;Fg, o = N , and k 2
�
1
2
; 1
	

The non-existence of a Nash equilibrium with symmetrical pure strategies in
the �rst auction is proved in F�evrier (2000).
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A.3 a 2 fD;Fg, o = N , and k = 2

We �rst study the second auction assuming that the players bid according to
b1 (:) in the �rst auction. Suppose that player 1 with valuation v1 won the
�rst auction and let v2 denote the valuation of player 2. Therefore the value of
b1 (v1) is revealed before the second auction starts and both players know that
v2 < v1 < 2v1. In equilibrium the second player knows that he cannot win the
second auction and his (weakly dominant) strategy is to bid v2 in the second
auction.

By bidding x � v1 the expected gain of player 1 in the second auction is

Prob (x > v2jv2 < v1) (2v1 � x) = min
n

x
v1

; 1
o
(2v1 � x), which is maximized

for x = v1. Of course, it is not pro�table to bid more than v1. Consequently,
both players bid their �rst-unit valuation in the second auction, i.e. bl2 (v; p1) =
bw2 (v; p1) = v.

We now study the �rst auction. Suppose player 2 bids b1 (v2) in the �rst auc-
tion and player 1 bids b1 (x) > b1 (v1). If he wins the �rst auction he learns that

v2 < x, and he maximizes over y (in the second auction) y(2v1�y)
x

. On the other
hand, if he loses the �rst auction then v2 > x > v1 and he loses the second auc-
tion as well. Therefore, his expected total gain is x

�
v1 � b1 (x) + maxymin

�
y
x
; 1

	
(2v1 � y)

�
.

This expected gain must be maximized in equilibrium for x = v1. The �rst order
condition leads to b1 (v1) �

v1
2 .

Suppose, now, that player 1 bids b1 (x) < b1 (v1). If he wins the �rst auc-
tion he learns that v2 < x < v1 and he maximizes his second auction gain
maxy min

�
y
x
; 1

	
(2v1 � y) by bidding x. On the other hand, if he loses the

�rst auction he learns the value of v2. If v2 > v1, he also loses the second auc-
tion. If v2 < v1, he wins the second auction by bidding just above v2. Therefore
the expected gain is:

G (x) = x [v1 � b1 (x) + 2v1 � x] +

Z v1

x

(v1 � w) dw:

The �rst order condition leads to b1 (v1) �
v1
2 .

Therefore, the equilibrium �rst auction strategy is b1 (v1) =
v1
2 .

A.4 a 2 fE; Sg, o = Y , and k = 1
2
; 1; 2

The second auction strategies are obtained by the standard dominated strategies
argument. Therefore, each player bids his valuation

bl2 (v; p1) = v and bw2 (v; p1) = kv:

To derive the �rst auction equilibrium strategies, the English auction has to
be distinguished from the second-price auction as the available information are
not the same in the two auction mechanisms.
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A.4.1 a = E and k = 1
2

We start with the buyer's option. If v1
2 � p1 = b1 (v2), it is pro�table to use

the option because if he does not execute the option his gain in the second
auction is max

�
0; v12 � v2

	
, which is lower than v1

2 � b1 (v2). On the contrary,
if v1

2 < p1 = b1 (v2), it is clear that the winner must not use the option.

We study now the �rst auction. As it will become clear later we can restrict
ourselves to the search of a �rst auction equilibrium b1 (v) �

v
2 . Suppose the

clock has reached p and player 1 has to decide to continue or to stop bidding.
It is important to remark that as player 2 is still active at p, his valuation is
greater than b�1

1 (p).
To derive the equilibrium necessary conditions, we assume that p is close to

b1 (v1). Let G ("; p) denote the expected total gain if player 1 decides to continue
with bidding until p+ ".

If player 2 withdraws between p and p + ", player 1 wins the �rst auction.
As we have assumed that b1 (v1) �

v1
2 , and that p is close to b1 (v1), it is

not pro�table to use the buyer's option. Furthermore, player 1 loses the second
auction (indeed, his valuation is divided by two, while player 2 valuation remains

around v1). The expected gain in this case is:
R b
�1

1
(p+")

b�1
1

(p)
(v1 � b1 (w))

dw

v�b
�1

1
(p)

If player 2 remains active at p + ", player 1 loses the �rst auction. As seen
before, player 2 uses his option if and only if p+ " � v2

2 . In case player 2 does
not use the option, we have v2

2 < p+" ' b1 (v1) < v1 which means that player 1

wins the second auction. The expected gain in this case is:
R min(2(p+");v)

b�1(p+") (v1 �
w
2 )

dw

v�b
�1

1
(p)

.

Finally

G ("; p) =

Z b
�1

1
(p+")

b
�1

1
(p)

(v1 � b1 (w))
dw

v � b�1
1 (p)

+

Z min(2(p+");v)

b�1(p+")

(v1�
w

2
)

dw

v � b�1
1 (p)

;

The equilibrium condition is @G
@"

(" = 0; p = b1 (v1)) = 0. Under the assump-

tion that b1 (v1) �
v
2 this leads to:

1

b01 (v1)
(
v1
2
� b1 (v1)) + 2 (v1 � b1 (v1)) = 0:

On the contrary, if b1 (v1) �
v
2 we obtain:

1

b01 (v1)
(
v1
2
� b1 (v1)) = 0:

This second di�erential equation combined with the assumption b1 (v) �
v
2 implies that b1 (v) = v

2 . The �rst di�erential equation and this terminal
condition de�ne a unique bidding function which veri�es b1 (v) �

v
2 .

To end the proof, it is necessary to show that this function constitutes indeed
a Nash equilibrium of the game by checking that there is no pro�table deviation
which is straightforward.
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A.4.2 a = S and k = 1
2 ; 1

See Black and De Meza (1992).

A.4.3 a = S and k = 2 or a = E and k = 1, 2

The proof is identical to the proof without buyer's option because it is optimal
not to use the buyer's option. Indeed, assume that both players bid 2v and that
v1 > v2. Player 1 wins the �rst auction and the price p1 = 2v2. If player 1 uses
the option he pays the second unit 2v2, while if he waits he only have to pays
v2.

A.5 a 2 fD;Fg, o = Y , and k 2 1
2
; 1; 2

The second auction strategies are obtained from F�evrier (2000) (proposition 4.5).
The second auction strategy for the loser of the �rst auction is

bl2 (v; p1) =

(
v if v � 2k

1+k
p1

kp1
1+k

�
1� 4kp1

(1+k)v

�
if v � 2k

1+k
p1

The winner of the �rst auction plays the following strategy: If p1 = b (v) (that
is if he played in the �rst auction according to the equilibrium strategy but
he did not use the option), he plays a mixed strategy, such that he bids x,

x 2

�
kv
2 ;

k� k
2

4

v

�
, with x having the distribution function

F (x) =
1� k + k2

4

1� k
2

kv

2x� kv
exp

2
44x� 2

�
2k � k2

2

�
v

(2x� kv) (2� k)

3
5 :

If p1 > b (v) (that is he played in the �rst auction a bid above the equilibrium
strategy, won the auction and did not use the option) then bw2 (v; p1) =

k
2 v.

If p1 < b (v) (that is he played in the �rst auction a bid below the equilibrium

strategy, won the auction and did not use the option) then bw2 (v; p1) =
4k�k2

1+k
p1.

Consider now the �rst auction. Assume that player 2 bids b1 (v2). If player 1
bids b1 (x) and uses his option, then his expected gain is:

G (x) = x [(1 + k) v � 2b1 (x)] :

The �rst-order condition is

G0 (v) = 0,
1 + k

4
v2 = (vb1 (v))

0 ;

which leads to

b1 (v) =
1 + k

4
v:

If both players bid according b1 (v) the expected gain of a player with a valuation
v is 1+k

2 v2. See F�evrier (2000) for the proof that given the strategies described
above, it is not pro�table to deviate in the �rst auction and to abstain from
using the buyer's option.
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This paper reports the results from an experiment on two-unit sequen-
tial auctions with and without a buyer's option (which gives the �rst-
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1 Introduction

In sales of multiple units of a particular good, auction houses often choose to
sell the items sequentially, i.e. the items are auctioned separately, one after the
other. The advantage of a sequential auction is that it well �ts the needs of both
small and large buyers, whereas the alternative auction procedure that consists
in selling all available units simultaneously, in one shot, typically excludes buyers
who set low values on the items, thereby reducing competition at auction. The
main disadvantage of a sequential method is that it can be very time-consuming,
especially when the total number of units on sale is large. For this reason,
auctioneers sometimes provide a so-called buyer's option, which gives the winner
of the �rst auction the right to buy any number of units (1, 2, ..., or all units
available). For each unit he/she must pay the winning price established at the
�rst auction. If the winning bidder decides to purchase only part of the total
quantity, the remaining items are reauctioned, in the same manner, through a
second auction; and this scheme is repeated until all units are eventually sold.

The buyer's option thus clearly o�ers the best of both worlds: it allows the
auctioneer to speed up sales, while keeping the auction mechanism suÆciently
exible to be of interest for di�erent types of buyers. Not surprisingly therefore,
the buyer's option is used in many auctions throughout the world. Cassady
(1967) describes how the buyer's option is practiced in fur auctions in Leningrad
and London, and �sh auctions in English port markets. At the auction market in
Aalsmeer, the Netherlands, huge quantities of owers are sold through sequential
descending auctions with a buyer's option (see van den Berg, van Ours, and
Pradhan (1999)). Well-known auction houses such as Christie's and Sotheby's
(see Ashenfelter (1989) and Ginsburgh (1998)) and Drouot (see F�evrier, Roos,
and Visser (2001)) systematically use the buyer's option in their sequential
ascending auctions of �ne wines.

Despite the practical importance of the buyer's option, little attention has
been paid to the subject in the literature. The only theoretical article we are
aware of is Black and De Meza (1992). They consider the Independent Private
Value (IPV) paradigm, and derive optimal bidding strategies in two-unit se-
quential second-price auctions with and without the buyer's option. All buyers
in their model have decreasing demand for the two units (the additional value
of the second unit is less than the value of the �rst unit), or at demand (both
units are valued the same). Empirical studies are also rare. Ashenfelter (1989)
and Ginsburgh (1998) report that the option is exercised by many buyers in
ascending wine auctions at Christie's and Sotheby's.1 Van den Berg, van Ours,
and Pradhan (1999) study price patterns at sequential descending auctions of
roses and argue that the presence of the option is the main determinant of the
observed price decline. Finally, F�evrier, Roos, and Visser (2001), using data on

1Ashenfelter (1989) claims that auctioneers feel uneasy and uncomfortable about revealing
the declining price phenomenon (the fact that in sequential auctions of identical items suc-
cessive prices tend to decline) to buyers, and use the option as a device for hiding it. The
auctioneers with whom we have discussed at Drouot argue, however, that speed is the main
reason for making the option available.
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ascending auctions of wine held at Drouot, structurally estimate their optimal
bidding model and use their estimations to analyze the impact of the option on
revenue.

