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Abstract

Optimal taxation is analyzed under a Rawlsian criterion in an economy
where the only decision of the agents is to participate, or not, to the labor
force. The model allows for heterogeneity both in the agent's productivities
and aversions to work. First best optimal schedules involve zero taxation at
the margin: the marginal agent who decides to work pockets all of her produc-
tivity, while being just compensated for her work aversion. When the planner
does not observe work aversion, �nancial compensation for work is lower than
productivity. The theory provides a potential justi�cation to (locally) negative
marginal tax rates.

Résumé

Dans une optique Rawlsienne, on analyse la forme optimale de taxation
dans une économie où la seule décision des agents est de travailler ou de ne pas
prendre un emploi. Les agents di�èrent à la fois par leur productivité et leur
goût pour le loisir. En information complète, un prélèvement nul à la marge
est optimal : l'agent marginal qui décide de travailler reçoit tout le produit de
son travail, ce qui le compense juste pour son e�ort. Quand le plani�cateur
n'observe pas le goût pour le loisir des agents, la compensation �nancière est
inférieure à ce que l'on trouve en information complète. La théorie peut fournir
une justi�cation à l'usage de taux marginaux d'imposition négatifs.
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Introduction

The equity e�ciency dilemma is as old as economics. But it has been the object of
renewed attention in the recent years in developed economies, confronted with the
widening of the wage distribution, sometimes attributed to a skilled bias technical
progress or trade globalization. Policy issues center around the type of bene�ts that
should be given to people that are out of the labor force, and to the disincentives
to work that such bene�ts might create.

Each country has a social minimum or safety net of its own. Some basic income
support to all households (sometimes also called negative income tax) is provided
in many European countries (the Revenu Minimum d'Insertion in France is an
example). These programs often involve high marginal tax rates (100% for the
RMI) in the range of incomes where the subsidy is phased out. To `make work
pay', some countries have implemented earning subsidies, which involve negative
marginal tax rates: the Earned Income Tax Credit in the US and the Working
Families Tax Credit are examples of such programs.

A number of descriptive studies are associated with these various policies, un-
dertaking to measure the relevant participation elasticities and to provide a cost
bene�t analysis of the social minima. But, unfortunately, the normative approach
has not been very fruitful. Indeed, the relevant framework of optimal taxation,
which goes back to the seminal paper of Mirrlees (1971), seems too far from the
tax-bene�t systems observed in practice to be a useful guide for policy. When e�ort
depends on �nancial incentives, at the intensive margin, the standard result has
a zero marginal tax rate on the rich (which goes contrary to the common idea of
equity, and is not observed, even in the US) and a zero marginal tax rate on the very
poor, at least when they do work. The marginal tax rate is always non negative,
which rules out pushing people to work through an earning subsidy, such as in the
EITC.

A number of researchers have worked to bring the theory more in line with
the facts. Diamond (1998) and Salanié (1998) show that the `don't tax the rich'
result does not hold when the distribution of wages has a fat enough upper tail.
Piketty (1997) studies the optimal taxation program in the intensive framework
with a Rawlsian criterion. The interesting work of Saez (2001) uses the available
empirical evidence on the shape of the wage distribution and labor supply elasticities
to compute optimal tax schedules in an intensive model à la Mirrlees. Although the
schedules are not too far from what we see in practice, they do always have positive
marginal tax rates.

More to the point that we are interested in, at the bottom of the distribution,
Saez (2000) and Beaudry and Blackorby (1997) have worked on models of optimal
income taxation with an extensive margin in order to look for properties of the
optimal taxation schemes when agents may choose to participate or to stay out of
the labor force. One purpose of Saez (2000) is to see whether one of the features of
the EITC and of the WFTC, namely the local negative marginal tax rates which give
large incentives to work to the concerned individuals, is compatible with optimal
taxation in an extensive setup1.

In the present work, we focus on the participation decision and work on a model
where the only choice variable of the agents is to work or to stay out of the labor
force. We further assume that there is a disutility to work, and that the �nancial
compensation that makes an agent indi�erent between working and not working,

1Besley and Coate (1995) address a similar issue, but in a quite di�erent setup. They assume
that the government aims for a minimum consumption level, not accounting for the disutility of
work. This makes their results di�cult to compare with the standard optimal taxation literature.
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her work aversion, is non decreasing with her utility level : the richer you are, the
more money you ask to go to work.

In this setup, we �rst study the properties of the �rst best allocations. A utilitar-
ian welfare function always gives a higher utility to the agents with low productivity
that do not work than to the ones that participate. But there are no clear ethi-
cal grounds to favor the less productive agents: we conclude that utilitarianism is
not suited to study the kind of issues that we are interested in, even if a second
best approach might correct the undesirable features of the �rst best. This leads
us to turn to a Rawlsian criterion. Most of the time, under Rawls, all agents get
the same utility level, so that the utilitarian paradox does not appear. The main
feature of a �rst best allocation is easy to describe. Given the utility level which
is aimed at, an agent can be on the dole, receive the social minimum and produce
nothing, or work, generate an output equal to her productivity, and get the �nancial
compensation necessary to make her indi�erent between working or not working.
The social planner then puts her to work whenever her productivity exceeds her
work aversion. When an agent crosses the border line between unemployment and
employment, her income is discontinuous and increases by her productivity, which
just compensates her for the penibility of work: her utility does not change.

The income schedules implemented in practice, even the ones most favorable to
work incentives, such as the EITC in the US, do not exhibit such discontinuities.
We turn to second best situations, where the government is unable to observe the
work aversions of the agents, to see whether the theory can get us closer to the ob-
servations. We use an additional assumption of a common utility function of all the
agents when they do not work. A crucial tool for the analysis then turns out to be
the distributions of work aversion in the economy, conditional on the productivity
level, when productivity varies. In the special case where this distribution is con-
stant, independent of the productivity level, we completely characterize the second
best allocations. The income schedule is an increasing function of productivity; the
�nancial compensation granted to the agents is always strictly smaller than their
productivity (contrary to the �rst best); the unemployment rate decreases with
productivity.

1 The model

We consider an economy made of a continuum of agents, indexed by an element a
in some Euclidean space A endowed with a probability measure with c.d.f. F . The
agents can produce an undi�erentiated commodity, also called money or income.
The productivity of a typical agent is denoted w(a), where w is a continuous positive
function on A. We assume that the function w(a) is integrable with respect to the
measure F . An agent may participate, or not, in the work force. We note the
participation status of the agents in the economy with a measurable function s
from A into f0; 1g. When agent a participates (s(a) = 1), she produces w(a) units
of commodity, while she does not produce anything when she does not participate
(s(a) = 0).

The agents do not di�er only by their working abilities w, but also by their
(lack of) taste for work. The utility function of a typical agent is a function of
the non negative quantity c of commodity which she receives, and depends on
the participation decision. The function v(c; a) represents the utility of the non
participating agent, while u(c; a) is her utility when working. For every a, u(:; a)
and v(:; a) are strictly increasing concave, twice continuously di�erentiable on IR+.

A parameterization is particularly convenient. Let the �rst component of a be
the wage w(a), while the other components represent the agent's type x(a), so that
a = (w(a); x(a)). In the �rst best situations, the social planner knows both w(a)
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and x(a), while in the second best, the planner only observes w(a) when agent a
works. In the latter situation, the marginal distribution of w in the population,
whose c.d.f. is noted ~F , is of interest. Furthermore, it will be convenient, without
great loss of generality, to assume that A is equal to IR+ � X (for each type x,
there possibly are agents of any positive productivity), where X is compact, that
u and v are di�erentiable with respect to c, and that the derivatives u0c and v0c are
continuous on IR+ �A.

We assume that there is a disutility to work, i.e.

Assumption 1: For all agents a in A, for all c in IR+,

u(c; a) � v(c; a):

The analysis uses a measure of the disutility of work, which we call work aversion,
and note �(c; a). The work aversion is the minimum income supplement which
makes agent a indi�erent between working or living on resources c without working,
i.e. the unique solution in � of the equation

u(c+�; a) = v(c; a);

when such a solution exists or +1 otherwise, if the agent does not want to work,
whatever the wage. Note that, by the implicit function theorem, the function � is
continuously di�erentiable with respect to c (when it is �nite). We postulate

Assumption 2 : Whenever de�ned, �(c; a) is a nondecreasing (and continuously
di�erentiable) function of c.

The larger the income when unemployed, the larger the required income supple-
ment to make it worthwhile to take a job. Under concavity of the utility function,
it is easy to check that this property is satis�ed for instance under Assumption 1
when u(c; a) = v(c; a)� x(a), for some positive real valued function x on A.

An allocation is de�ned as a pair of integrable functions s(a) and c(a) with
values respectively in f0; 1g and IR+. It is feasible whenZ

c(a)dF (a) =

Z
s(a)=1

w(a)dF (a): (1)

The above equality is the resource constraint, which says that total consumption
is equal to total production.

The laissez-faire allocation is easy to describe in this framework. Each agent
decides to work when her productivity makes it worthwhile, in comparison with a
zero income when non participating, i.e. when

u(w(a); a) � v(0; a);

with indi�erence when there is equality.
Such an allocation can be very unequal, and it is of interest to look at redistri-

bution schemes that tax the rich workers, with high w's, and give the proceeds to
the unemployed. Any redistribution scheme reduces the incentives to work. Indeed
if R(a), R(a) � w(a), is the income given to worker a, and r, r � 0, the subsistence
level attributed to the unemployed, the decision to work under the redistribution
scheme is associated with the inequality

u(R(a); a) � v(r; a);
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which is always more stringent than under laissez-faire. The purpose of the paper
is to look at the tradeo� between equity (more equal utility levels) and e�ciency
(loss of output due to non participation generated by redistribution) depending
on the government objective and to see whether the optimal taxation schemes, or
equivalently the optimal functions R(a), exhibit some general properties.

There are a number of possible ways to represent society's preferences among
equity-e�ciency tradeo�s. The one most used in the optimal taxation literature,
following the seminal work of Mirrlees (1971), is close to utilitarianism. There is an
increasing concave function 	, whose concavity is an indicator of society's desire
for equality, such that, when c(a) is allocated to agent a, welfare can be written as

WU (c; s) =

Z
s(a)=1

	[u(c(a); a)]dF (a) +

Z
s(a)=0

	[v(c(a); a)]dF (a):

We shall argue that this kind of criterion is not well suited to the study of partic-
ipation and equity. Instead we argue for the use of the Rawlsian criterion, which
here takes the form

WR(c; s) = ess inf
�
u(c(a); a)11s(a)=1 + v(c(a); a)11s(a)=0

	
:

The Rawlsian welfare WR is obtained from the distribution of utilities in the
population by taking its essential in�mum, i.e. the lower bound of its support.

The participation problem does not have a lot of structure, in spite of the as-
sumptions that we have made, so that we cannot expect that the solution has many
properties of interest. Following tradition, we study the social planner choice in
stages, starting with the case of complete information of the planner (�rst best),
following with the situation where the planner only observes the productivity w of
the workers (second best).

2 First best allocations

The �rst best allocations are obtained when the planner observes the agents' types
a and has the power to order agent a to work or not to work and to attribute her
an income c(a) satisfying the feasibility condition.

We �rst study optimality with respect to the utilitarian criterion and argue that
this criterion is not convenient for our purpose. In the second subsection (and in
the remainder of the paper), we focus on the Rawlsian case.

2.1 First best utilitarian allocations

When the social planner knows the agents' characteristics a, the maximization sep-
arates by type. If � denotes the Lagrange multiplier attached to the feasibility
constraint, the maximization reduces to that of

f	[u(c(a); a)] + �(w(a) � c(a))g11s(a)=1 + f	[v(c(a); a)]� �c(a)g11s(a)=0;

for each value of a, where the unknowns are the participation status s(a) and the
income pro�le c(a). They can be solved as a function of � which then is found from
the feasibility constraint. Optimization with respect to c yields, for the employed
agents

	0[u(c; a)]u0c(c; a) = � or, equivalently, c = �u(�; a);

and for the unemployed

	0[v(c; a)]v0c(c; a) = � or, equivalently, c = �v(�; a):
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The persons that are to be put to work are those for which it is socially pro�table
to do so, i.e. such that

	[u(�u(�; a); a)] �	[v(�v(�; a); a)] + �(w � �u(�; a) + �v(�; a)) � 0:

Finally, � can be solved from the feasibility constraint.

The utilitarian criterion makes sure that the marginal social utilities of income
of all members of the economy, be they employed or unemployed, are equal. If the
utilities function are of the form u(c)�x(a) and v(c), u0c and v

0
c are independent of

a, and the �rst best incomes of the employed, �u, and of the unemployed, �v , are
independent of their types. Then there is a (usually positive?) cuto� productivity �w,
�w = �u��v+f	[v(�v)]�	[u(�u)]g=�, which separates the employed (productivity
above the cuto�) from the unemployed (productivity below the cuto�).

Consider the particular case where 	 is the identity mapping and u0c(c) is equal
to v0c(c), say v = u + x(a), where x(a) is a positive scalar. In that case, workers
and nonworkers receive the same income c = (u0)�1(�) and the cuto� point is given
by �w(a) = x(a)=�. From the government budget constraint (1), it follows that the
�rst best allocation corresponds to the unique value of � such that

u0c

�Z
w(a)11�w(a)�x(a)dF (a)

�
= �:

The lucky types with low productivities get the same income as the rest of society
but are left out of the work force, so that their utilities are higher than that of the
workers! This result is quite general as stated below.

Theorem 1 Consider two agents a and a0 with the same utility functions, u(:; a) =
u(:; a0) and v(:; a) = v(:; a0), but di�erent productivities w(a) < w(a0), so that at the
utilitarian optimum agent a is unemployed while agent a0 is employed.

Under Assumption 2 when �c > 0 on R+ � A, the utility of agent a is strictly
larger than that of a0 at the optimum.

Proof We assume that agent a is unemployed and receives c(a) = �v(�; a) and that
agent a0 works and receives c(a0) = �u(�; a

0). We want to check that agent a is
better o�

v(c(a); a) > u(c(a0); a0): (2)

Since agents a and a0 have the same utility functions (u(:; a) = u(:; a0)), we have:
c(a0) = �u(�; a

0) = �u(�; a). It follows that (2) is equivalent to

v(�v(�; a); a) > u(�u(�; a); a);

or
�v(�; a) + �(�v(�; a); a) > �u(�; a): (3)

Therefore we have to check that (3) holds for all a. We proceed by contradiction.
Suppose that

�u(�; a) � �v(�; a) + �(�v(�; a); a) (4)

holds for some agent a. Then we would have u(�u; a) � v(�v ; a), so that, by
concavity of 	

	0[u(�u; a)] � 	0[v(�v ; a)]:

Now remark that, by de�nition of �,

(1 + �0c(�v; a))u
0
c(�v +�(�v ; a); a) = v0c(�v ; a);
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so that, thanks to our assumption �0c > 0: u0c(�v +�(�v ; a); a) < v0c(�v ; a). From
(4), we deduce

u0c(�u; a) < v0c(�v; a): (5)

Using equations (4) and (5), it follows that

	0[u(�u; a)]u
0
c(�u; a) = � < 	0[v(�v ; a)]v

0
c(�v; a) = �;

which yields the desired contradiction.

By giving the same marginal social utility to all the agents, the planner gives a
higher level of utility to nonworkers (agents with low productivities) than to work-
ers (agents with high productivities). We consider that this general property of the
utilitarian criterion makes it unsuitable for our purpose. We do not believe that
there is any a priori reason to favor the agents with low productivities based on
ethical grounds, which disquali�es utilitarianism in our speci�c setup. The fact that
a second best analysis, with the need to create incentives to work, leads to more
`acceptable' outcomes, is not, in our opinion, a justi�cation to go on with utilitar-
ianism: the criterion should mainly be judged on its �rst best recommendations.
Hereafter, we focus on the Rawlsian case.

