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Abstract

The purpose of this paper is to estabish some results on optimal criteria
in experimental designs. Some relationships between optimality criteria are
shown. In particular, we extend some results on the ®, criteria. We prove
the Yeh [18] conjecture that gives a necessary and sufficient condition for a
design to be universally optimal. We also give a similar result based on the
eigenvalue of the information matrix.

keywords:  Information matrices, Schur-convexity, majorization, universal
optimality.

Résumé

L’objectif de cet article est d’établir certains résultats concernant les critres
d’optimalité utilisés dans la théorie des plans d’expériences. En particulier,
nous généralisons des résultats concernant les critres ®, largement utilisés.
Nous démontrons la conjecture de Yeh [18] qui donne une condition necessaire
et suffisante d’optimalité universelle. Nous donnons également un résultat
similaire basé sur les valeur propres de la matrice d’information.



1 Introduction

The aim of the optimal design theory is to choose between a set D of designs
one of those that gives the “best” estimator of the parameters of interest.
The optimal design depends on which sense we put in “the best”. Assume
that the statistical analysis model is a linear model:

Y = Aga+ Byf + ¢,

where « is the t-vector of interest parameters, [ is the vector of nuisance
parameters, A; and By the design matrices and e the vector of zero-mean
constant-variance uncorrelated errors. The quality of the parameter of inter-
est is directly related to its variance matrix V; or equivalently to its infor-
mation matrix C,; defined by

Ca= Ay (I = prip,)Ad,

where proyy = M(M'M)~ M’ is the matrix of the projector onto I'm(M).
From now on, we assume that all the information matrices considered satisfy:

Cql; =0 and Rank(Cy) =t—1,

where 1; is the t-vector of ones. These conditions occurs very frequently in
analysis of variance models. Thus, comparing estimators is equivalent to put
a preorder on the set C = {Cy;d C D } of information matrices.

A natural order on C is the Loewner order that lead to the following
notion of optimality:

Definition 1 A design d* is said to be uniformally optimal among a class D
of designs if for all designs d in D , Cy- — Cy is nonnegative or equivalently
if for all designs d in D and all contrasts c'o:

var(c'dg-) < var(d'ay),
where &y s an ordinary least-square estimator of a for the design d.

Strategies to obtain uniformally optimal designs can be found in Kunert [11].

Unfortunately the Loewner order is a partial order and most often uni-
formally optimal designs do not exist. An other way to define a preorder on
C is to choose a statistically meaningful criterion ®, that is a function from
C to a totally ordered set, most often R:



Definition 2 A design d* is said to be ®—optimal if:
V. deD, &(Cy) < P(Cy).

The purpose of this paper is to present some results concerning criteria
used in optimal design theory. In section 2, we recall some results on Schur
convexity that is the main tool used in this paper, then we establish relation-
ships between ®, criteria, with application to A-, D-, and E-optimality. In
section 3, we present some results concerning universal optimality, especially,
we establish a necessary and sufficient condition for a design to be univer-
sally optimal (Yeh’s [18] conjecture). Then we present another necessary and
sufficient conditions based on the eigenvalues of the information matrices for
a modified definition of the universally optimality.

2 Optimality criteria

There exist a lot of criteria for optimal design in the literature, we refer to
Hedayat [8] for a review of most of the optimality criteria and to Shah and
Sinha [17] for a extended discussion on the relationships between criteria. In
this section, we aim to extend some results concerning these relationships.
First, we present the main tools used throughout this paper: majorization
and Schur-convex functions.

2.1 Majorization and Schur convexity

The Schur convexity is an important concept, useful to derive some relation-
ships between criteria. The best general reference on majorization and Schur
convexity is Marshall & Olkin [13].

Definition 3 Forz and y in R', we denote by x; the ith greatest component
of x. Then x is majorized by y, denoted by x <y, if

t t k k
ZxZ:ZyZ and szl,...,t—l, qugZyu
i=1 i=1 i=1 i=1

We also denote :
xz <Y Y Zf Vk = 1, ...,t, Zf:k .ZL'U Z Z::k yli

and x <w ¥ Zf Vk = 1, ...,t, Z?:l Xy < Z?:l Yii



Notation 4 We denote by P, the (t,t)-matriz permuting the component of a
vector according to the permutation o lying in S;, where Sy is the symmetric
group on {1,...,t}.

Definition 5 A real function ¢ on R is Schur-conver if

<y = o) < oy).

and Schur-concave if
T <y = ¢(z) = o(y).

This definition looks more like a nondecreasing (resp. nonincreasing) condi-
tion than a convexity condition. The term “Schur-convex” is historical and
corollary 1 establish the link between convexity and Schur-convexity.

Definition 6
A function ¢ on R" is symmetric if Vo € R and Vo € S, ¢(Pyx) = ¢(x).

The following proposition give a characterization of majorization in term of
permutation matrices. It is a combination of two theorems, one by Birkhoff
[1] and the other one by Hardy, Littlewood and Pélya [7] (see Theorem 2.B.2
and 2.A.2 in Marshall & Olkin [13]).

Proposition 1 For z and y in R', © < y if and only if there exist nonneg-
ative reals o, such that:

T = Z o Pry with ) ¢ g = 1.

oESt

Corollary 1 A convex symmetric function ¢ on R' is Schur-conves.

Note that a Schur-convex function is not necessarily convex (see Hedayat [8]).
The following corollary shows how x < y implies that the component of x
are closer together around the mean than the component of y in a statistical
meaning.

Corollary 2 Denote by T (resp. i) the arithmetic mean of the component
of © (resp. of y). If x <y, then

1 t 1/p 1 t 1/p
(Bswar) < ()
=1

=1

T =

g
=)
S
S¥

<
Vv
—



Note that the converse part does not necessarily hold.

Notation 7 We denote by A(C) the t-vector of the eigenvalues of C' in de-
creasing order.

Lemma 2 (Fan [6]) Let A and B be two (n,n) symmetric matrices, then
AMA+ B) < A(A) + A(B).
Definition 8 A criterion C' — ®(C) is Schur-convezr on the eigenvalues of
Cif
AMC) < A(D) = @(C) < ®(D).

Lemma 3 (Bondar [2]) If a criterion ® is convex and satisfies ®(OCO") =
®(C), then ® is Schur-convexr on the eigenvalues of C.

Lemma 4 If a criterion C — ®(C) is Schur-convex on the eigenvalues of
C, then there exists a Schur-convexr function ¢ on R' such that:

®(C) = p(MC)).

Proof : If ®(C) is Schur-convex on the eigenvalues of C, then ®(C') depends
only on the eigenvalues of C'. So ®(C) = ¢(\(C)) and then A(Cy) < A(Cy)
implies ¢(A(C1)) < (A(C3)). O

2.2 Optimality and diagonal terms

The following result can be usefull to find ®—optimal design, when & is Schur
convex on the eigenvalues of C' and the diagonal terms are easy to calculate.

Proposition 5 Let ® be a criterion Schur conver on the eigenvalues. By
lemma 4, ®(C) = ¢(A(C)). Then d* is ®—optimal among a class D of
designs if

Vd €D ®(Cy) < ¢(3(Ca))

where §(Cy) is the vector of diagonal terms of Cy in decreasing order.

Proof : The proof is a direct consequence of the following lemma. O

Lemma 6 (Schur [16]) For all symmetric real matrices,

5(C) < \C).



2.3 The @, criteria

In this subsection, we present the well known ®, criteria introduced first by
Kiefer [9]. We present some relationships among these criteria, strengthen-
ing some existing results. First we define the exponent of a non-full-rank
symmetric matrix.

Notation 9 Let M be a non-negative symmetric matriz. We denote by M™*
its Moore-Penrose inverse. Moreover, for p > 0, MP is the usual matriz
exponent. When p < 0, M? is defined by MP = (M*)™P. By continuity,
M°® = pryyy = MM™,

Definition 10 The ®, criteria are defined as follow :

t—1 1/p 1/p
2,(C) = (t_%_zw(m) =(ti1tr<0—p>) - for pe R\{0}

—1
_ : _ —1/(t—1
®(C) = ;gr(g@p(c)—m [,
P,(C) = lim 9,(C) :)\t__ll(C) = max )\i_l(C),
p—+00 i=1,..,t—1
D o(C) = lim B,(C) =AH(C) = _min A'(C)
p—>—00 i=1,...,t—
Remark:

The &y—, ®;— and . —optimality are equivalent respectively to the very
popular D—, A— and E— optimality. The criterion ®_,(C) = 1/tr(C) will
play an important role in the next section.

The following proposition is a catalog of well known results on the ®,
criteria.

Proposition 7

- Forallp € R, C +— ®,(C) is invariant by row-column permutations of C.
- Forallp e R, Cyy < Cy, = ®,(Cyy) > ,(Cy,),

- C'— @,(C) is concave for p < —1 and conveze for p > —1,

- p— @,(C) is nondecreasing in p.

The two following propositions generalize property 2.5 by Kiefer [10]: they
show that the ®, criteria can be considered, in some cases, as a kind of
“scale” of optimality.



Proposition 8 Let di and dy be two designs with rank t — 1 information
matrices. Then for p, # 0

(bpo (Odl ) = ¢po (CdQ)
)\(Cd_lp") =< )\(Cd;p") — D,(Cq,) < D,(Cy,)  for p>p,
0,(Ca,) > @,(Ca,)  for p<p,

Proof: Forp=1,....t —1,

A(CT) = N(C) 7 = (W(C) 7y
Then, they are several cases to be considered: 0 < p < p,, 0 < p, < p,
P<O0O<Po,pPo <0< p,p<p,<0andp, <p<O0. In all the cases, the
scheme of the proof is the following:

a) By proposition 3.C.1.b in Marshall & Olkin [13], z € (R )= — Y120 g7/

i=1 T
is Schur-concave for p/p, €]0,1[ and Schur-convexe otherwise. So the condi-
tion A(C, ) < AM(C,/°) lead to the comparison between S Ai(CyP) and

> MOy

b) Then we use the fact that z € (R%) ~— z!/P is increasing for p > 0
and decreasing for p < 0 to obtain the result.

For example, when 0 < p, < p, z — xP/P is convex and = — z'/? is de-
creasing, so:

t—1 t—1
ACP) < MCl) = Y o N(C7) <) oM,

= 1/p = 1/p
= (m > Az'(Cdl”)) < (m > Az'(Cdf))
=1 =1

The case p = 0 can be obtain as the limit case when p — 0. The case p = p,
is obvious.
O

In next proposition, we weaken both the sufficient and the necessary.

Proposition 9 Let d; and dy be two designs with rank t — 1 information
matrices.
Then for p, < 0:

MCy™) =2 M(C) = p(Ca) < 2y(Cay) for p > po



and for p > 0
AMC”) =w A (Cy) = ®,(Cu) < B(Ca) for p > p,

Proof : There are three cases to be considered: p > p, > 0, p > 0 > p, and
0 > p > p,. The scheme of the proof is identical to the proof of Proposition 8
except that we use Proposition 4.B.2 or Theorem 5.A.2 by Marshall& Olkin
[13].

O
Many results can be derived from the two poroposition above : the first one
will be generalized in the next section.

Corollary 3 A design d* is ®, optimal among a class D of designs for p <
—1ifVdeD, \(Cyq) <" NCy)

Corollary 4 A design d* is E—optimal among a class D of designs if it is
A optimal and if for all d € D, N(C}.) <uw MC})

The next application of Proposition 8 is a result of Bondar [2] concerning
MV-optimality introduced by Eccleston and Hedayat [5].

Definition 11 A design d* among a class D of designs is MV-optimal if it
minimizes ®_q and if it maximizes ®_o among the subclass of design mini-
mizing ¢_1.

Corollary 5 A design d* is MS-optimal among a class D if it minimizes
O and if \(Cyg-) < N(Cy) for all the designs minimizing ¢ 1.

3 Conditions for universal optimality

In some cases, a design with particular information matrix can be optimal
not only for a criterion but for a whole class of criteria. Following this idea,
Kiefer [10] introduce the notion of universal optimality. In this section, we
present, different definitions of universal optimality and give necessary and
sufficient conditions for a design to be universally optimal.



3.1 Kiefer’s universal optimality
The following definition of universal optimality is the historical one.

Definition 12 (Kiefer [10]) A design d* is universally optimal among a
class D of designs if d* is ®-optimal for all criteria ®(C') from C to]—o0, +0]
satisfying:

(a) ® is invariant under each permutation of rows and (the same on) columns,
(b) ®(aC) is nonincreasing in the scalar o > 0,

(c) @ is conver.

Remark:

Many usual criteria satisfy the three conditions of definition 12: the &, —
criteria for p > —1, the criteria of type 1 and 2 (Cheng [3]), MV criterion,....
Proposition 1 by Kiefer [10] gives a sufficient condition for a design d* to be
universally optimal:

Proposition 10 (Kiefer [10]) A design d* is universally optimal among a
class D of designs if its information matriz is completely symmetric (i.e.
invariant by row-column permutation) and mazximize the trace among D .

Yeh [18] gives a more general sufficient condition and conjecture that it
is also a necessary condition:

Proposition 11 (Yeh [18] ) A design d* is universally optimal among a
class D of designs if it satisfies:

(i) tr Cg« = maxyep trCy,

(i) Yd € D, there exist scalars aq, > 0 satisfying:

Cd* = Z ad(,PngP;.

oESt

Proposition 12 (Yeh’s conjecture [18] ) The converse part of Proposi-
tion 11 hold.

Proof of Prop 12.

Condition (7) is necessary because C' — —trC satisfies condition (a), (b)
and (c) in Definition 12 . Let d* be a universally optimal design, and assume
that there exists a design d; for which there do not exist ayg,, > 0 such that

Cd* = Z Ady o Pg Cdl P[;.

oESt



Let A be the convex cone generated by the matrices {P, Cy, P.},cs,, then
we have (see e.g. Rockafellar [15, pp.14]):

A= {M/M: Z 4o Py Cy, P. for some gy, ER+}

oESt

and consider the criterion ® defined by:

- 0 if Cq € A,
(Ca) = { too if  Cy¢ A

For all o € S;, P, AP, = A, thus ®(P,Cy,P.) = ®(Cy). The convexity of
A implies the convexity of ®. Moreover, for any a > 0, ®(aCy) = ®(Cy).
Hence @ satisfies conditions (a), (b) and (c¢) in Definition 12. By construction
of @, we have ®(Cy,) < ®(Cy-) that contradicts the fact that d* is universally
optimal.

|
Remarks:
- One can object that the criterion @ exhibited in the proof takes only two
values: 0 and 4+o0o. However, we can replace ® by

C —

1(Ca) = Cea tr Cd trC H

where ||-|| is any norm on the set of the symmetric matrices invariant by row-
column permutation, e.g. the Euclidean norm ||C|| = Vtr C2. The criterion
1 (Cy) 1 - C o P'}aest

It can be checked that ®; satisfies Conditions (a), (b) and (c ) in Deﬁmtlon
12 and that 0 = <I>1(Cd1) < (I)l(od*)

- A second objection is that Va > 0, ®1(aCy) = ®1(Cy). But we can define
Dy (C) =04 (C) —etrC
with 0 < & < (P1(Cys) — 1(Cy,))/ tr(Cy« — Cy,) < +00. The new criterion

®, satisfies condition (a), (b) and (c¢) in Definition 12 and the function o —
®(aCy) is now (strictly) decreasing. Moreover, ®o(Cy,) < Po(Cy-).



3.2 Restricted universal optimality

We seek now a necessary and sufficient condition for a design to be univer-
sally optimal that only depends on the eigenvalues of the information matrix.
So we are lead to restrict Kiefer’s definition to criteria ®(Cy) that depends
only on the eigenvalues of Cy, thus we replace condition (a) in Definition 12
with:

(a') ®(0C,0") = ®(Cy) for any orthogonal matrix O.

Proposition 13 A design d* is universally optimal (with condition (a'))
among a class D of designs if and only if

(i) trCy = maxtrCy,
deD

3 Co Cy
(i) A (trC’d*> <A (ter> '
Proof:

Assume that conditions (i) and (i4) hold, then Vd € D : condition
(i) implies that A(Cyg) < A (%Cd) and then by Lemme 3, ®(Cy.) <

tr Cy
sally optimal (with condition a').
Conversely, let d* be universally optimal with condition (a’), then condition
(1) hold. Assume that condition (i) does not hold, then there exists a design

dy such that
Cy- Cy
A A —— ).
(trC’d*> 74 (terl>

We can define a set of (t,t) nonnegative symmetric matrices:

_ _ M Ca,
A= {M/M]lt—() and A (trM) <A (trC’d1>}'

The set A is a cone and by lemma 2 it is also convex. Then, the end of the
proof is identical to the proof of Proposition 12.

P (ter* Cd)- By condition (i) and (b), ®(Cy) < ®(Cy). Thus d* is univer-

O
Remark:
This proposition shows that the ellipsoid x — Wm’ Cgqx must be “as spher-
ical as possible”. The sphericity comparison is made by the majorization of
the eigenvalues of Cy, that are equal to the length of the half axes of the
ellispoid, using the scale parameter tr(Cy).

10



3.3 Schur optimality

For completeness, we mention a concept close to universal optimality: Schur
optimality introduced by Magda [12] and called universal optimality by Bon-
dar [2].

Definition 13 (Magda [12]) A design d* is Schur optimal among a class
D of designs if d* is ®-optimal for all criteria ®(C') from C to | — 0o, +00]
satisfying:

(a) A (Cl) <% A (CQ) — @(Cl) < (D(CQ)

Remark:

By Theorem 3.A.8 in Marsall & Olkin [13] or Theorem 2.1 in Bondar [2],
condition («) is equivalent to the two conditions given historically by Magda:
(B) ®(C) is schur-convex on the eigenvalues of C,

(7) Vi, Mi(C1) < Ni(C2) = @(C1) > @(Cy).
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