The main contribution of this paper is to study both theoretically and experi-
mentally the role of the buyer's option in two-unit sequential auctions. We adopt
the IPV paradigm and assume that the 2 units are sold to 2 risk-neutral buyers.
Buyers desire both units, and their demand for the items is either decreasing,
at, or increasing (implying that the value of the second unit exceeds the value
of the �rst unit). The 4 main auction institutions are considered: �rst-price,
descending (Dutch), second-price (Vickrey), and ascending (English) auctions.
Although there are apparently no �eld examples of �rst-price and second-price
sequential auctions with or without a buyer's option,2 it is nonetheless of inter-
est to study these sealed-bid auctions. Like in standard one-unit auction theory,
it is shown in this paper that �rst-price (resp. second-price) and Dutch (resp.
English) sequential auctions with or without a buyer's option are theoretically
isomorphic. Furthermore the 4 auction formats generate the same expected rev-
enue. By analogy with experimental studies on single-unit auctions (see Kagel
(1995)) for a survey), our experimental design thus allows us to test whether
bidding behavior is identical and whether there is an equivalence in revenue.

Many other theoretical predictions are confronted with the experimental
data. For each auction institution with and without buyer's option, and each
form of the demand curve, we test if observed bidding behavior corresponds
to risk-neutral Nash equilibrium bidding. We analyze to what extent the ex-
perimental subjects exercise their buyer's option. Referring to the title of the
paper, we thus analyze to what extent winners of the �rst auction directly buy

the second unit, or instead wait and attempt to obtain the additional unit (at a
lower price!) in the second auction. Observed frequencies of buying/waiting are
compared with optimal frequencies. Predictions on the degree of eÆciency of
auction outcomes are also tested. Finally we compare observed price patterns
with their predicted counterparts. The design of our experiment is such that
all types of price patterns are theoretically possible. Depending on the auc-
tion mechanism, the form of the demand function, and the presence or not of
the buyer's option, theory predicts that successive prices are either decreasing,
constant, or increasing.

Experimental work on sequential auctions is still very rare.3 Burns (1985)
considers sequential English auctions. The experiment is designed to mimic
the Australian wool market, and the paper's main objective is to study the
e�ect of market size on auction prices. The paper is essentially theory-free in
that observed behavior is not confronted with any equilibrium bidding behavior.

2Cassady (1967, p. 197) describes the electronic auction market in Osaka, Japan, where
lots of fruit and vegetables are sold via sequential �rst-price auctions, but he never explicitly
mentions that the successive lots on sale are identical.

3Spurred by the recent FCC auctions, experimental papers on all sorts of simultaneous

multi-demand auctions are, however, ourishing (see for example Kagel and Levin (2001) and
the references therein, and the special issue of the Journal of Economics & Management

Strategy (1997, Number 3)).
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Keser and Olson (1996) consider sequential �rst-price auctions and suppose that
buyers have single-unit demand functions. Their main objective is to compare
observed price-sequences with the predicted patterns derived in Weber (1983),
under di�erent design parameters. Similarly as in Burns, the paper focuses on
one particular auction mechanism, and no attempt is made to examine outcomes
under alternative institutions. Robert and Montmarquette (1999) do consider
several auction institutions, and also provide theoretical foundations for each of
them. In their models, the number of items desired by each buyer is a random
variable and demand functions are decreasing. They consider sequential Dutch,
English and mixed auctions, and compare observed behavior with predicted
behavior. None of these 3 experimental papers on sequential auctions analyzes
the buyer's option.

The paper proceeds as follows. In the next section the theoretical background
is presented. In deriving the risk-neutral Nash equilibrium bidding functions and
the expected revenues in the di�erent auction institutions, we partly draw on
Black and De Meza (1992), Donald, Paarsch, and Robert (1997) and a recent
paper by F�evrier (2000). But most results in this section are actually new.
Section 3 describes the experimental design, section 4 the experimental results,
and section 5 concludes.

2 Theoretical background

Suppose that 2 units of a good are auctioned to 2 potential buyers. Each buyer
is assumed to be risk-neutral and desires to purchase both units. Adopting the
IPV paradigm, let vi denote the value that buyer i places on the �rst unit. The
value vi and the value of i's opponent are independently drawn from a uniform
distribution on the interval [0; v]. It is assumed that the value that i places on
the second unit is kvi. The parameter k can take three values: k 2

�
1
2 ; 1; 2

	
.

The value of k is common knowledge. Note that k = 1
2 implies that the second

unit is valued less than the �rst unit (decreasing demand), k = 1 that both units
are valued the same (at demand), and k = 2 that the second unit is valued
more than the �rst (increasing demand).

The 2 units are sold sequentially. The �rst unit of the good is sold in the
�rst auction. The manner in which it is auctioned depends on the auction
institution. Let a indicate the auction institution, a 2 fD;E; F; Sg, where D
stands for Dutch auction, E for English auction, F for First-price auction, and
S for Second-price auction, and let p1 denote the price the winner of the �rst
auction has to pay for the �rst unit. When a 2 fD;Eg, the unit is auctioned
using a clock. When a = D, the clock starts very high, and descends until one of
the players stops the clock. This player wins the unit and p1 equals the price at
which the clock was stopped. When a = E, the clock starts at 0, and increases
until one of the players stops the clock. Here the winner of the auction is the
player who did not stop the clock. The price p1 he/she has to pay for the �rst
unit is again the amount at which the clock stopped. When a 2 fF; Sg, the
unit is sold via sealed-bid auctions. Both players submit their sealed bid to the
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auctioneer who awards the unit to the highest bidder. When a = F the winner
pays his/her own bid, i.e. p1 equals the highest submitted bid. When a = S
the winner pays the bid of his opponent, i.e. here p1 equals the second highest
submitted bid. For all institutions a, the price p1 is revealed to both players
once the �rst auction has ended.

The way in which the second unit is sold depends on whether the buyer's
option is available or not. Let o be the indicator for the availability of the
buyer's option, o = N if it cannot be used, and o = Y otherwise. For any
auction institution a, if o = N the second unit is auctioned under the prevailing
rules of institution a. Let p2 be the price paid for the second unit. If instead
o = Y the winner of the �rst auction has the option to buy 1 or 2 units, at the
price of p1 per unit. When he decides to purchase only 1 unit, a second auction
is held under the conditions of institution a. When he/she exercises the buyer's
option, no second auction is held. Note that in this case we automatically have
p2 = p1.

The theoretical model presented here is essentially based on the framework
built by Black and De Meza (1992). These authors, however, only considered
the second price auction (a = S) and they do not analyze the case of increasing
marginal valuation (k = 2). The hypothesis that each bidders' valuation for the
second unit is connected, in a deterministic way, to the valuation of the �rst
unit, is certainly restrictive, and might no necessarily reect behavior at real
auctions. The hypothesis on the number of players is also restrictive as real
world auctions the number of participant is typically larger than two. These
simplifying hypotheses are, however, needed to ease solving for the equilibrium
strategies. Also, as mentioned in the introduction, this is the �rst experimental
paper on the buyer's option, justifying a rather simple setup, that can be re�ned
and generalized in future work.

For any given value of a; o; and k, let G (a; o; k) denote the bayesian two-stage
game described above. We are looking for perfect bayesian equilibria of the game
G (a; o; k) with pure and symmetric strategies in the �rst auction. Let b1 (v)
denote the equilibrium strategy of the bidders in the �rst auction. If o = Y , let
bo (p1) 2 f0; 1g indicate whether the winner exercises the buyer's option or not
given the auction price p1, with bo (p1) = 1 meaning that he/she uses his/her
option, and bo (p1) = 0 that he/she does not. Finally, let bw2 (v; p1) denote the
second auction strategy of the winner of the �rst auction, and bl2 (v; p1) the
second auction strategy of the loser of the �rst auction. For practical reasons
given in section 4.3, these strategies are only confronted with the data when the
buyer's option is not available. In the following proposition, the strategies are
therefore only given for o = N . But in the proof of the proposition (given in
the appendix), explicit use is made of the strategies for o = Y .

Proposition 1. A symmetric-�rst-auction perfect bayesian equilibrium of the

game G (a; o; k) is:

1. If a 2 fE; Sg, o = N , and k 2
�
1
2 ; 1; 2

	
, then b1 (v) = kv, bl2 (v; p1) = v,

bw2 (v; p1) = kv.
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2. If a 2 fD;Fg, o = N , and k 2
�
1
2 ; 1

	
, then no such equilibrium exists.

3. If a 2 fD;Fg, o = N , and k = 2, then b1 (v) = 1
2v, bl2 (v; p1) =

bw2 (v; p1) = v.

4. If a 2 fE; Sg, o = Y , and k = 1
2 , then b1 (v) is solution of b1 (v) �

v
2 =

2� (v � b1 (v)) b
0

1 (v), with � = 0 if b1 (v) �
1
2v and � = 1 otherwise;

bo (p1) = 1 if p1 �
1
2v and bo (p1) = 0 if p1 >

1
2v.

5. If a 2 fE; Sg, o = Y , and k = 1, then b1 (v) = v, bo (p1) 2 [0; 1].

6. If a 2 fE; Sg, o = Y , and k = 2, then b1 (v) = 2v, bo (p1) = 0.

7. If a 2 fD;Fg, o = Y , and k 2
�
1
2 ; 1; 2

	
, then b1 (v) =

1+k
4 v, bo (p1) = 1.

Let us �rst comment on the predictions for the English and second-price
auctions. As mentioned in the introduction, the behavioral predictions are al-
ways the same for these 2 mechanisms. When o = N , theory requires bidders
to bid kv in the �rst auction, that is they have to bid the value for the second
unit. While this result is intuitive for at demand, it is less so when demand is
decreasing or increasing. With decreasing demand, bid shading is required be-
cause losing the �rst auction is not necessarily bad news, as it implies a weaker
rival in the second auction. With increasing demand, over-bidding is required
as the winner of the �rst auction is also going to be the winner of the second
auction. In the second auction (still when o = N), it is a dominant strategy for
each player to bid the value of the unit for which he/she is bidding. That is, the
loser of the �rst auction should bid v, and the winner of the �rst auction kv.

When o = Y and k 2 f1; 2g, optimal �rst-auction bidding is the same as in
the absence of the buyer's option. Put in other words, the buyer's option has
no e�ect on �rst-auction bidding behavior. However, when k = 1

2 , �rst-auction
bidding should be more aggressive than in the absence of the option. The
optimal use of the buyer's option is fairly simple when k = 1

2 or k = 1. In the
former case it should be used if the �rst-auction price is lower than the second
unit value, and in the latter case the �rst-auction winner is indi�erent between
exercising the option or not, which is the meaning of bo (p1) 2 [0; 1]. When
k = 2 it is not optimal to use the option because the loser of the �rst auction
is expected to bid less aggressively in the second auction, so the �rst-auction
winner has a higher expected gain by waiting for the second auction.

Let us next comment on the predictions for the Dutch and �rst-price auc-
tions. Again theory predicts that behavior is strictly identical under the 2
institutions. When o = N , there does not exist a symmetric pure strategy equi-
librium for k = 1

2 ; 1. An explanation for this result is the following. If such
an equilibrium were to exist, the loser of the �rst auction would learn the val-
uation of the winner (since p1 is revealed at the end of the �rst auction). The
�rst-auction winner would then clearly be in an uncomfortable situation in the
second auction. The equilibrium in the second auction would take the following
form: the winner of the �rst auction would play a mixed strategy and the loser
a pure strategy. However, this second-auction equilibrium is not compatible
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with a �rst-auction pure strategy, since we can show that there always exists a
pro�table deviation. This means that both players should hide their valuation
by playing a mixed strategy in the �rst auction.

When o = N and k = 2, a symmetric pure strategy equilibrium does exist
for the Dutch and the �rst-price auctions. This equilibrium is not simple to
compute and is not very intuitive as it implies a relatively low �rst-auction bid.
At �rst sight one might indeed think that it should be rewarding for player 1 to
deviate from equilibrium by bidding x

2 (with x > v1) in the �rst auction in order
to increase the probability to win the �rst unit, and thereby to enter the second
auction with a stronger valuation 2v1. But this deviation is not pro�table.
Indeed, this deviation decreases the expected gain in the �rst auction (since
bidding half of one's valuation is optimal in a single-unit auction), and, as can
be shown, it does not a�ect the expected gain in the second auction. Note
that the equilibrium given in the proposition is such that the winner of the �rst
auction, say bidder 1, automatically wins the second auction: his/her valuation
for the second unit is 2v1 while his/her opponent's valuation for the �rst unit
is4 v2 � v1, so by bidding v1 he/she wins the second auction with probability
one. Therefore, in equilibrium it is as if both bidders only compete for the �rst
unit.

When o = Y , a symmetric pure strategy equilibrium does exist for all values
of k. Note that in equilibrium, bidders behave exactly as in standard single-unit
Dutch or �rst-price auctions. Indeed, in equilibrium each player bids 1+k

4 v in
the �rst auction and the winner always exercises his/her option. It is thus as
if players submit a single bid equal to 1+k

2 v, for a \single good" with a value
(1 + k)v.5 Note �nally that for k = 2, �rst-auction bidding should be more
aggressive when the option is available than when it is not available.

3 Experimental design

The experiment was conducted on 28 and 29 March 2001 at the Ecole Na-

tionale de Statistique et de l'Administration Economique (ENSAE).6 Students
were recruited through personal emails, and iers that we dispatched in their
mailboxes. Seventy four students (out of roughly 360 students that studied at
the time at ENSAE) actually participated in the experiment. We organized a
total of 10 experimental sessions in the computer rooms at ENSAE, and each
student took part in only one session. Only one type of auction mechanism was
used per session. Table 1 lists for each session the type of auction mechanism
that was studied and the number of participants. From Table 1 it can be seen

4Because the �rst-auction strategy is symmetric.
5Recall that, given our model assumptions, the optimal single-unit bid (in �rst-price and

Dutch auctions) for a good valued at v is 1

2
v.

6The ENSAE is one of the leading French institutions of higher learning in the �elds of
statistics, economics, �nance, and actuarial sciences. After completing the three-year curricu-
lum of this school, graduates have a training comparable to the level attained by �rst-year
Ph.D. students at a good North American university.
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Table 1: Sessions

Session Type of auction Number of subjects

1 First-price 8
2 Second-price 8
3 Dutch 6
4 English 6
5 Dutch 10
6 English 8
7 First-price 8
8 Second-price 8
9 Dutch 6
10 English 6

that 22 students participated in the Dutch auctions, 20 in the English auctions,
16 in the �rst-price auctions, and 16 in the second-price auctions.

Each session was made up of two parts. The �rst part was devoted to
sequential auctions without a buyer's option, and the second part to sequential
auctions with a buyer's option.

We start by describing the �rst part of a session. We began by reading
aloud the instructions about the auction's rules without a buyer's option. Writ-
ten versions of the instructions were distributed to the participants and could
be consulted at any time during the experimental session.7 The �rst part had
12 periods. Since we focus in this paper on auctions with 2 buyers, participants
were told that they were in competition with a single person. At the begin-
ning of each period the computer randomly matched each student to another
student present in the room (all sessions had an even number of participants),
so participants were aware of the fact that their opponent di�ered from period
to period. Participants were also told that in each period 2 units of a �ctitious
good were sold at auction to each couple.

At the start of each period, valuations were independently drawn from a uni-
form distribution on [0;v]=[0;FFr50.00]. On the computer screen of participant
i appeared his/her valuation for the �rst unit of the good vi, the prevailing value
of k, and his/her valuation for the second unit kvi. The value of k changed every
4 periods (k = 1

2 in periods 1-4, k = 1 in periods 5-8, and k = 2 in periods 9-12).
Participants could observe this information for 30 seconds, after which the �rst
auction started (but the information remained on the screen even during the
auction). The manner in which participants could bid depended on the type
of auction mechanism that was used during the session. The auction-speci�c
bidding devices will be described later on.

Once the �rst auction was over, some information concerning the �rst auction
was added to the screen of each subject i. It indicated whether i was the winner
or not, his/her own bid (if any), the winning price p1, i.e. the price he/she or

7The instructions can be obtained from the authors upon request.
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his opponent had to pay for the �rst unit, and his/her gain associated with the
auction (vi�p1 if i was the winner, 0 otherwise). Since the identity of the winner
of the �rst auction is crucial knowledge in our experiment, we emphasized this by
coloring the box marked \Winning bid" blue if i had won the �rst auction, and
red otherwise. Note that the exact nature of information released between the
two auctions di�ered slightly with the type of auction mechanism. For instance,
for the winner of an English auction the box marked \Your bid" remained empty,
while for the winner of a Dutch auction this box indicated the price at which
he had stopped the clock.

Before the start of the second auction, participants again had a thirty-
seconds reection period during which they could, if they wished, consult all
information on their screen (again, all information remained visualized during
the second auction). The second auction functioned in the same way as the �rst
auction. We stressed the fact that the gain associated with the second auction
depended on the outcome of the �rst auction. Thus, winner i of the second
auction had a gain of kvi � p2 if he had also won the �rst auction, and a gain
equal to vi � p2 if he had lost the �rst auction. Once the second auction was
terminated for all couples in the room, we proceeded with the next period.

The 12 periods of the �rst part of each experimental session were preceded by
6 \dry" periods (2 for each value of k). This gave participants the opportunity
to familiarize themselves with the bidding method, determine their strategy for
the di�erent values of k, and ask questions to the experimenter.

Next we describe the second part of the session, the one that was designed
to study the buyer's option. We began by reading aloud the instructions about
this part of the experiment. Like the �rst part it consisted of 12 periods. Each
period started exactly like in the �rst part of the experiment: the valuations
and the value of k (the values of k alternated as in the �rst part) showed up
on the screen, the �rst auction started after 30 seconds, and once the �rst
auction was over for player i and his/her rival, their screens updated them
on the relevant auction results. Unlike the �rst part of the session, subjects
were told that the winner of the �rst auction could, if he/she desired, use the
buyer's option. If winner i chose to execute his/her option, the period was
over for him and his/her opponent, and his/her total gain in the period was
(vi � p1) + (kvi � p1) = (1 + k)vi � 2p1. If he/she choses not to do so, his/her
gain associated with the �rst auction was vi�p1, and a second auction was held
after the thirty-seconds pause. The second auction was in all respects identical
to the second auction conducted in the �rst part of the experiment.

The 12 \wet" periods of the second part of each experimental session were
again preceded by dry periods, but now just 3 of them (1 for each value of k)
since, at least from a practical point of view, the second part di�ered little from
the �rst.

As mentioned above, the way in which participants had to submit their bids
depended on the auction format. In the �rst-price and second-price auctions
participants could submit their bid by entering a number in a box marked
\Submit your bid here". The number could be any positive real integer, i.e. we
did not forbid subjects to bid in excess of their valuations.
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In the Dutch and English auctions bidding took place via numerical clocks.
After the 30-seconds reection period, the clock appeared on the screens of the
participants. In the English auctions the clock started at 0.00FFr, augmented
continuously at a rate of 50.00FFr per minute, and stopped automatically at
FFr120.00. The clock started and operated simultaneously on the screens of
participant i and his/her rival. They could stop the clock at any time by pressing
the \Enter" key or \Space bar", or click on a window marked \Stop the clock".
If neither i nor his rival had stopped the clock before it reached FFr120.00, the
computer randomly selected i or his/her rival as the winner (actually this never
happened during our experiments). In the Dutch auctions the clock started at
FFr60.00 (if k = 1

2 or k = 1) or FFr120.00 (if k = 2), descended continuously
at the speed of 50.00FFr per minute, and stopped automatically at FFr0.00.
The Dutch clock started and operated simultaneously for subject i and his/her
opponent and they could stop it, at any time, as the English clock. If neither i
nor his/her rival had stopped the clock before it reached FFr0.00, there was no
auction winner (again, this never occurred during our experiments). Note that
as in the sealed-bid auctions, subjects could bid above their valuations (up to a
reasonable limit) in the clock auctions.

At the start of an experimental session, i.e. at the beginning of the �rst
period, all participants were given a capital balance of FFr50.00. At the end of
each period, the gains made during the period were added to the balance, and
losses were subtracted from it. We informed the experimental subjects that if
the end-of-period balance of a participant was negative (as a result of his/her
bidding behavior in the period), the balance would immediately be readjusted
to 0. We stressed that balances would only be readjusted at the end of a
period, in view of the end-of-period balance, and not at some point during a
period. The reason for censoring the start-of-period balances at 0 is to incite
subjects to play well all along the experiment.8 As it turned out, for none of
the experimental subjects the capital balance went negative, so it was never
necessary to implement the readjustment procedure.

At the end of the session participants were paid in cash their �nal capital
balance divided by two. This 50% cut does not a�ect bidding behavior and
could be interpreted by the participants as a tax due to the auctioneer. On
average we paid FFr229 to the students, the minimum payment was FFr60, and
the maximum payment FFr360. Experimental sessions lasted between 1.5 and
2 hours.

Before turning to the experimental results, we want to comment on the
number of treatment levels in our experiment. In each session subjects went
through 2� 3 di�erent treatments (with or without a buyer's option and three
forms of the demand function). A drawback of our design is this high number
of treatment levels as it might have made the subjects susceptible to hysteresis
e�ects. However, we do not think that this occurred. Each change in the value
of k was clearly indicated both on the screen and orally by the experimenter.

8Had we not done this, a subject with a balance of say minus FFr300 at the beginning of
period 24, would clearly not have been incited to behave optimally in this last period.
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Moreover, the introduction of the buyer's option was made very clear since we
began the second part of the experiment by oral instructions about the rules of
this mechanism. Therefore, subjects have not been confused nor by the shifts in
the value of k nor by the introduction of the buyer's option. Instead, the frequent
changes in the treatment helped to keep the subjects alert and attentive. On
the other hand, the advantage of having several treatments within a session is
that the estimation of treatment e�ects is facilitated since it is not necessary to
control for inter-individual di�erences.

4 Experimental results

4.1 Bidding behavior in the �rst auction

Figures 1-12 show all �rst-auction bids for the di�erent values of k for the 4
auction formats without buyer's option. The �gures thus graph all �rst-auction
bids submitted during the �rst part of the experiment, that is during periods
1-12. They depict the losing bids for the English auctions, the winning bids
for the Dutch auctions, and both winning and losing bids for the sealed bid
auctions. Whenever there is a theoretical prediction (see Proposition 1), the
optimal equilibrium bid function b1(:) is drawn in green. For instance, in Figure
2 (second-price auction, k = 1

2 ) the green line is the function b1(v) = 1
2v,

but in Figure 1 (�rst-price auction, k = 1
2 ) no green line is drawn since no

prediction is available. Since all optimal bidding strategies are linear functions
of the valuations, equal to zero when v = 0, each �gure also shows, in red, the
�tted line �̂v where �̂ is the OLS estimate of the coeÆcient in the regression
b1it = �vit + "it where b1it and vit are i's bid and valuation in period t, and "it
an error term that is assumed independent over i and t. A comparison of the
green and red lines is therefore a quick eyeball test of the theoretical predictions.

Looking at Figures 1-12, one can distinguish, roughly speaking, three types
of graphs. First there are graphs where the �tted and predicted lines more
or less coincide, suggesting that observed bidding behavior is coherent with
theory. This is the case for Figures 6 and 8, i.e. the English and second-price
auctions with at demand. In the second category of graphs, the red and green
lines are distinct and the large majority of bids is closely concentrated around
the red line, suggesting that most subjects deviate, in the same manner, from
optimal behavior. This is the case for Figures 9, 10, 11 and 12. In the third
category of graphs the red and green lines are again distinct, but part of the
bids is now closely concentrated around the green line. Apparently there is a
group of subjects that bid according to theory. Another part of the bids is
clearly not located near the optimal bidding line. The bids are closely scattered
however, so there is again the impression that the subjects who deviate behave
quite similarly. There is not a \continuum" of types of observed behavior, but
instead the number of di�erent behavioral strategies that can be observed seems
limited. Figures 2 and 4 �t in this category.

Table 2 reports the OLS results of the bid regressions, that is the red lines in
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Table 2: First auction without buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 64 0.46 ( 0.03) 0.78 ; ;
Second-price 64 0.83 ( 0.04) 0.87 0.5 No
Dutch 44 0.49 ( 0.02) 0.93 ; ;
English 40 0.64 ( 0.04) 0.85 0.5 No

k = 1

First-price 64 0.55 ( 0.03) 0.8 ; ;
Second-price 64 1.03 ( 0.02) 0.98 1 Yes
Dutch 44 0.54 ( 0.01) 0.97 ; ;
English 40 1.00 ( 0.02) 0.98 1 Yes

k = 2

First-price 64 1.01 ( 0.04) 0.91 0.5 No
Second-price 64 1.36 ( 0.05) 0.93 2 No
Dutch 44 0.90 ( 0.04) 0.94 0.5 No
English 40 1.30 ( 0.06) 0.92 2 No

Figures 1-12. The table also reports the predicted slopes of the optimal bidding
strategies and test results of the hypothesis that observed behavior is in line with
predicted behavior. The null hypothesis can be tested simply by testing whether
the coeÆcient � equals some speci�c value. For example, the OLS estimate �̂
equals 0.83 for the second-price auctions with decreasing demand, the estimated
standard error is 0.04, the number of observations in the regression is 64 (16
subjects �4 periods), the R2 is 0.87 (de�ned for a regression model without
a constant), the predicted slope is 1

2 , and the null hypothesis that � = 1
2 is

rejected at the 5% level.
As Table 2 shows, the null is accepted just 2 out of 8 times. Theory is

accepted precisely in the two cases where the optimal strategies are relatively
transparent; subjects have indeed understood that in second-price and English
auctions with at demand it is optimal to bid the value v in the �rst auction.
However, in second-price and English auctions with decreasing (resp. increasing)
demand, subjects had a tendency to over-bid (resp. under-bid); although sub-
jects have understood that optimal behavior calls for bid shading (resp. bidding
above value), the extent to which they did this was too modest. In �rst-price
and Dutch auctions with increasing demand, observed bidding is on average
close to v, whereas optimal behavior requires agents to bid 1

2v. Note that as
predicted in Proposition 1, observed behavior in respectively the �rst-price and
Dutch auctions, and second-price and English auctions, is very similar.

Figures 13-24 show all �rst-auction bids for the di�erent values of k for the
4 auction formats with buyer's option, i.e. they are based on all �rst-auction
bids submitted during periods 13-24 of the experiment. Table 3 presents the
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corresponding estimation and test results. For second-price and English auctions
with decreasing demand the solution (approximated using simulations) of the
di�erential equation given in Proposition 1 is b1(v) = 0:99v � 0:009v2. This
explains why the green line in Figures 14 and 16 is curved. The red line in
each of these pictures is the �tted line �̂1v+ �̂2v

2 where �̂1 and �̂2 are the OLS
estimates of the coeÆcients in the regression b1it = �1vit +�2v

2
it + "it. The test

of the theory in these 2 cases amounts to testing, using a standard Fisher-test,
the joint hypothesis that �1 = 0:99 and �2 = 0:009.

The results for the �rst auctions with buyer's option are quite similar to
those obtained for the �rst auctions without the option. Indeed, as Table 3
shows, the theoretical predictions are again rejected in most cases: the null
is accepted only 2 out of 12 times. Theory is again accepted for the English
auction with at demand, and now also for the English auction with decreasing
demand (not at the 5% level, but at the 1% level, which is indicated by \Yes�" in
the table). Unlike the �rst-auction results without the option, observed bidding
behavior is not in line with theory for the second-price auction with at demand.
Observed bidding in this case is on average slightly above the value v. As in
the �rst auctions without option, the degree of bid shading is too modest in
the second-price auctions with decreasing demand; the degree of over-bidding
is too modest in the English and second-price auctions with increasing demand.
Table 3 shows that in all Dutch and �rst-price auctions, observed bidding is
on average above equilibrium bidding. Note �nally that there is again much
behavioral similarity between Dutch and �rst-price auctions on the one hand,
and English and second-price auctions on the other.

The impact of the buyer's option on �rst-auction bidding behavior can be
studied by comparing the results of Table 2 and Table 3. Let us �rst consider the
Dutch and �rst-price auctions. Here the theoretical e�ect of the buyer's option
can be confronted with the data only for k = 2. With increasing demand, theory
predicts that bidders should be more aggressive when the option is available (the
predicted slope is 0.75 with the option, and 0.50 without). However, running an
appropriate regression model and testing for a buyer's option e�ect,9 it turns out
that bidding behavior in the Dutch auction is not a�ected by the presence of a
buyer's option, whereas bidding in the �rst-price auction is actually signi�cantly
less aggressive when the option is available.

Concerning the English and second-price auctions, we only test for an impact
of the buyer's option when k = 1 and k = 2. In these cases, theory predicts that
the buyer's option does not modify �rst-auction bidding behavior. Performing
the same kind of tests as described just before, we �nd that for both auction
institutions the theory is veri�ed when demand is at. When demand is in-
creasing, the data are again in line with theory for the English auction but not
for the second-price auction. In the latter case, �rst-auction bidding is actually
more aggressive when the buyer's option is available.

9Pooling all �rst-auction bids submitted in the Dutch (resp. �rst-price) auctions, we con-
sider the model b1it = �vit+vit1foit = Y g+"it, with 1f.g the indicator function and oit the
option indicator for individual i in period t, and check for the buyer's option e�ect in Dutch
(resp. �rst-price) auctions by testing whether  = 0.
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Table 3: First auction with buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 64 0.51 ( 0.02) 0.92 0.375 No
Second-price 64 1.25 (.09) -0.008 (.002) 0.95 0:99 � 0:009 No
Dutch 44 0.48 ( 0.02) 0.95 0.375 No
English 40 1.02 (.06) -0.008 (.001) 0.94 0:99 � 0:009 Yes�

k = 1

First-price 64 0.61 ( 0.01) 0.97 0.5 No
Second-price 64 1.09 ( 0.03) 0.95 1 No
Dutch 44 0.59 ( 0.02) 0.97 0.5 No
English 40 0.99 ( 0.02) 0.99 1 Yes

k = 2

First-price 64 0.91 ( 0.03) 0.95 0.75 No
Second-price 64 1.48 ( 0.03) 0.97 2 No
Dutch 44 0.88 ( 0.03) 0.96 0.75 No
English 40 1.33 ( 0.05) 0.94 2 No

4.2 The buyer's option

In this subsection we study to what extent the buyer's option has been ex-
ercised by the subjects in our experiment. The results can be found in Ta-
ble 4. The second column reports the relative number of times the buyer's
option has been used for each auction institution. For ease of presentation,
the third column recalls the optimal frequencies given in Proposition 1. Let
us �rst discuss the results for the Dutch and �rst-price auctions. For each
value of k, Nash equilibrium behavior requires that the �rst-auction winner
should always use the buyer's option. Table 4 shows that observed behavior is
quite well in line with this prediction for at and increasing demand. However,
when the demand function is decreasing, the observed frequency of exercising
the option is much too low (only 32% in the Dutch auctions and 41% in the
�rst-price auctions). Given that in both these auction institutions many �rst-
auction bids are clearly out of equilibrium (see Figures 13 and 15), the ques-
tion arises whether the deviating bidders are responsible for the low frequency
observed in our data. To answer this question, we have run the logit model
Prob(boit = 1) = 1=(1 + exp[�1 + �21fb1it \close" to b1(vit)g]) with boit = 1 if
i uses the buyer's option in period t and 0 otherwise, and the observed bid b1it
is \close" to the optimal bid b1(vit) if the relative di�erence between the two is

smaller than 30%. The ML estimate �̂2 (standard error) is -1.70 (0.75) for the
Dutch auction and -2.61 (0.94) for the �rst-price auction. In both cases the co-
eÆcient is negative and signi�cant, suggesting that subjects whose �rst-auction
bids are at or close to equilibrium are more likely to exercise the buyer's option,
and are thus more likely to remain coherent with theory. See also the discussion
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Table 4: The buyer's option

Auction Relative frequency1 Prediction

k = 0:5

First-price 41% bo(p1) = 1
Second-price 93% bo(p1) = 1 if p1 � 0:5v

0% bo(p1) = 0 if p1 > 0:5v
Dutch 32% bo(p1) = 1
English 96% bo(p1) = 1 if p1 � 0:5v

0% bo(p1) = 0 if p1 > 0:5v

k = 1

First-price 91% bo(p1) = 1
Second-price 78% bo(p1) 2 [0; 1]
Dutch 84% bo(p1) = 1
English 68% bo(p1) 2 [0; 1]

k = 2

First-price 81% bo(p1) = 1
Second-price 69% bo(p1) = 0
Dutch 98% bo(p1) = 1
English 70% bo(p1) = 0
1 Relative number of times the buyer's option is used.

in section 4.5.1.
Next consider the English and second-price auctions. Under decreasing de-

mand the observed frequencies are very close to the frequencies predicted by the
theory. Subjects have well understood that the option should be exercised when
p1 �

1
2v, and inversely that it should not be used when p1 >

1
2v. That the last

prediction is veri�ed may seem somewhat obvious (exercising the option while
p1 >

1
2v implies a loss on the second unit acquired) but is nonetheless reassur-

ing since it means that subjects have apparently well understood the rules of
the game. Under at demand the theory predicts that the winner of the �rst
auction is indi�erent between using or not using the buyer's option, so in this
case there is no testable implication of the theory. Under increasing demand the
theory predicts that the winner should never use the option, but should instead
wait and try to win the second unit of the good in the second auction. This
prediction is mostly rejected by the data since 70% (resp. 69%) of the winners
in the English (resp. second-price) auctions did use the buyer's option.10

10Figures 22 and 24 show that for the English and second-price auctions with increasing
demand practically all bids appear out of equilibrium. Performing the logit analysis would
therefore not make sense in these 2 cases.
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Table 5: Second auction (for loser of �rst auction) without buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 32 0.57 ( 0.03) 0.93 ; ;
Second-price 32 0.95 ( 0.03) 0.96 1 Yes
Dutch 18 0.55 ( 0.03) 0.95 ; ;
English 26 0.97 ( 0.03) 0.97 1 Yes

k = 1

First-price 32 0.76 ( 0.03) 0.96 ; ;
Second-price 32 1.07 ( 0.03) 0.97 1 Yes�

Dutch 15 0.74 ( 0.03) 0.74 ; ;
English 38 0.99 ( 0.03) 0.99 1 Yes

k = 2

First-price 32 1.04 ( 0.06) 0.91 1 Yes
Second-price 32 1.21 ( 0.08) 0.88 1 No
Dutch 5 1.12 ( 0.14) 0.94 1 Yes
English 40 1.29 ( 0.06) 0.92 1 No

4.3 Bidding behavior in the second auction

We only discuss the second-auction results for the 4 auction formats without
buyer's option, that is we focus on second-auction bids submitted during pe-
riods 1-12 of the experiment. The reason is that the buyer's option has been
frequently used by our experimental subjects, so relatively few second auctions
were actually held during periods 13-24, leaving us, in most cases, with too few
data to reliably estimate the second-auction bidding strategies.11 Since winners
and losers of the �rst auction should generally behave di�erently in equilibrium,
the results for the 2 groups are presented separately.

Let us �rst describe second-auction bidding behavior for the losers of the
�rst auction. They are presented in Table 5.12 Unlike the �rst-auction results,
the majority of predictions are now veri�ed by the data: the null hypothesis is
accepted 6 out of 8 times. In the Dutch and �rst-price auctions with increasing
demand, we again �nd the by now familiar pattern, namely that observed bid-
ding in these 2 auction formats is on average in excess of equilibrium bidding.
However, the deviations from optimality are not signi�cant here.

In English and second-price auctions, and for each value of k, it is a dominant
strategy for the �rst-auction loser to bid v in the second auction. Thus, like in
standard single-unit English and second-price auctions, it is optimal for bidders
to reveal their valuation. Because of this theoretical equivalence, it is of interest
to compare our results with those obtained in the experimental literature on
single-unit English and single-unit second-price auctions (see Coppinger, Smith,

11This is especially true for the auction periods with at or increasing demand.
12To economize on space, the �gures depicting the second-auction bids are not given here.
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and Titus (1980), Cox, Roberson, and Smith (1982), Kagel, Harstad, and Levin
(1987), and Kagel and Levin (1993)).13 It should be stressed however that
bidding in our experiment and bidding in the single-unit experiments took place
in slightly di�erent contexts. First because our experimental subjects were more
informed about their opponents (when subjects in our experiment submitted
their second-auction bid, they knew the �rst-auction price p1) than subjects in
the single-unit experiments. And also because, under decreasing and increasing
demand, bidders in the second auction are no longer symmetric as in the single-
unit experiments. Therefore, any di�erences between the results obtained in the
single-unit auction literature and our's can be attributed to these contextual
di�erences.

For k = 1
2 and k = 1 we �nd the same results as in the experimental single-

unit literature: in English and second-price auctions bidders play the dominant
strategy as predicted by the theory. For k = 2 we �nd that bidding in English
auctions is signi�cantly above value, contradicting both the theory and the
results from the single-unit experiments. Bidding in the second-price auctions
is also signi�cantly above value, which is contradictory to theory but coherent
with the single-unit experiments. Kagel, Harstad, and Levin (1987) explain
over-bidding in their single-unit second-price auctions by arguing that bidding
above value does not necessarily entail losses and increases the probability of
winning, so that subjects can have the illusion that such a strategy increases
expected pro�ts. It is unlikely that this explanation also holds in our experiment
since it is incompatible with the fact that for second-price auctions with k = 1

2
or k = 1 we do not observe over-bidding. A more plausible explanation for
overbidding in English and second-price auctions is given in section 4.5.

Next we describe second-auction bidding behavior for the winners of the �rst
auction. They can be found in Table 6. Observed behavior is again in line with
theory in the majority of cases: the null is accepted 5 out of 7 times. In English
and second-price auctions, and for all values of k, the dominant strategy for the
�rst-auction winner is to reveal his/her value for the second unit, i.e. 2v. In all
English and second-price auctions, observed behavior is in line with theory and
the single-unit literature (except the English auction with k = 1, but here there
are just 2 observations, and the result is probably not very reliable; for k = 2
there are no observations at all for the English auction, so theory can not be
tested). In the �rst-price auction with increasing demand, the data are in line
with theory at the 1% level, but in the Dutch auction observed bidding is below
equilibrium bidding.

13This literature shows that subjects bid according to equilibrium behavior in single-unit
English auctions. Regarding the single-unit second-price auctions, Coppinger, Smith, and
Titus (1980) and Cox, Roberson and Smith (1982) �nd that average bidding is below (but
not always signi�cantly) value; Kagel, Harstad, and Levin (1987) and Kagel and Levin (1993)
�nd, however, that the subjects in their study bid signi�cantly above value. They point out
that a likely explanation for these conicting �ndings is that, unlike their experiments (and
our's!), the designs of Coppinger, Smith, and Titus (1980) and Cox, Roberson and Smith
(1982) did not allow subjects to bid in excess of their valuation.
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Table 6: Second auction (for winner of �rst auction) without buyer's option

Auction #obs. Estim. (Std. Err.) R2 Prediction Accepted

k = 0:5

First-price 32 0.41 ( 0.01) 0.98 ; ;
Second-price 32 0.53 ( 0.02) 0.94 0.5 Yes
Dutch 26 0.34 ( 0.02) 0.95 ; ;
English 14 0.54 ( 0.03) 0.96 0.5 Yes

k = 1

First-price 32 0.61 ( 0.02) 0.97 ; ;
Second-price 32 1.00 ( 0.01) 0.99 1 Yes
Dutch 29 0.57 ( 0.02) 0.96 ; ;
English 2 0.98 ( 0.00) 0.99 1 No

k = 2

First-price 32 1.05 ( 0.02) 0.99 1 Yes�

Second-price 32 2.34 ( 0.23) 0.77 2 Yes
Dutch 39 0.93 ( 0.03) 0.97 1 No
English 0 - ( - ) - 2 ;

4.4 EÆciency, price patterns, and revenue comparisons

We start this subsection by comparing observed revenues with their theoretical
counterparts. Results are given separately for auctions without a buyer's option
(Table 7) and auctions with a buyer's option (Table 8). The third column in
these tables gives the revenues as predicted by the theory. These predictions
follow from Proposition 1. In the absence of a buyer's option, and for each value
of k, the 4 auction institutions are equivalent in terms of the expected revenue
they generate. When the buyer's option is available, there is again revenue-
equivalence when k = 1 and k = 2. However, when k = 1

2 , the �rst-price
and Dutch auctions generate more revenue than the English and second-price
auctions. Comparing Table 7 and Table 8, it can be seen that in theory the
buyer's option has no e�ect on expected revenue. The only exceptions are the
English and second-price auctions with decreasing demand. In these cases the
buyer's option increases expected revenue.

To test the revenue predictions, we de�ne for each couple and for each period
the seller's revenue REV = p1 + p2. For each value of k and each auction
mechanism the empirical average of REV is calculated, and using a T-test we
test the hypothesis that REV has a mean equal to the predicted revenue. For
instance, in Table 7, the average revenue in English auctions without a buyer's
option when k = 2 (the average is thus calculated over 10 couples �4 periods =
40 observations) equals 40.95 (standard error equal to 5.45), and the hypothesis
that the mean of REV equals the predicted value 50.00 is accepted at the 5%
level.

As Table 7 and Table 8 show, the results for all the English auctions are
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Table 7: Seller's revenue without buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 31.41 ( 2.00) ; ;
Second-price 27.52 ( 2.45) 20.83 No
Dutch 29.81 ( 1.75) ; ;
English 20.12 ( 2.46) 20.83 Yes

k = 1

First-price 46.46 ( 2.80) ; ;
Second-price 33.22 ( 3.75) 33.33 Yes
Dutch 37.82 ( 1.74) ; ;
English 31.10 ( 3.33) 33.33 Yes

k = 2

First-price 70.91 ( 4.79) 50.00 No
Second-price 38.91 ( 4.13) 50.00 No
Dutch 64.43 ( 3.81) 50.00 No
English 40.95 ( 5.45) 50.00 Yes

Table 8: Seller's revenue with a buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 33.98 ( 2.09) 25.00 No
Second-price 29.15 ( 3.14) 23.65 Yes
Dutch 27.07 ( 1.93) 25.00 Yes
English 24.56 ( 2.70) 23.65 Yes

k = 1

First-price 39.85 ( 2.69) 33.33 Yes�

Second-price 37.48 ( 4.93) 33.33 Yes
Dutch 37.86 ( 2.51) 33.33 Yes
English 30.27 ( 3.69) 33.33 Yes

k = 2

First-price 59.49 ( 4.48) 50.00 Yes�

Second-price 45.49 ( 5.94) 50.00 Yes
Dutch 63.87 ( 2.63) 50.00 No
English 39.84 ( 4.19) 50.00 Yes�
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in line with the theoretical predictions. Concerning the Dutch, �rst-price and
second-price auctions, the null is generally accepted when the buyer's option is
available, but rejected when it is not. In most cases where the null hypothesis is
rejected, mean revenue is signi�cantly above the predicted revenue. These de-
viations from theory are sometimes considerable. For instance, when a buyer's
option is not proposed by the auctioneer, a �rst-price auction (k = 2) gener-
ates almost FFr21 more per period than predicted by the theory. Table 7 and
Table 8 also indicate that generally the �rst-price auction generates the high-
est revenue, followed by the Dutch auction, then the second-price auction, and
lastly the English auction. Note that our revenue-ranking of auction formats
is exactly identical to the ordering found by Cox, Roberson and Smith (1982)
in their experimental study on one-unit auctions.14 Two-sample T-tests on the
equality of mean revenues (not reported in the Tables) suggest that the di�erence
between respectively the Dutch and �rst-price auctions and the �rst-price and
second-price auctions are signi�cant at the 5% level, but the di�erence between
the second-price and English auctions is generally not signi�cant. Two-sample
T-tests also suggest that the buyer's option signi�cantly decreases (resp. in-
creases) revenue in �rst-price (resp. second-price) auctions; the buyer's option
does not signi�cantly a�ect expected revenue in Dutch or English auctions.

Table 9 and Table 10 report for each value of k and each auction mechanism
the mean and standard deviation of the di�erence in prices p2� p1. The Tables
also indicate the theoretical predictions on the expected value of p2 � p1 and
whether these predictions are rejected by the data or not. The predicted price
variations follow immediately from Proposition 1.

As shown in Table 10, the winning price p1 is expected to be equal to the
winning price p2 when the buyer's option is available. The only exceptions are
the second-price and English auctions for k = 1

2 and k = 2 where on average
the sequence of prices is expected to be declining. Note that expected price
variations in second-price and English auctions for k = 2 are almost 19 times
larger compared to the predicted variations for k = 1

2 . Note also that in the case
of �rst-price and Dutch auctions with buyer's option the prediction of constant
prices is not surprising since, according to Proposition 1, winners of the �rst
auction should always execute their buyer's option. Table 9 shows that in the
absence of a buyer's option the theoretical predictions vary considerably with
the auction format and the value of k. The sequence of prices in second-price
and English auctions is expected to be increasing when k = 1

2 , and constant
when k = 1 (no predictions for �rst-price and Dutch auctions for these values
of k). It is quite striking that for k = 2 the predicted patterns in the �rst-price
and Dutch auctions are completely opposite to those of the second-price and
English auctions: in the former two auction formats the theory predicts a price
increase of FFr16.67, while in the latter two auction types a price decline of
FFr16.67 is expected.

Table 9 and Table 10 show that for k = 1 the results are in line with the

14Cox et al. experimentally study �rst-price, second-price, and Dutch auctions, but not the
English auctions.
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Table 9: Price variation (p2 � p1) without buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price -1.09 ( 1.17) ; ;
Second-price -1.18 ( 1.28) 4.17 No
Dutch -3.53 ( 0.81) ; ;
English 0.57 ( 0.75) 4.17 No

k = 1

First-price 0.99 ( 1.49) ; ;
Second-price 0.75 ( 0.83) 0.00 Yes
Dutch 1.40 ( 0.43) ; ;
English -0.39 ( 0.49) 0.00 Yes

k = 2

First-price 2.02 ( 2.24) 16.67 No
Second-price 0.41 ( 1.28) -16.67 No
Dutch 1.95 ( 1.03) 16.67 No
English 0.11 ( 1.50) -16.67 No

Table 10: Price variation (p2 � p1) with a buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price -3.74 ( 1.00) 0.00 No
Second-price -5.29 ( 1.11) -0.88 No
Dutch -3.31 ( 0.64) 0.00 No
English -1.00 ( 0.45) -0.88 Yes

k = 1

First-price -0.18 ( 0.14) 0.00 Yes
Second-price -0.07 ( 0.13) 0.00 Yes
Dutch -0.94 ( 0.40) 0.00 Yes�

English -0.72 ( 0.77) 0.00 Yes

k = 2

First-price -0.71 ( 0.34) 0.00 Yes�

Second-price -0.30 ( 0.89) -16.67 No
Dutch -0.07 ( 0.07) 0.00 Yes
English -3.77 ( 1.73) -16.67 No
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theoretical predictions for all auction institutions, with and without buyer's op-
tion: when demand is at, observed price di�erences are indeed not signi�cantly
di�erent from 0. For k = 1

2 and k = 2 the results are somewhat less satisfactory.
When the buyer's option is not available, theory predicts (strong) decreasing or
increasing price patterns, but the hypothesis that prices remain constant can
never be rejected; when the buyer's option is available, the observed price pat-
terns are in line with theory for English auctions with decreasing demand, and
Dutch and �rst-price auctions with increasing demand.

Table 9 and Table 10 show that observed price sequences are mostly con-
stant when the buyer's option is not available, but signi�cantly decreasing when
it is available. These �ndings are compatible with the �eld-data studies men-
tioned in the introduction: they are in support of Van den Berg, Van Ours, and
Pradhan (1999), who think that the buyer's option is responsable for the price
declines in their Dutch auctions of owers; and they are in line with the stud-
ies on sequential English auctions of wine at Christie's, Drouot and Sotheby's,
(see Ashenfelter (1989), Ginsburgh (1998), and F�evrier et al. (2001)), where
successive prices are generally found to be declining.

In the last part of this subsection we study auction eÆciency. The results
can be found in Table 11 and Table 12. For each k and auction mechanism, the
�rst column reports the mean and standard deviation of the relative eÆciency
RE = 1

2 (RE1 +RE2), where REj is the value that the j -th unit winner places
on unit j, divided by the maximum of this value and his/her rival's value. For
example, if bidder 1 wins the �rst unit, and bidder 2 the second unit, RE =
1
2 (

v1
max(v1;v2)

+ v2
max(kv1;v2)

). We also report the predicted values of RE (these

predictions follow from Proposition 1), and whether the predictions are accepted
or not in the data.

As Table 11 and Table 12 show, all auction institutions are, in theory, ef-
�cient mechanisms. The only exceptions are the auctions with buyer's option
and decreasing demand. The auction institutions are slightly ineÆcient in these
cases since the buyer's option allows the �rst-auction winner to buy the second
unit while having a lower valuation than his opponent. Actual eÆciency is gen-
erally remarkably close to predicted eÆciency, and theory is accepted in most
cases. In spite of the high degree of out-of-equilibrium behavior observed in the
data, the 4 auction institutions are highly eÆcient in our experiments.

4.5 Understanding deviations from optimal bidding be-

havior

The purpose of this subsection is to understand and interpret the deviations from
optimal behavior described in sections 4.1-4.3. Depending on the type of auction
mechanism, we �nd di�erent explanations for the deviations. In the Dutch and
�rst-price auctions, observed bidding behavior turns out to be compatible with
risk-averse Nash equilibrium theory. As in single-unit auction experiments (see
Kagel (1995) for a survey), the deviations from theory can thus be attributed
to risk aversion among experimental subjects. Risk aversion is modeled as in
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Table 11: Relative eÆciency without buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 0.93 ( 0.02) ; ;
Second-price 0.98 ( 0.01) 1.00 Yes
Dutch 0.96 ( 0.01) ; ;
English 0.98 ( 0.01) 1.00 Yes�

k = 1

First-price 0.95 ( 0.02) ; ;
Second-price 0.99 ( 0.01) 1.00 Yes
Dutch 0.94 ( 0.01) ; ;
English 0.99 ( 0.01) 1.00 Yes

k = 2

First-price 0.97 ( 0.02) 1.00 Yes
Second-price 1.00 ( 0.00) 1.00 Yes
Dutch 0.96 ( 0.01) 1.00 Yes�

English 1.00 ( 0.00) 1.00 Yes

Table 12: Relative eÆciency with a buyer's option

Auction Avg. (Std. Err.) Prediction Accepted

k = 0:5

First-price 0.94 ( 0.03) 0.92 Yes
Second-price 0.98 ( 0.01) 0.98 Yes
Dutch 0.92 ( 0.03) 0.92 Yes
English 0.96 ( 0.02) 0.98 Yes

k = 1

First-price 0.98 ( 0.01) 1.00 Yes�

Second-price 0.99 ( 0.01) 1.00 Yes
Dutch 0.97 ( 0.01) 1.00 No
English 1.00 ( 0.00) 1.00 Yes

k = 2

First-price 0.99 ( 0.01) 1.00 Yes
Second-price 0.99 ( 0.01) 1.00 Yes
Dutch 1.00 ( 0.00) 1.00 Yes
English 1.00 ( 0.00) 1.00 Yes
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the single-unit experiments (see for example Cox, Roberson and Smith (1982)
and Kagel, Harstad, and Levin (1987)).15 All agents are thus assumed to have
the same concave utility function u(�) over money income. Furthermore, the
utility function is assumed to be of the form u(x) = x� with � 2 [0; 1). This is
a constant relative risk-aversion (CRRA) model. In analyzing the deviations, it
is assumed that the participants in our experiment have a coeÆcient of relative
risk aversion � equal to 0.6.16

In the English and second-price auctions, most of the Nash equilibrium
strategies (the only exceptions are the auctions with buyer's option and de-
creasing demand) stated in Proposition 1 are robust to the form of risk aversion
that we consider; put in other words, risk-neutral Nash equilibrium bidding be-
havior in English and second-price auctions remains optimal under the CRRA
assumption. The implication of this invariance property is that something other
than risk aversion is responsible for the observed deviations in English and
second-price auctions. As will be seen below, the deviations from theory are
a consequence of either myopic behavior or punitive behavior. By myopic be-
havior is meant that agents' bidding behavior in the �rst auction is identical
to bidding behavior in a single-unit auction. Although agents fully understand
that 2 units are on sale instead of 1 unit, their �rst-auction behavior does not
reect this crucial di�erence. By punitive behavior is meant that �rst-auction
losers attempt to harm their opponents by bidding above their value v in the
second auction (the dominant strategy), thereby reducing the second-auction
pro�ts of their opponents.

4.5.1 Dutch and �rst-price auctions

In sections 4.1-4.3 we have seen that observed bidding behavior in Dutch and
�rst-price auctions is generally above risk-neutral equilibrium behavior. Fur-
thermore, experimental subjects have used the buyer's option much too rarely
when demand is decreasing. In this subsection it is shown that these deviations
can be explained once agents are allowed to be risk-averse. We can thus ratio-
nalize all observed behavior in terms of risk aversion. We give the risk-averse
Nash equilibrium bidding functions in all relevant cases but omit the proofs of
their derivations (obtainable from the authors).

In the absence of a buyer's option and when demand is decreasing, there
again does not exist a symmetric pure Nash equilibrium. When the option
is available an equilibrium does exist, and the �rst-auction optimal bidding
function under CRRA is b1(v; �) = 3

4(1+�)v (note that when � = 1 we �nd

15See Harrison (1989) and the subsequent debate in the American Economic Review, Vol.
82 No 5, pp. 1374-1443, for an alternative explanation for the overbidding phenomenon. In
particular, see Cox, Smith, and Walker (1992) (and the references herein) for an extensive
discussion of risk-aversion models.

16This value is obtained in a somewhat ad hoc way by minimizing, over �, the sum of
squared deviations between observed bids and optimal bids under risk aversion. Our estimate
is a bit higher than the one found in Kagel, Harstad, and Levin (1987). They report an
average estimate of � equal to 0.49, suggesting that students in our experiment were slightly
less risk-averse than their North American counterparts.
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the risk-neutral bidding function b1(v) =
3
8v given in point 7 of Proposition 1).

Taking � = 0:6, we have b1(v; �) = 0:47v, and performing the same tests as in
section 4.1 (i.e. we test whether � = 0:47, etc.), we accept, at the 5% level, for
both the Dutch and �rst-price auctions, the hypothesis that observed bidding
is in accordance with risk-averse bidding behavior.

The question that is still unanswered is whether risk-aversion provides a
rationale for the fact that the option is exercised too rarely under decreasing
demand? Given that under risk aversion it is still optimal to always use the
buyer's option, the answer is no. Note however that the optimal bidding func-
tion under risk aversion b1(v; �) = 0:47v is very close to the threshold curve
0:50v above which it is not pro�table to use the buyer's option. The fact that
risk-neutral equilibrium behavior is accepted of course only means that average
bidding is according to the function b1(v; �), and does obviously not exclude
that part of the observations are located above the nearby located threshold
curve. In our data all persons with bids above the threshold curve did indeed
not use the option (and inversely, those with bids under the threshold curve did
exercise the option), explaining why the observed frequency of using the option
is lower than predicted by optimal behavior under CRRA.

Let us next consider consider the auctions under at demand. Again, an
equilibrium only exists when the buyer's option is available, and the �rst-auction
optimal bidding function under CRRA is now b1(v; �) =

1
(1+�)v. Given � = 0:6

we get b1(v; �) = 0:625v, and again risk-averse equilibrium theory is accepted
for both the Dutch and �rst-price auction. Under CRRA it remains optimal
to always use the option, so regarding the use of the buyer's option, the data
remain in line with theory. Note that the problem that was mentioned above
does not play a role here since the threshold curve here is v, i.e. well above the
optimal function.

Finally consider the auctions under increasing demand. As in the case with
risk-neutrality, equilibria exist for the auctions with and without the buyer's
option. For the auctions without buyer's option, we have b1(v; �) = 2��

(1+�)v,

and taking � = 0:6 we get b1(v; �) = 0:875v. The hypothesis that bidding
behavior is according to equilibrium behavior under CRRA is only accepted
for the Dutch auction. The second-auction strategies are not a�ected by risk-
aversion, so the data remain coherent with the theory except for �rst-auction
winners in the Dutch auction (see Table 5 and Table 6). When the buyer's
option is available, we obtain b1(v; �) =

3
2(1+�)v, and taking � = 0:6 we get

b1(v; �) = 0:938v, implying that equilibrium behavior under CRRA is once
again accepted for both auctions institutions. The optimal use of the buyer's
option is not a�ected by risk-aversion, so observed frequencies remain coherent
with predicted frequencies.

4.5.2 English and second-price auctions

In sections 4.1-4.3 it was shown that subjects' behavior is quite well in line with
the predictions of Proposition 1 when the demand function is at. Important
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deviations are however observed when the demand function is decreasing or
increasing: in the �rst auctions the degree of bid shading (resp. over-bidding)
observed in the data is clearly too small under decreasing (resp. increasing)
demand; in the second auctions with increasing demand, �rst-auction losers are
found to be bidding signi�cantly above the dominant strategy which consists in
revealing the value v; the �nal deviation that needs our attention concerns the
higher-than-optimal use of the buyer's option when demand is increasing. As
in the previous subsection, we discuss each of these deviations separately.

First consider the deviations under decreasing demand. In analyzing the
�rst-auctions without buyer's option, it is helpful to look again at Figures 2
and 4. In both �gures there is evidence of there being 2 groups of bids: one
group of bids closely scattered around the optimal bidding line b1(v) =

1
2v, and

another group of bids concentrated around the line v. Apparently part of the
subjects play the optimal strategy, while others bid in a myopic way.17 This can
be checked more formally by running the following switching regression model

b1it = �1vit + "1it with probability �

b1it = �2vit + "2it with probability 1-�:

The estimates (standard error) of �1 and �2 are 1.04 (0.04) and 0.52 (0.06)
for the second-price auction, and 0.98 (0.01) and 0.49 (0.04) for the English
auction. The estimate (standard error) of the probability � is 0.62 (0.07) for
the second-price auction, and 0.43 (0.09) for the English auction. Our switching
regression estimates thus con�rm that there are 2 groups of agents, one made
up of rational bidders and the other of myopic bidders, and that the proportion
of myopic agents is quite important in the data. The fact that the prevalence
of myopic agents is so high explains the rejection of the theory in section 4.1.

The only strategies that are sensitive to the introduction of CRRA are the
English and second-price auctions with buyer's option (still k = 1

2 ). Under
CRRA, the optimal bid function is the solution of�(v�b1(v; �))

�+( v2 )
� = 2(v�

b1(v; �))
�b01(v; �). As in section 4.1, the solution can be precisely approximated

by a second-order polynomial in v. Taking � = 0:6, and performing the same
tests as in section 4.1, the results are in support of risk-averse Nash equilibrium
behavior, at the 5% level for the second-price auction, and at the 1% level for the
English auction. CRRA does not a�ect the optimal use of the buyer's option,
so observed frequencies remain in line with predictions.

Next consider the deviations under increasing demand. To understand the
deviations in the auctions without buyer's option, we �rst look at the second-
auction results. As Tables 5 and 6 show, winners of the �rst auction bid
their valuation for the second unit, as predicted by theory, but losers of the
�rst auction bid signi�cantly above the dominant strategy v. As pointed out in

17Subjects are quite consistent in their behavior over the 4 periods for which k = 1

2
and

o = N : most optimal bidders are optimal in all 4 periods, and similarly, most deviators
persistently deviate in all 4 periods.
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section 4.3, the latter result contrasts with the experimental literature on single-
unit auctions. However, unlike single-unit experiments, �rst-auction losers have
information about the value of their opponent (the contextual di�erence men-
tioned in section 4.3), which allows them, without taking any personal risk, to
punish their competitor by bidding above the dominant strategy. This punitive
behavior in the second auction can also explain the deviation observed in the
�rst auction. It can be formally shown that, in anticipation of punitive behavior
in the second auction, players should bid somewhere between v and 2v (depend-
ing on the degree of punitive behavior among subjects) in the �rst auction to
compensate for the smaller gain in the second auction. As Figures 10 and 12
show, this line of reasoning is well supported by the data, since practically all
�rst-auction bids are indeed between v and 2v (with some exceptions for the
second-price auction without buyer's auction).

The deviations that are observed in the auctions with buyer's option can be
explained in the same manner. In the �rst auctions, player's anticipate future
punitive behavior by bidding between v and 2v (Figures 22 and 24 show that
this is indeed the case). Furthermore, under punitive behavior, it can be shown
that it is optimal for �rst-auction winners to always exercise the buyer's option,
justifying why the subjects in our experiment do not wait but buy instead.

5 Conclusion

This paper experimentally studies two-unit sequential auctions with and with-
out the buyer's option. The 2 identical units are sold to 2 potential buyers. Each
buyer desires both units, and their demand function is either decreasing, at,
or increasing. The four best known auction mechanisms are considered: Dutch,
English, �rst-price and second-price auctions. Experimental papers on sequen-
tial auctions are still very rare and none analyzes the buyer's option despite its
practical importance.

Observed bidding behavior in English and second-price auctions is closer to
risk-neutral Nash equilibrium bidding in the second auction than in the �rst
auction. This is not surprising since the �rst-auction strategies are more subtle
and less transparent than the second-auction strategies. In the �rst auction,
buyers face a complex situation because they need to anticipate that the �rst-
auction winning price is revealed, that a second unit is going to be sold, and that
the winner has the right to exercise the buyer's option (if the option is available).
The inexperienced subjects in our experiment have nonetheless understood the
basic strategic e�ects called for by optimal bidding behavior. Subjects have
indeed understood that under at demand it is optimal to bid their valuation
in the �rst auction; under decreasing (resp. increasing) demand, subjects have
understood that optimal behavior requires bid shading (resp. over-bidding), but
the extent to which they did this was too modest. In the second auction, buyers
face a relatively simple situation. As in single-unit English and second-price
auctions, it is a dominant strategy for bidders to reveal their valuation. Apart
from the �rst-auction losers under increasing demand, who bid in excess of their
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valuation, we �nd, as in the experimental literature on single-unit auctions, that
our subjects play according to the dominant strategy. Bidders in our experiment
have exercised the buyer's option quite adequately under decreasing and at
demand, but not when demand is increasing. In the latter case the bidders have
made too much use of the option.

For the Dutch and �rst-price auctions without buyer's option, there only
exists an equilibrium when the demand function is increasing. Compared to the
English and second-price auctions, there are therefore less theoretical predictions
that can be tested. As in the English and second-price auctions, risk-neutral
Nash equilibrium behavior organizes the data better in the second auction than
in the �rst auction. Practically all deviations that we observe share a common
feature which is that bidding behavior is above optimal bidding behavior. This is
a phenomenon that is also observed in experiments on single-unit �rst-price and
Dutch auctions. Bidders in our experiment have exercised the buyer's option
very often under at and increasing demand, as theory predicts them to do, but
too little when demand is decreasing.

Depending on the type of auction mechanism, we �nd di�erent explanations
for the deviations. In the Dutch and �rst-price auctions, observed bidding
behavior turns out to be compatible with risk-averse Nash equilibrium theory.
As in the single-unit auction experiments, the deviations from theory can thus
be attributed to risk aversion among experimental subjects. In the English and
second-price auctions, most of the Nash equilibrium strategies are robust to
the form of risk aversion that we consider. For these auction institutions, the
deviations from theory can be explained by either myopic or punitive behavior.

The paper also looks at the revenue and the price patterns in the di�erent
auction mechanisms with and without buyer's option. It is quite remarkable that
the revenue ranking of the 4 auction institutions is the same as in single-unit
experiments. We also �nd that the buyer's option decreases (resp. increases)
revenue in �rst-price (resp. second-price) auctions, but that there is no signif-
icant e�ect in the clock auctions. Successive prices are found to be declining
in the auctions with buyer's option, but are constant when the option cannot
be used. This result, in conjunction with the fact that subjects in our exper-
iment are found to be risk-averse, suggests that the buyer's option, and not
risk-aversion, is responsable for the declining price anomaly.

In future work we plan to study the e�ect of an increase in the number of
buyers at auction. We also plan to investigate the role of the buyers' option in
the common value paradigm.
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Appendix

A Proof of proposition 1

A.1 a 2 fE; Sg, o = N , and k 2
�
1
2
; 1; 2

	

The second auction strategies are obtained by the standard dominated strategies
argument. Therefore, both the loser and the winner of the �rst auction bid their
valuation:

bl2 (v; p1) = v and bw2 (v; p1) = kv:

To derive the �rst auction equilibrium strategies, we have to distinguish the
English auction from the second-price auction as the available information is
not the same in these two auction institutions.

A.1.1 a = E and k = 1
2 ; 1

See Donald, Paarsch, and Robert (1997).

A.1.2 a = E and k = 2

Let b1 (v) be the �rst auction equilibrium strategy and v1 the value of player 1.
Suppose the clock has reached p (close to b1 (v1)) and player 1 has to decide
to continue or to stop bidding. Let G ("; p) denote the expected total gain (for
the �rst and second auctions) for player 1 if he decides to continue with bidding
until p+ ":

G ("; p) =

Z b
�1

1
(p+")

b
�1

1
(p)

(v1 � b1 (w) + 2v1 � w)
dw

1� b�1
1 (p)

:

The above expression follows because player 1 can only win the �rst auction if
p � b1 (v2) � p+ ", with v2 being the valuation of player 2. If he wins the �rst
auction, he also wins the second auction because, since p is close to b1 (v1), we
have that 2v1 is larger than v2. On the contrary, if he loses the �rst auction he
also loses the second one. Note that the density in the integral is the conditional
density of v2 given v2 � b�1

1 (p). Derivation with respect to " gives:

@G

@"
("; p) =

�
b�1
1 (p+ ")

�0
(p+ ")

v1 � (p+ ") + 2v1 � b�1
1 (p+ ")

1� b�1
1 (p)

:

The equilibrium condition is:

@G

@"
(" = 0; p = b1 (v1)) = 0;

which leads to
b1 (v1) = 2v1:
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To prove that it is indeed a Nash equilibrium, assume that player 2 follows the
strategy b1 (v2) = 2v2 and assume that player 1 deviates from this strategy and
stops at p < v1. In that case he loses the �rst auction and can only win the
second if v2 2

�
p
2 ;

v1
2

�
which would lead to a gain of v1 � 2v2. But in that

case, by bidding until p = v1 player 1 would win both the �rst and the second
auction (because v2 < v1), which leads to a larger pro�t of v1 � 2v2 + 2v1 � v2.
Assume, now, that player 1 stops at p with v1 < p < 2v1. In that case losing
the �rst auction also means losing the second because v1 < p < 2v2 (here in
the second auction player 2 bids 2v2), therefore it is optimal to bid until 2v1.
Finally, a deviation p > 2v1 is weakly dominated: it does not improve the gain
when v2 < v1 while it implies a loss when v1 < v2 <

p
2 as the revenue of player 1

is then 3v1 � 3v2 < 0.

A.1.3 a = S and k = 1
2 ; 1

See Black and De Meza (1992).

A.1.4 a = S and k = 2

In order to characterize the equilibrium strategy b1 (:), assume that player 1
deviates from b1 (v1) by bidding b1 (x), with x close to v1. If he loses the �rst
auction while bidding b1 (x), he is sure to lose the second auction as well. On the
contrary, if he wins the �rst auction he is also sure to win the second auction.
That is, the expected total gain of player 1 playing b1 (x) is:

G (x) =

Z x

0

[v1 � b1 (w) + 2v1 � w] dw:

In equilibrium such a deviation cannot be pro�table which means that:

G0 (x = v1) = 0;

which leads to
b1 (v1) = 2v1:

To prove that it is a Nash equilibrium, assume that player 2 bids 2v2. It is then
obvious that a bid equal to 2x, x < v1, gives player 1 a lower expected gain
than a bid equal to 2v1 as it does not increase the gain when player 1 wins both
auctions but it reduces the probability of winning. Next, a bid equal to 2x,
v1 < x, also reduces the expected gain of player 1 because when player 1 wins
the �rst auction with 2x but not with 2v1 he has a negative total gain.

A.2 a 2 fD;Fg, o = N , and k 2
�
1
2
; 1
	

The non-existence of a Nash equilibrium with symmetrical pure strategies in
the �rst auction is proved in F�evrier (2000).
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A.3 a 2 fD;Fg, o = N , and k = 2

We �rst study the second auction assuming that the players bid according to
b1 (:) in the �rst auction. Suppose that player 1 with valuation v1 won the
�rst auction and let v2 denote the valuation of player 2. Therefore the value of
b1 (v1) is revealed before the second auction starts and both players know that
v2 < v1 < 2v1. In equilibrium the second player knows that he cannot win the
second auction and his (weakly dominant) strategy is to bid v2 in the second
auction.

By bidding x � v1 the expected gain of player 1 in the second auction is

Prob (x > v2jv2 < v1) (2v1 � x) = min
n

x
v1

; 1
o
(2v1 � x), which is maximized

for x = v1. Of course, it is not pro�table to bid more than v1. Consequently,
both players bid their �rst-unit valuation in the second auction, i.e. bl2 (v; p1) =
bw2 (v; p1) = v.

We now study the �rst auction. Suppose player 2 bids b1 (v2) in the �rst auc-
tion and player 1 bids b1 (x) > b1 (v1). If he wins the �rst auction he learns that

v2 < x, and he maximizes over y (in the second auction) y(2v1�y)
x

. On the other
hand, if he loses the �rst auction then v2 > x > v1 and he loses the second auc-
tion as well. Therefore, his expected total gain is x

�
v1 � b1 (x) + maxymin

�
y
x
; 1

	
(2v1 � y)

�
.

This expected gain must be maximized in equilibrium for x = v1. The �rst order
condition leads to b1 (v1) �

v1
2 .

Suppose, now, that player 1 bids b1 (x) < b1 (v1). If he wins the �rst auc-
tion he learns that v2 < x < v1 and he maximizes his second auction gain
maxy min

�
y
x
; 1

	
(2v1 � y) by bidding x. On the other hand, if he loses the

�rst auction he learns the value of v2. If v2 > v1, he also loses the second auc-
tion. If v2 < v1, he wins the second auction by bidding just above v2. Therefore
the expected gain is:

G (x) = x [v1 � b1 (x) + 2v1 � x] +

Z v1

x

(v1 � w) dw:

The �rst order condition leads to b1 (v1) �
v1
2 .

Therefore, the equilibrium �rst auction strategy is b1 (v1) =
v1
2 .

A.4 a 2 fE; Sg, o = Y , and k = 1
2
; 1; 2

The second auction strategies are obtained by the standard dominated strategies
argument. Therefore, each player bids his valuation

bl2 (v; p1) = v and bw2 (v; p1) = kv:

To derive the �rst auction equilibrium strategies, the English auction has to
be distinguished from the second-price auction as the available information are
not the same in the two auction mechanisms.
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A.4.1 a = E and k = 1
2

We start with the buyer's option. If v1
2 � p1 = b1 (v2), it is pro�table to use

the option because if he does not execute the option his gain in the second
auction is max

�
0; v12 � v2

	
, which is lower than v1

2 � b1 (v2). On the contrary,
if v1

2 < p1 = b1 (v2), it is clear that the winner must not use the option.

We study now the �rst auction. As it will become clear later we can restrict
ourselves to the search of a �rst auction equilibrium b1 (v) �

v
2 . Suppose the

clock has reached p and player 1 has to decide to continue or to stop bidding.
It is important to remark that as player 2 is still active at p, his valuation is
greater than b�1

1 (p).
To derive the equilibrium necessary conditions, we assume that p is close to

b1 (v1). Let G ("; p) denote the expected total gain if player 1 decides to continue
with bidding until p+ ".

If player 2 withdraws between p and p + ", player 1 wins the �rst auction.
As we have assumed that b1 (v1) �

v1
2 , and that p is close to b1 (v1), it is

not pro�table to use the buyer's option. Furthermore, player 1 loses the second
auction (indeed, his valuation is divided by two, while player 2 valuation remains

around v1). The expected gain in this case is:
R b
�1

1
(p+")

b�1
1

(p)
(v1 � b1 (w))

dw

v�b
�1

1
(p)

If player 2 remains active at p + ", player 1 loses the �rst auction. As seen
before, player 2 uses his option if and only if p+ " � v2

2 . In case player 2 does
not use the option, we have v2

2 < p+" ' b1 (v1) < v1 which means that player 1

wins the second auction. The expected gain in this case is:
R min(2(p+");v)

b�1(p+") (v1 �
w
2 )

dw

v�b
�1

1
(p)

.

Finally

G ("; p) =

Z b
�1

1
(p+")

b
�1

1
(p)

(v1 � b1 (w))
dw

v � b�1
1 (p)

+

Z min(2(p+");v)

b�1(p+")

(v1�
w

2
)

dw

v � b�1
1 (p)

;

The equilibrium condition is @G
@"

(" = 0; p = b1 (v1)) = 0. Under the assump-

tion that b1 (v1) �
v
2 this leads to:

1

b01 (v1)
(
v1
2
� b1 (v1)) + 2 (v1 � b1 (v1)) = 0:

On the contrary, if b1 (v1) �
v
2 we obtain:

1

b01 (v1)
(
v1
2
� b1 (v1)) = 0:

This second di�erential equation combined with the assumption b1 (v) �
v
2 implies that b1 (v) = v

2 . The �rst di�erential equation and this terminal
condition de�ne a unique bidding function which veri�es b1 (v) �

v
2 .

To end the proof, it is necessary to show that this function constitutes indeed
a Nash equilibrium of the game by checking that there is no pro�table deviation
which is straightforward.
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A.4.2 a = S and k = 1
2 ; 1

See Black and De Meza (1992).

A.4.3 a = S and k = 2 or a = E and k = 1, 2

The proof is identical to the proof without buyer's option because it is optimal
not to use the buyer's option. Indeed, assume that both players bid 2v and that
v1 > v2. Player 1 wins the �rst auction and the price p1 = 2v2. If player 1 uses
the option he pays the second unit 2v2, while if he waits he only have to pays
v2.

A.5 a 2 fD;Fg, o = Y , and k 2 1
2
; 1; 2

The second auction strategies are obtained from F�evrier (2000) (proposition 4.5).
The second auction strategy for the loser of the �rst auction is

bl2 (v; p1) =

(
v if v � 2k

1+k
p1

kp1
1+k

�
1� 4kp1

(1+k)v

�
if v � 2k

1+k
p1

The winner of the �rst auction plays the following strategy: If p1 = b (v) (that
is if he played in the �rst auction according to the equilibrium strategy but
he did not use the option), he plays a mixed strategy, such that he bids x,

x 2

�
kv
2 ;

k� k
2

4

v

�
, with x having the distribution function

F (x) =
1� k + k2

4

1� k
2

kv

2x� kv
exp

2
44x� 2

�
2k � k2

2

�
v

(2x� kv) (2� k)

3
5 :

If p1 > b (v) (that is he played in the �rst auction a bid above the equilibrium
strategy, won the auction and did not use the option) then bw2 (v; p1) =

k
2 v.

If p1 < b (v) (that is he played in the �rst auction a bid below the equilibrium

strategy, won the auction and did not use the option) then bw2 (v; p1) =
4k�k2

1+k
p1.

Consider now the �rst auction. Assume that player 2 bids b1 (v2). If player 1
bids b1 (x) and uses his option, then his expected gain is:

G (x) = x [(1 + k) v � 2b1 (x)] :

The �rst-order condition is

G0 (v) = 0,
1 + k

4
v2 = (vb1 (v))

0 ;

which leads to

b1 (v) =
1 + k

4
v:

If both players bid according b1 (v) the expected gain of a player with a valuation
v is 1+k

2 v2. See F�evrier (2000) for the proof that given the strategies described
above, it is not pro�table to deviate in the �rst auction and to abstain from
using the buyer's option.
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Figure 5: First-price, k = 1, o = N
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Figure 6: Second-price, k = 1, o = N
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Figure 18: Second-price, k = 1, o = Y
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