2.2 First best Rawlsian allocations

With a Rawlsian criterion, all e�orts are made so that everybody gets the same
level of utility. It then is worthwhile putting someone to work if and only if her
productivity is larger than the extra income necessary to compensate her for the
penibility of work.

To determine the �rst best Rawlsian allocation (c(a); s(a)), we proceed in two
steps. First, we take the value of the welfare WR as a given parameter and char-
acterize the allocation (c(a); s(a)). The characterization (given in Proposition 2
below) is based on the following intuition:

� For each agent, we de�ne R(a) (resp. r(a)) as the minimum nonnegative
income that ensures that agent a's utility is at least as large as WR when she
works (resp. does not work). Since all transfers between agents are possible,
it is clear that, at the optimum, agent a collects c(a) = R(a) when she works
and c(a) = r(a) when she does not;

� The working rule s(a) then maximizes the government revenue (it is impossi-
ble to obtain a higher government revenue without deteriorating the welfare,
otherwise one could use this gain to improve the welfare).

In a second step, we determine the value ofWR (which, of course, is endogenous).
This is done by expressing the fact that the government budget constraint is binding:
the government net revenue must be zero at the optimum.

2.2.1 Characterization of the allocation

The proof of the following proposition can be found in Appendix.

Proposition 2 Under Assumption 1, consider an optimal allocation ((c(a); s(a))
in the sense of Rawls, leading to a social utility level WR. De�ne the partition of
the type's set: A = A1 [ A2 [ A3 by

A1 = fa 2 A; u(0; a) � v(0; a) �WRg
A2 = fa 2 A; u(0; a) �WR < v(0; a)g
A3 = fa 2 A;WR < u(0; a) � v(0; a)g
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Then the allocation ((c(a); s(a)) is given in each set Ai by c(a) = R(a)11s(a)=1 +
r(a)11s(a)=0 and

� Agents a 2 A1 receive the utility WR whatever their work status. Their
incomes, R(a) when they work and r(a) when they do not, are given by
u(R(a); a) = v(r(a); a) =WR: The employment status s(a) is given by

w(a) > �(r(a); a) =) s(a) = 1
w(a) < �(r(a); a) =) s(a) = 0:

(6)

The work status and allocation are indeterminate on the border line, when
w(a) = �(r(a); a). Then society is indi�erent between having agent a working
with income R(a) or not working with income r(a).

� For a 2 A2, the incomes when working and not working are respectively given
by u(R(a); a) =WR and r(a) = 0. The working rule is

u(w(a); a) > WR =) s(a) = 1
u(w(a); a) < WR =) s(a) = 0:

(7)

When u(w(a); a) < WR, agent a does not work, gets a zero income, but enjoys
a larger utility than the social norm: v(0; a) > WR. Again on the border line,
society is indi�erent between having agent a working and collecting an income
equal to w(a) or not working with a zero income, while here the agent prefers
the latter.

� Agents a 2 A3 work (s(a) = 1) and receive no income (R(a) = 0).

The sets Ai only depend on the values of the utility functions when the agents
do not get any income. For a given value WR of the welfare, the utility of agents
a 2 A2 is greater than WR when they do not work and receive zero income. Thus,
in case they indeed do not work, they are happier than the social norm. Agents
a 2 A3 are even more remarkable: their preferences are such that, even though
they do work and receive zero income, they are still happier than the social norm!
Hereafter, we will concentrate on agents a 2 A1: we expect that the welfare level
attained in the economy is high enough so that most agents fall in the set A1.

Before completing the characterization of the FB allocation (it remains to deter-
mineWR), we illustrate the property of the income schedules implied by Proposition
2 for the agents in A1.

2.2.2 Properties of the associated schedules

Fix the type x of the agent, and let her productivity w vary. Some of the agents
work, when s(a) = s(w; x) = 1, the others do not. