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Summary. At present, reversible jump methods are the most common Markov Chain Monte Carlo
tool for exploring variable dimension statistical models. Recently however, an alternative approach
based on birth-and-death processes has been proposed by Stephens (2000) in the case of mixtures
of distributions. We address the comparison of both methods by demonstrating that upon appropriate
rescaling of time, the reversible jump chain converges to a limiting continuous time birth-and-death
chain. We show in addition that the birth-and-death setting can be generalised to include other types
of jumps like split/‘combine jumps in the spirit of Richardson and Green (1997). We illustrate these
extensions in the case of hidden Markov models.
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1. Introduction

Markov Chain Monte Carlo (MCMC) methods for statistical inference, in particular Bayesian
inference, have undoubtedly become standard during the past ten years (Cappé and Robert, 2000).
For variable dimension problems, often arising through model selection, a popular approach is
Green’s (1995) reversible jump MCMC (RIMCMC) methodology. Recently however, in the context
of mixtures of distributions, Stephens (2000a,b) rekindled interest in a different method based on
continuous time birth-and-death processes for estimating the number of components of the mixture,
following earlier proposals by Geyer and Mgller (1994), Grenander and Miller (1994) and Phillips
and Smith (1996). We will call this approach birth-and-death MCMC (BDMCMC).

A main question addressed in the present paper is as follows: is there a fundamental difference
between the reversible jump and birth-and-death MCMC methodologies, or are these approaches
similar? As an answer to this question we show in Section 3 that for any BDMCMC process
satisfying some weak regularity conditions there exists a sequence of RJIMCMC processes that
converges, in a sense to be precised below, to the BDMCMC process.

In their application of reversible jump MCMC to mixtures of distributions, Richardson and
Green (1997) involved two types of moves that could change the number of components of the
mixture: one was birth/death, in which a new component is created or an existing one is deleted,
and the other was split/combine, in which one component is split in two, or two components are
combined in one. On the opposite, Stephens (2000a) only dealt with birth/death moves in order
to keep the algorithm within the theory of (marked) point processes on general spaces. We show
that convergence of reversible jump to birth-and-death MCMC is not limited to moves of this
kind however, but is much more general. For example, the above split/combine moves could be
incorporated. The approach so obtained could be named continuous time reversible jump MCMC
and the appropriate theoretical framework is that of Markov jump processes.

The paper is organised as follows: in Section 2, we provide a review of the main features of
reversible jump and birth-and-death MCMC methodologies. The convergence of RIMCMC to
BDMCMC is established in Section 3. In Section 4, we discuss the generalisation of moves for con-
tinuous time MCMC besides birth/death moves, while in Section 5, we show how sampling can be
made more efficient in this approach, introducing a continuous time Rao-Blackwellisation scheme.
Section 6 illustrates the general continuous time MCMC methodology for hidden Markov models,
in parallel with the RJIMCMC approach of Robert, Rydén and Titterington (2000). Section 7
concludes with a discussion of the pros and cons of each method.

2. A quick review of reversible jump and birth-and-death MCMC methodologies

In this section we give a quick review of RIMCMC and BDMCMC in the mixture case considered
by Stephens (2000a). We will consider the extension of BDMCMC to hidden Markov models
in Section 6. Further reading is provided by Richardson and Green (1997, 1998) and Stephens
(2000a,b).

2.1. Mixture models
The model we work with thus has a probability density function of the form

k
i=1

where k is the number of components, w = (wi,...,wg) are the component weights, ¢ =
(¢1,...,¢r) are the component parameters and f(-;¢) is some parametric class of densities in-
dexed by a parameter ¢. Common examples are the Gaussian family, the Gamma family (in which
cases ¢ is typically two-dimensional) and the Poisson family (in which case ¢ is one-dimensional).
The component weights are non-negative numbers summing up to unity. Note that we write all
densities as conditional ones, as our statistical approach is Bayesian. Hence we need to specify a
prior density for (k,w, ¢), denoted by r(k, w, ¢). We do not make any further assumptions about
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the prior, except that it is proper and that, for each k, it is exchangeable, that is, invariant under
permutations of the pairs (w;, ¢;). We also denote by L(k,w, ¢) the likelihood which is given by

L(k,W, (»b) = Hp(yl|k>w7 ¢)7
i=1

wherey = (y1,.-.,ym) is the observed sequence. The posterior density, which is our starting point
for inference, is thus proportional to r(k, w,¢@)L(k,w,®). A real model typically also involves
hyperparameters, which as such do not add any further difficulty. We do not specifically address
this issue till Section 6 where hyperparameters are used. Below we put 8 = (w, ¢); in this notation
k is implicit.

A feature inherent to mixture models is that we may associate with each observation y; a label
(or allocation) z; € {1,...,k} with P(z; = j | k,w) = w; that indicates from which component y;
was drawn. Given data, these labels can be sampled independently with

w; F(yilé;)
Sy wef (ye|de)

We call such a simulation completing the sample as (z,y) is often referred to as the complete data.
As detailed below in the set-up of hidden Markov models and as demonstrated in Celeux et al.
(2000) for mixtures, the completion by z is not necessary from a simulation point of view.

P(Zz:J | kawy¢)yi) =

(1)

2.2. Birth-and-death MCMC

We now study the following form of BDMCMC: in state 0, new components are created (born)
in continuous time, at rate 3(f). Whenever a new component is born in this state, its weight
w and parameter ¢ are drawn from a joint density h(8;(w,¢)). In order to make space for the
new component, the old component weights are scaled down proportionally as to make all of the
weights, including the new one, sum to unity; that is, w; := w;/(1 + w). The new component
weight-parameter pair (w, ¢) is also augmented to 6. We denote these operations by ‘U’; so that
the new state is @ U (w, ¢). Furthermore, in a (k + 1) component configuration 6 U (w, ¢), the
component (w, ¢) is killed at rate

L(0)r(6) 1 BOKE; (w,9))

0(6; (w, 9)) = LU (w, o) (0 U (w,0)) « k+1 1wkt (2)

The factor (1 —w)*~! in (2) results from a change of variable Jacobian determinant when renor-
malising the weights. Indeed, when the component (w,¢) is removed, the remaining component
weights are renormalised as to sum to unity. We denote these two operations by ‘\’, so that
0=(0U(w,9))\ (w,¢). An important feature of BDMCMC is that (continuous time) jump pro-
cesses are associated with the birth and death rates: whenever a jump occurs, the corresponding
move is always accepted. What replaces the acceptance probability of classical MCMC methods is
the holding time in each state. In particular, implausible states, that is states such that L(8)r(@)
is small, die quickly.

2.3. Reversible jump MCMC

We now turn to the corresponding reversible jump MCMC sampler. In a & component state @, at
each iteration, the algorithm proposes with probability b(8) to create a new component and with
probability d(@) it proposes to kill one. Obviously, b(€) + d(0) = 1. If an attempt to create a new
component is made, its weight and parameter are drawn from h(8; (w, ¢)) as above. If an attempt
to kill a component is made, each component is selected with equal probability. A new component
is accepted with probability min(1, A), where A = A(0;0 U (w, ¢)) is given by

L(OU (w, ¢) dOU (w,¢) (1—w)

. B o
Al 60 (w.9)) = L0)r() X DX TT00) < W (w, 9)
_ L(GU (U},QS))T(OU (w7¢)) « d(OU (U),QS)) > ( - )kil (3)
L0)r(0) 00 h(O: (w9
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Here the first ratio, combined with the first factor k + 1, is the ratio of posterior densities,
b(0)h(0; (w, P)) is the density of proposing a new component (w, ¢) and d(@U (w, ¢))/(k+1) is the
probability of proposing to kill component (w, ¢) when in state U (w, ¢). Finally (1—w)*~! is the
same Jacobian determinant as above. If a proposal to kill a component (w, ¢) of a (k + 1) compo-
nent state 6 U (w, ¢) is made, the acceptance probability is min(1,1/A), where A = A(0; 0U (w, ¢))
is as above.

In (3), the first factor k£ + 1 comes from the assumption that in the RIMCMC algorithm we
keep ¢1,..., ¢, ordered using a predetermined ordering. For example, in the case of Gaussian
components we could sort according to the mean. This ordering will, loosely speaking, reduce
the size of the space of k-component parameters by a factor k!, and the factor k£ + 1 is the ratio
(k +1)!/k!. This factor should thus be associated with the posterior density ratio. We do remark,
however, that the assumption of ordered components is a purely technical identifiability device and
does not make any practical change to the algorithm; when a new component (w, ¢) is proposed
we keep the components ordered by sorting them. Indeed, if ordering is not imposed, one rather
has to work on a quotient space induced by the equivalence relation ~ defined by 8 ~ 0’ if 6
and @' are identical up to a permutation of indices. Working with the quotient space also gives
rise to a factor k£ + 1 as in (2). Both of the above samplers have the posterior density as their
stationary distribution. In RJMCMC, one typically includes other kinds of moves such as moves
resampling the component weights and the parameters ¢; as well as, possibly, the hyperparameters
for a fixed k—see, for instance, Richardson and Green (1997). A complete sweep of the algorithm
consists in the composition of a birth/death move with these other—fixed k—moves. Stephens
(2000a) resampled component weights and parameters at regularly separated instants. Sampling
for a fixed k can be carried out using a Gibbs move after completing the sample according to
(1), but completion was not used by Stephens (2000a) who only considered Metropolis-Hastings
updates. As noted above, Richardson and Green (1997) designed, in addition, moves for splitting
and combining components (see Section 4 for the generalisation of BDMCMC.)

3. Convergence of reversible jump to birth-and-death MCMC

We shall now, starting from a BDMCMC algorithm as above, construct a sequence of RIMCMC
samplers converging, in a certain sense to be defined, to the BDMCMC sampler. Before proceeding
we introduce some additional notation. Let S¥=! = {(wy,...,wy) : w; >0, w; = 1}, denote by
® the space in which each ¢; lies and put ©%) = §¥=1 x &k Thus ©*) is the space of k-dimensional
parameters. Finally © = Ug>q O©*) denotes the overall parameter space.

For N =1,2,3,..., we define an RIMCMC sampler by letting

bn(0) =1 —exp{—B(0)/N}, dn(0)=1-0bn(0) = exp{-S(6)/N},

where 3(0) is the birth rate of the BDMCMC sampler. Then A also depends on N, and we write
A = An. We remark that as N — oo, by (8) ~ 5(0)/N, and if 5(0) is bounded we can take instead
by (@) = 3(0)/N. The state at time n = 0,1,2,... of the N-th RIMCMC sampler is denoted by
6", and for each N we construct a continuous time process {8” (t)};>0 as 0~ (t) = G{VNH, where
|| denotes the integer part. The state of the BDMCMC sampler at time ¢ > 0 is denoted by 6(t).

We now consider what happens as N — oo. The probability of proposing a birth in state 0
tends to zero as 3(0)/N. Hence, the acceptance ratio Ay tends to infinity, so that a birth proposal
is always accepted. If time is speeded up at scale IV, on the nominal time scale the limiting process
of accepted births in state 0 is a Poisson process of rate 3(8). Furthermore, the scaled probability
of deleting component (w, ¢) in a state @ U (w, ¢) € OK*+1) ig

Ndy(0) x x min(1,1/An(0;0 U (w,9)))
L(0)r(6) 1 h(6; (w, $))

L(GU(W,(ﬁ))T(BU(w’(ﬁ)) X Pl Xﬂ(e) X m as N - oo,

1
E+1

%

and the right hand side is nothing but 6(€; (w,#)). Considering the rescaled time axis and the
independent attempts to create or delete components, in the limit the waiting time until this
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component is killed has an exponential distribution with rate §(0; (w, ¢)), which agrees with the
BDMCMC sampler. Thus, summing up, as N — oo a birth is rarely proposed but always accepted
and a death is almost always proposed but rarely accepted. Both these schemes result in waiting
times which are asymptotically exponentially distributed with rates in accordance with the BD-
MCMC sampler. Thus, one may expect that as N — oo, the processes {8~ ()} and {@(t)} will
become more and more similar.

We will now make this reasoning strict. We first note that since the standard topology on
the open unit interval (0,1) is separable and can be metrised by a complete metric, for example
d(z,y) = |log(z/(1 — z)) —log(y/(1 — y))|, S¥~! can be viewed as a complete separable metric
space. Likewise we assume that ® has a separable topology which can be metrised by a complete
metric. Then ©, with the induced natural topology, is a space of the same kind. The process
{6(t)} is a Markov process on © which we assume has sample paths in Dg[0, 00), the space of
©-valued functions on [0, co) which are right-continuous and have left hand limits everywhere. We
make the following assumptions:

(A1) B(0) is positive and continuous on ©.
(A2) r(0) and L(0) are positive and continuous on ©.

(A3) For each (w,¢) € (0,1) x ®, h(-; (w,p)) is continuous on © and for each 8 € O there is a
neighbourhood G of 8 such that supg' ., h(0';-) is integrable.

THEOREM 1. Under (A1)-(A3) and assuming that 8(0) and 0y are drawn from the same initial
distribution, {0 (t)}i>0 converges weakly to {@(t)}¢>o in the Skorohod topology on Del0,00) as
N — oo.

The proof is given in Appendix A.

4. Generalisations of birth-and-death MCMC

As noted above, Stephens (2000a) resampled component weights and parameters with fixed k,
as well as hyperparameters, at equidistant times. This obviously makes the overall process non-
Markovian. We can, however, incorporate such moves into the continuous time sampler. Suppose
for example that in state 8 of the RIMCMC sampler, a move that resamples component weights
and parameters as well as hyperparameters, while keeping k fixed, is proposed with probability
1 — exp{—7(0)/N}. Rescaling time as above and passing to the limit produces a continuous time
process in which, in state 8, such moves occur at rate v(6). Birth and death rates stay the same.
Of course we can also have different rates for resampling component weights and parameters and
hyperparameters, respectively.

A further scope for generalisation is to introduce more complex moves, like the split and combine
moves of Richardson and Green (1997). We consider here the case of a split or combine move in
the RIMCMC setting where, following Green (1995), the combine move is deterministic. For
simplicity, we denote by 6 an element of the k¥ component parameter vector 8 and assume that
there is no constraint on 8. (In the mixture example considered in Section 2, § = (w, ¢) was indeed
two or three dimensional and there was a constraint on the set of w’s. We will see in Section 6
how the constraint can be effectively removed.)

The RIMCMC sampler proposes to split a randomly chosen component of the k component
vector @ with probability s (@) so as to give rise to a new parameter vector with £+ 1 components,
defined as ((8\ 0) UT(8,¢)) where T is a differentiable one-to-one mapping to I'*>, where § € T,
and ¢ is a random variable with p.d.f. p. We also assume that the mapping is symmetric in the
sense that

P(T(8,e) € Bx B") =P(T(0,¢) € B' x B) (4)

for all B,B’ C ©. For instance if p is a symmetric p.d.f., T(8,e) = (0 —¢,60 + ¢) is a valid
mapping, and likewise, if p is such that e and e~! have the same distribution, T'(8,¢) = (fe,80/¢)
is a valid mapping. Conversely, the probability of proposing to combine a randomly chosen pair
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of components of @ (there are k(k — 1)/2 pairs) is denoted by cny(0) = 1 — sy (6). The acceptance
probability of a split move changing the k& component vector 8 to ((6 \ §) UT(8,¢)) is given by

1 LUO\O)UTH,2)r (8)\6) UT(®,2) (k +1)!
mm{ ’ L(6)r(0)k!

en((@\O)UT(8,e))k y 1
sn(0)k(k +1)/2 2p(e)

where, as previously, the factorials in the first ratio stems from the ordering of the components
before and after the combine move. The factor 2 is a result of the symmetry assumption (4): in
a split move, a component (w,¢) can be split into the pair ((w', ¢'), (w",¢")) as well as into the
reversely ordered pair ((w", ¢"), (w', ¢')), but upon sorting the components these configurations are
equivalent. However, the two ways of getting there are typically associated with different values
of ¢ and possibly also with different densities p(¢); the symmetry assumption is precisely what
assures that the densities at these two values of € coincide and hence we may replace the sum of
two densities that we would otherwise be required to compute by the factor 2. We could proceed
without such symmetry but would then need to consider the densities of € when combining the
pairs (9',6") and (0", '), respectively, separately.

As in Section 3, we let sy (60) = 1 —exp{—n(0)/N} for some n(8), so that Nsy(8) — 1(0), and
accordingly scale by N the trajectory of the corresponding discrete time sampler. The limiting
continuous time process thus has a rate of moving from ((8 \ ) UT'(8,¢)) to 8 by a combine move
which is given by

oT(0,¢)
9(0,¢)

L(6)r(0) 7(0) oT(0,¢)
L(@\B)UT0.2)r (B\O)UTE,2)  (k+ )k~ ”(5)‘ 50,5 | )

Note that it is not necessary to consider the equivalent discrete time RJMCMC sampler to
obtain the above result as it is possible to check directly that the local balance

oT (0,¢)
(0, ¢)
= L((0\6)UT(0,2)r((O\O)LT(6,¢)) (k+1)! x q(((B\)UT(H,¢)),0)

L(B)r(0)k! x @ x 2p(e) ‘

holds with ¢(((@\ 8) UT(8,¢)),0) defined by (5). Generally, viewing the continuous time process
as a Markov jump process, local balance amounts to requiring

L(0)r(0)q(0,0") = L(8")r(0")q(0',0) for all 0,0' € O,

where ¢(0,8') is the rate of moving from state @ to @' (to stress generality we have here absorbed
the factorials into the prior densities). Special care is required with such considerations however
since the transition kernel of the jump chain (defined in Section 5) typically does not have a
density w.r.t. a single dominating measure. For example, after killing a component the new state
is completely known given the current one. This problem also occurs for RIMCMC samplers, as
exemplified by the measure construction in Green (1995), and we do not detail it further here.
Further reading on Markov jump processes is found in, for example, Breiman (1992) and Ripley
(1987). Finally we remark that just as continuous time MCMC is not limited to birth-and-death
moves, it is not limited to mixture and hidden Markov models either. For example, continuous
time MCMC may be applied to any of the examples in Green (1995).

5. Sampling in continuous time

When running a discrete time RIMCMC sampler, its state is typically stored (sampled) after each
step or sweep, or on regular intervals in order to decrease inter-sample correlation, as in Richardson
and Green (1997) and Robert, Rydén and Titterington (2000), even if convergence assessment for
RIJMCMC samplers is still in its infancy (Brooks and Giudici, 1999).

In continuous time settings, there are more options. For example, the process may be sampled
at regular times, as in Stephens (2000a), or may be sampled using an independent Poisson process.
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In either case posterior means E[g(0) | y] are estimated by sample means N ~* Eff 9(0(7;)), where
7; are the sampling instants. Suppose we adopt the former sampling scheme. If we then let the
sampling distance tend to zero, we effectively put a weight on each state visited by {€(¢)} that is
equal to the length of the holding time in that state, when computing the sample mean. Before
elaborating further on this idea, we introduce some additional notation.

Let T, be the time of the n-th jump of {6(¢)} with To = 0. By the jump chain we mean
the Markov chain {6(T},)} of states visited by {#(t)}. We denote this chain by {6,}, that is,
0, = O(T,). Let A(8) be the total rate of {6(t)} leaving state 8, that is, the sum of the birth and
all death rates, plus the rates of all other kinds of moves there may be. Then the holding time
T, —T,—1 of {6(t)} in its n-th state @,, has a (conditional) distribution which is exponential with
rate A(8,,).

Returning to the sampling scheme, we can then reduce sampling variability by replacing the
weight T;, — T,,_1 by its expectation 1/A(60,_1). In this way, the variances of estimators built from
the sampler output are decreased by virtue of the Rao-Blackwell theorem, since

1 L g(0pr) 1 &

~ n—1 ~ ~

g = N Z —_— = N ZE[Tn — Tn—l | 0n_1] g(gn—l) .
i=1 A(On—1) i=1

When sampling {€(¢)} this way, we only simulate the jump chain and store each state it visits as
well as the corresponding expected holding time. Alternatively, the expected holding times may
be recomputed later when processing the sampler output. In order to simulate the jump chain we
note that its transition law is as follows: the probability of an event happening is proportional to
its rate. Hence, for example, the probability of a birth is 5(0)/A(0); if a birth occurs then the new
component weight and parameter are drawn from h(0; (w, ¢)) as before. Thus we need to compute
all rates when simulating the jump chain, just as we do when simulating {6(t)}.

6. An illustration for hidden Markov models

6.1. Setting

We consider in this section an application of the continuous time MCMC methodology to the case
of hidden Markov models, as in Robert, Rydén and Titterington (2000). That is, the observations
yn are such that, conditional on a hidden Markov chain {z,} with finite state space {1,...,k}, yn
is distributed as a normal variate

N(lu’zn ) Uzn )

Contrary to previous implementations, we choose to parametrise the transition probability matrix
of the Markov chain {z,} by P = (w;;), as follows:

P(Zn+1 :j | Zn = l) :wij/Zwig.
4

The w;;’s are therefore not identified, but this parameterisation is bound to facilitate the MCMC
moves (provided a vague proper prior is selected). As in Robert et al. (2000), we are interested
in estimating the number of hidden states, k. The prior modelling on the parameters is an Exp(1)
distribution on the w;;’s, a normal N (0,907) distribution on the y;’s and an Exp(1) distribution
on the o;’s.

In Robert et al. (2000), the model under consideration consisted of

N(0, Ugn)

for the distribution of y, conditional on z,, i.e. did not involve an unknown mean parameter. For
this model, we use the same prior, namely a uniform /(0, &) prior on the ¢;’s and an Ezp(5 max |y,,|)
prior on the hyperparameter 1/a. (Robert et al., 2000, noticed that the factor 5 in the exponential
distribution was of little influence on the results.) Note that we do not impose identifiability
constraints at the simulation level by ordering the variances, contrary to Robert et al. (2000).

A major difference with the above papers is that, as in Stephens (2000a), we will not use
completion to run our algorithm. That is to say, the latent Markov chain {z,,} is not to be simulated
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by the algorithm. This can be avoided thanks to both the forward recursive representation of the
likelihood for a hidden Markov model (Baum and Petrie, 1966), already used in Robert et al.
(1999), and the random walk proposals as in Hurn et al. (2001). We believe that this choice is
bound to accelerate convergence of the algorithm by a drastic reduction of the dimensionality of
the space.

6.2. The moves of the continuous time MCMC algorithm

Since reversible technology was implemented for this model in Robert et al. (2000), we now focus on
the continuous time MCMC counterpart, extending Stephens (2000a) and Hurn et al. (2001) to this
framework. In addition to birth-and-death moves, which were enough to provide good mixing in
the above papers, we do need to introduce additional proposals, similar to those in Richardson and
Green (1997) and Robert et al. (2000), because we observed that the birth-and-death moves are
not, by themselves, sufficient to ensure fast convergence of the MCMC algorithm. The proposals we
add are split/combine moves, following the denomination of Richardson and Green (1997), where
a given component is broken into two parts, and fixed £ moves, where the parameters are modified
via a regular MCMC step. The later proposals are quintessential in ensuring good convergence
properties.

The birth-and-death and fixed & moves are simple to implement, and are equivalent to those
given in Stephens (2000a) and Hurn et al. (2001), with fixed k& moves relying on random walk
proposals over the transforms log(w;) and log(o;)—or log(o;/a — o;) in the constrained case of
Robert et al. (2000). The split/combine move follows the general framework exposed in Section 4
with a combine intensity given by (5). We use n° as an individual split intensity which is the
same for all components. This means that the overall intensity of a split move for a k& component
vector is (@) = kn®. In the practical implementation of the algorithm, we chose n° = n® = 2 and
n¥ =5, where n® and n¥" correspond to the birth and fixed k¥ move intensities, respectively.

There are many ways of devising a split/combine move but, contrary to Richardson and Green’s
(1997) observation that their first attempt was successful, we had to try several proposals before
obtaining proper mixing behaviour, as detailed now.

In the case of a normal hidden Markov model with means y; and variances o7 all unknown, a
split of state ig into states ¢; and i» involves four different types of actions:

(a) a split move in row j # ig of wj ;, as
Djin = Wiio€r Wiz = Wiio(1 —&5),

with €; uniform on (0,1); this proposal is sensible when thinking that both the new states
i1 and iy are issued from the state ig and the probabilities to reach iy are thus distributed
between the probabilities to reach the new states ¢; and io, respectively;

(b) a split move in column i # iy of w;,,; as

Wiy i = Wig,i€j,  Winyi = Wig,if &5

where ¢; is lognormal £N(0,1). The symmetry constraint (4) is thus satisfied. Note that we
first tried this move with a half-Cauchy C*(0,1) proposal, which also preserves the distribu-
tion by inversion (that is, &; and 1/¢; have the same distribution), but this led to very poor
mixing properties for the algorithm;

(c) a split move for w;, ;, as

Diy iy = Wio,io€io&in » Diy iz = Wio,io (1 — €ig)&ia »
Wiz,iy = Wip,io€io /611 ) Wiz, iz = wimio(l - 6io)/fiz

where &;, is uniform on (0,1) and &;,,&;, are LN (0, 1);
(d) a split move on (u;,,07; ) as

_— I 2 _ 2 2 _ 2
Hiy = Hig + 3Ui05u7 His = Hig — 30—i08u7 0y = Ui050'7 Oi, = o-iO/EUa

where €, ~ N'(0,1) and e, ~ LN(0,1).
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The combine move is chosen in a symmetric way, so that states ¢; and ¢ are combined into state
ip by taking first the geometric average of rows i; and iy in the exponential transition probability
matrix and then adding columns i; and iz. One can check that this sequence of moves also applies
to the particular case of w;, ;.- The mean p;, is obtained as the arithmetic average of the means
fii, and fiz,, while the variance o7, is the geometric average of the variances 67 and 7,. Appendix
B details the computation of the corresponding Jacobian.

6.3. lllustrations

First, we consider a simulated dataset of 500 observations, represented on Figure 1(a); this dataset
was built by joining stretches of three different normal samples that can be spotted directly on
the graph. The most visited value (and posterior mode) of k is 3, as shown in Figure 1(b), with
regular visits to 2 and 4. Larger values were hardly visited (although we used a flat prior on
k € {1,...,10}). As shown by Figure 1(d), the correspondence between the estimated density,
obtained by averaging all the density estimates over the iterations, and the standard nonparamet-
ric kernel estimate, is quite satisfactory. Note in addition that the parameter chains, separated
component by component, produce a label-switching behaviour that is to be expected from the
theory (see Hurn et al., 2001), as well as good mixing properties. (The graphs represented in
Figure 1 actually correspond to 50,000 iterations of the MCMC algorithm, with an average of 25
moves per observation unit.)

Our second dataset corresponds to a transform of the IBM stock over a period of five years,
starting in 1992, which represents the volatility of the stock (kindly provided to us by Catalin
Starica, Université Libre de Bruxelles). As can be seen from the rawplot of the dataset in Figure
2(a), the states are less clearly identified and, more importantly, there seems to be fewer moves
between these states. The resulting inference corroborates this uncertainty: the four values k =
1,2,3,4 have similar posterior probabilities and, in opposition to Figure 1(b), the spread of the
loglikelihood values is much larger, suggesting that the posterior distribution has several modes
that can only be linked by visiting intermediate low likelihood regions. Since the case k = 3 is
visited less often, the number of simulations in Figure 2(c) is lower than the number of simulations
in Figure 1(c), but also exhibits the correct label-switching behaviour and proper mixing features
(even though one can spot longer regions when the chain remains invariant). Note also that the
fit in Figure 2(d) is just as satisfactory as the nonparametric estimation.

For a comparison with Robert et al. (2000), we also consider one dataset studied in this previous
paper, namely the wind intensity in Athens (kindly provided to us by Christian Francq, Université
du Littoral). As discussed at the beginning of Section 6, the modelling setting slightly differs from
the above: the means are now all set to 0 and the prior distribution on the ¢’s is not an exponential
distribution but rather a uniform /(0,«). Here « is an hyperparameter that is estimated from
the dataset in a hierarchical way and updated through a slice sampler (since its full conditional
distribution is a truncated gamma—see Robert et al. (2000) for details) via an additional process
with intensity n®, equal to 1. The variances o7, being constrained to be smaller than o?, are
updated via a Gaussian random walk proposal in the a-logit domain, that is using the transform
log((a — o) /o) and its inverse. The corresponding modified Jacobian is given in Appendix B.

Figure 3 summarises the output for the dataset corresponding to the wind intensity in Athens.
The main point is that, as in Robert et al. (2000), we obtain a mode of the posterior distribution
of k at k = 3, although the posterior distribution slightly differs in our case, since the posterior
probabilities for 1,2,3,4 are .0064,.1848,.7584,.0488, to be compared with Table 1 in Robert et
al. (2000). Note that Figure 3(b) provides in addition the distribution of the number of moves per
unit of time (on the continuous time axis). The loglikelihoods are actually covering a wider ranger
than those found in Robert et al. (2000), although the highest values are the same. For instance,
the largest likelihood for k& = 2 is —688, while it is —675 for £k = 3 and —670 for k = 4. The fit
between the nonparametric density and the Bayesian posterior average is quite accurate.

7. Discussion

Considering Theorem 1, one may be tempted to say ‘everything that may be done in continuous
time can be done in discrete time’. While that might be true from a theoretical point of view,
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Fig. 1. Continuous time MCMC algorithm output for a simulated dataset of 500 points: (a) histogram and
rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), number of states and corresponding
likelihood values; (c) MCMC sequence of the parameters of the three components when conditioning on
k = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density estimate.
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Fig. 2. Continuous time MCMC algorithm output for a transform of 507 IBM stockprices: (a) histogram and
rawplot of the dataset; (b) MCMC output on k (histogram and rawplot), number of states, and corresponding
likelihood values; (c) MCMC sequence of the parameters of the three components when conditioning on
k = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density estimate.
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Fig. 3. Continuous time MCMC algorithm output for a sequence of 500 wind intensities in Athens; (a)
histogram and rawplot of the dataset; (b) MCMC output on & (histogram and rawplot), number of states,
and corresponding likelihood values; (c) MCMC sequence of the parameters of the three components when
conditioning on k& = 3; (d) MCMC evaluation of the marginal density, compared with R nonparametric density
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things are less clearcut when performance considerations are taken into account.
Stephens (2000a) made some comparisons of his algorithm to Richardson and Green’s (1997)
reversible jump MCMC sampler, which we cite:

A. Our algorithm works in continuous time, replacing the accept-reject scheme by allowing
events to occur at differing rates.

B. Our dimension-changing birth and death moves do not make use of the missing data z,
effectively integrating out over them when calculating the likelihood.

C. Our birth and death moves take advantage of the natural nested structure of the models,
removing the need for the calculation of a complicated Jacobian, and making implementation
more straightforward.

D. Our birth and death moves treat the parameters as a point process, and do not make use of
any constraint such as p1 < --- < py [used by Richardson and Green (1997) in defining their
split and combine moves].

We disagree with point C. since any Jacobian involved does appear in both continuous and
discrete time. As we have seen, the Jacobian determinant (1 —w)*~! due to renormalising compo-
nent weights appears in both the death rates (2) and the acceptance ratio (3). Indeed, Stephens
(2000a, p. 71) attributes this determinant to a ‘simple change of variable formula’. In our view, the
determinant should be associated with the proposal density h, as the (k4 1) component parameter
OU(w, $) is not drawn directly from a density on ©(*+1) but rather indirectly through first drawing
(w, ¢) and then renormalising. In order to compute the resulting density on ©*+1) one must then
calculate a Jacobian. (In fact, as noted above, there is no density w.r.t. a fixed reference measure
on ©F+1) ) We also saw in Section 4 that the Jacobian determinant of the split and combine move
does appear in continuous time. The complexity is therefore identical for both methodologies.

Regarding D. above, as noted in Section 2, we find the ordering of the components more a
technical device than a practical one. Indeed, a split move usually makes the new set of components
unordered but they can be sorted again. Nonetheless, we did not impose ordering when simulating
the parameters with fixed & and, more importantly, did not restrict ourselves to implement combine
moves only on adjacent components as in Richardson and Green (1997).

Hence, the above item that we find most important is B.; whether the missing data z is kept
track of in all moves or not. It would indeed be interesting to compare the performance of two
algorithms, in discrete or continuous time, that are identical except for this aspect. (We recall that
Robert et al. (2000) did resort to completion in their implementation of RJIMCMC.)

We now proceed to discussing computational aspects of discrete and continuous time algorithms.
In continuous time, once a state 8 is entered, it is necessary to compute the rates of all possible
moves leading to an exit from that state, at the expense of O(k) for birth/death moves and O(k?)
for split/combines ones. In discrete time this not necessary, as the acceptance ratio of a move is
not computed until the move is proposed. This is an advantage of reversible jump MCMC. On the
other hand, for moves such as birth and split in continuous time, rates are typically very simple
and it is only the death or combine rates that are expensive to compute. This is an advantage of
continuous time algorithms.

What can we say about the mixing performance of the different algorithms? A typical set-up
of BDMCMC is to let 8(0) be constant, say 5(0) = 1 (a different constant only rescales time).
Likewise, for RIMCMC b(6) = d(0) = 1/2 is typical, except for states 6 with k = 1 for which
b(0) = 1. Under these assumptions Eqgs. (2) and (3) relate as A = (k+ 1)§*. Since both samplers
have the same stationary distribution, we find that if one of the algorithms performs poorly, so
does the other one. For RIMCMC this is manifested as small A’s—Dbirth proposals are rarely
accepted—while for BDMCMC it is manifested as large 6’s—new components are indeed born but
die again quickly.

Finally we again mention Rao-Blackwellisation as an advantage of continuous time algorithms;
this feature is, as noted above, obtained at no extra cost. Rao-Blackwellisation could in principle
be carried out in discrete time as well—holding times have geometric distributions—but as opposed
to continuous time, the expected holding times cannot be computed easily; see (6) in the proof of
Lemma 1 below.
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A. Proof of Theorem 1

Let for 8 € O
k
(@) = B(0) + 25(9 \ (wi, 9i); (wi, ¢i))

be the overall rate of leaving state @ in the BDMCMC sampler and let Ax(6) be the overall
probability of moving away from state 8 (in one step) in the RIMCMC sampler.
Before proving the theorem, we state and prove a lemma.

LEMMA 1. For each k> 1 and 0' € @(k)’ there is a neighbourhood G C Q) of 0 such that
supgcc INAN(8) — A(0)] — 0 as N — oo.

Proof. We first note that for @ € ©%) | Ax (@) can be written

An(0) = / by (6) min{ Ay (00U (w, 9)), 1} (05 (w, 6)) d(w, 6)
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+ ZdN L min{ A6\ (wi,01);0), 1. (6)
Thus
sup INAN(8) — A(9)]
. /322 [Ny (8) min{ Ay (8:0U (1, 6)), 1}h(6 (w, 9) = BO(; (w,9)|d(w,¢)  (7)
N ;Z‘é‘é [N (0) min{ AR} 0 (wi, 6 0), 1} = 801\ (i, 60); (i, 60)]. (®)

We start by looking at the ‘birth part’ (7) of this expression. We shall prove that it tends to
zero by showing that the integrand tends to zero for all (w, ¢) and showing that the integrand is
dominated, for all sufficiently large IV, by an integrable function. Bound the integrand as

sup [Nbn (8) min{Ax (6;0 U (w, ¢)), 1}1h(0; (w, ¢)) — B(0)h(6; (w, §))]

Occ
< sup [Nbn(0) — 5(0)] x 1 x sup h(8; (w, p)) (9)
Occ Oca
+ sup 3(0) x sup |min{An(0;0 U (w, ¢)), 1}h(0; (w, d)) — h(O; (w, ))|. (10)
Occ Occ

For § <0and N > j3,

B s B
Nz Sl-em s

2=
N | =

so that | g
NG -y - g < 2B

Hence, for sufficiently large N (9) is bounded by

1
2w 5 3(6) x sup h(8; (w,¢)); (11)

by (A1) and (A3), for an appropriate G this expression tends to zero as N — oo and is dominated
by an integrable function.

Regarding (10), it is dominated by an integrable function similar to (11) (remove 1/2N and
the square), and it remains to show that it tends to zero as N — oco. We have

imin{An(6; 8 U (w,¢)), 1}1(6; (w, §)) — h(6; (w, §))]
= h(8; (w,¢))

. LOU (w,¢)r(0U (w,¢) dn(OU (w,9)) k=1 7 (p.
- mln{ L0)r(0) X o (0) (1 —w)*=, h(6; (w,¢))} .

By (A2), for each (w, ¢), L(0 U (w, $))r(0 U (w, $)) and L(0)r(@) are bounded away from infinity
and zero, respectively, on a sufficiently small G. Likewise, by (A1), dy (0 U (w, ¢)) and by (0) tend
to unity and zero, respectively, uniformly over such a G. Finally, by (A3), h(@; (w, ¢)) is bounded
on an appropriate G, and we conclude that (10) tends to zero uniformly over G as N — oo if G is
small enough.

We now turn to the ‘death part’ (8). By arguments similar to those above, for large N and
sufficiently small G it holds that

L Ndx(6) min{A} 0\ (wi,90);0), 1)
L (LN (w,d))r(0\ (i) b0\ (we, (O (15,60 (ws, 61))
=N “““{ L{0)r(9) = (= w)h—? ’dN(”)}

L(O\ (wi, 6)r(0\ (wi,00)) 1 Non(O)h(0)\ (wi, 61); (wi, 61)
L(0)r(6) k (1~ wi)F=2
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uniformly over G, and, also using arguments as above, one can show the right hand side of this
expression converges to 0(0 \ (w;, ;); (w;, ¢;)) as N — oo, uniformly over a small enough G. 0O

Recall the definitions of jump times and the jump chain in Section 5. The sequence {6n, T, —
Tpn—1)} of visited states and holding times form a Markov renewal process (MRP). The transition
kernel of this MRP is denoted by K, that is, K(8; Ax B) = P(8, € A, T, —Tn_1 € B | 0,,_1 = ).
Since {0(t)} is Markov, the conditional distribution of T}, — T),—; given 5n,1 = 0 is exponential
with rate A(f). In addition, 6(T,) and T, — T,_; are conditionally independent. Similarly,
{6V (1)} is a semi-Markov process with jump times {TN} in the lattice i/N, and the kernel of
the associated MRP is denoted by Ky. Since {8} is Markov, 8~ (TN) and TN — TN | are

conditionally independent given 8~ (TN ).

Proof of Theorem 1. Using results of Karr (1975), it is sufficient to prove that for each real-valued
uniformly continuous function g on © x [0, 00),

(i) Kg(0) is continuous on O);
(i) Kng(0) — Kg(0) uniformly on compact subsets of © as N — oo.

We start by showing (ii). By the structure of @, it it sufficient to show that for each 8’ € O,
there is a neighbourhood G' C ©%) of @' such that Kxg(8) — Kg(8) uniformly on G, and this is
what we will do. For 8 € @) Kng(0) and Kg(#) can be written

Kng(0) = 3 / (1= An(8))™ " (6) min{ Ay (6;0 U (i, ), 1}

h(B; (w0, 8)g(8 U (w,6), ) d(w, )

+ 31— an ()" 1ZdN mm{A 16\ (w,6:):0), 1}9(8)\ (wi, 1), )
= [ [0 @) Noy(0) min{An (0:0U (w,6)). 1}
(0: (0,8))(0 U (w,6), X0) dudw, )

+ [Ta- oo

0
[Nul,

ZNdN L min{ A5 (0 (wi, 6;0). 1hg(0 (wi, 1), ) ds
o[ / O 16 (10,6)g(8 U (1, 0), 1) dudlw, 0
+/ Z/\(e)e—,\(a)u (0\(wi;\?;);(wi’@))g(a\(wi,@),u)du

_ / h / e O B(0)1(B; (10, 6))9(8 U (w, ¢), ) du d(w, )

/ Ze*)\(e)uts 0\ w“(f)l) (’u}“ )) (0\(wz;¢l) )

where [x] is the smallest integer no smaller than x.
We again start by looking at the ‘birth parts’ of the kernels, bounding the corresponding part
of [Kng(0) — Kg(0)] as

/ / sup
Occ

xg(@U (w, ),

(1 = An(0) N Nbn (8) min{An(0;0 U (w, ¢)), 1}h(8; (w, $))

[Nu]
N

) — e MOB0)R(8; (w, $)g(0 U (w, ¢), u)| dud(w, §).
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We wish to prove that this expression tends to zero as N — oco. We can do this by showing that
the integrand tends to zero for all u > 0 and all (w, ¢) and that there exists a dominating (for all
sufficiently large N) integrable function.

In order to accomplish this, we add and subtract a number of telescoping terms, giving us

[Nu]
N

(1= An(0)) V") N (6) min{An (650 U (w, ), 1}1(8; (w, 6))g(8 U (w, 9),

sup
Oca

—e XOu5(0)n(; (w, $)g(8 U (w, $),u)

< sup |(1 = An (@) — e AOu] s« sup Non(8) x 1 x To(w, ¢) x ||g]|
Oca Oca
“A(O)u 7 9
+ supe x sup Nby(0) x 1 x h(w, @) x 07 /n
Oca Occ
+ sup e O 5 sup [Ny (8) = B(0)] x 1% hi(w, 6) X [lg]ls
Oca Occ
+ sup e~ O)u sup 3(0)
Oca Occ
x sup [min{An(6;0U (w, $)), 1}1(0; (w, ¢)) — h(0; (w, $)| x [|g]]co,

Oca

where h(w, ¢) = supg. h(6; (w, $)) and 6f/N = SUDL (0,u) .0 u))<1/N lg(0,u) — g(0',u")| is g’s
modulus of continuity; A is a metric making © x [0, c0) separable and complete. All of the terms
on the right hand side but the first one can be treated as in the proof of the lemma, with the extra
observation that A(6) > () is bounded away from zero on compact subsets of ©@. Moreover, since

(1 An(0)) VUl < e (O)INu] — o=NAN(O)(INuJ/N)
the lemma implies that the first term is, for large IV, dominated by an integrable function. Finally
1- AN(G))LNuJ _ e—)\(H)u < e—AN(H)[NuJ _ e)\(O)u
— ¢~ MO)u (e—x\(a)(LNuJ/N—u)HNUJo(l/N) _ 1) ,

where, by the lemma, the o(1/N)-term is uniform over a small G so that the right hand side tends
to zero uniformly over such a G. The inequality log(1 — z) > —z — 222 for 0 < z < 1/2 leads to a
reverse inequality which is handled similarly.

The ‘death parts’ of the kernels, that is, bounding the corresponding parts of |Kng(0)— K g(8)|,

can be handled combining arguments for the ‘birth parts’ and arguments used to prove the lemma.
Finally requirement (i) above can be proved using entirely similar techniques. O

B. The Jacobian for the split-combine move

The parts of the Jacobian determinant corresponding to the split move in §6.2 are

() wjiio3
(b) 2wi,.i/&i;
(c)
Siofh Eig /§l1 (1 - Eio)fiz (1 - 51’0)/&2
3 €ip —Eip /5@21 0 0
fori0 0 0 (1 _Eio) _(1 _Eio)/gzzz ’
&iy 1/&, =i, —1/&,
that is,
6io&i 0 £i2 0
w3 Eip —2¢4, /6121 0 0
R 0 0 (I—ei)  —2(1—¢4)/&,
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3 Eio(]- _Eio)_

R €i1 &2 ’

=4uw

1 3eu/204 304, 0

1 —3eu/204, —30;, 0 _ 3

0 €y 0 0,120 - 12Ui0 /60'>
0 1/e, 0 —o;/c2

given that we differentiate w.r.t. o7 , not o;,.

The overall Jacobian determinant for the split move is therefore

d(0,¢)

‘6T(0,€) _ Hwi,iowio,i 3 51’0(1—51'0)03 ok+3
20 °

B i & 010 Cieg

In the case considered in Robert et al. (2000), that is when the means p; are set to zero and
the variances o? are constrained to be less than o2, part (d) of the Jacobian can be obtained as
2

401'21 Ois (Oé - Uil)(a - Uiz)

oo —04,)07, ’

where ¢;, = a-logit™" [a-logit(d;, +&,)] and ¢;, = a-logit™" [a-logit(ds, —&,)] (differentiating

w.r.t. o} ).



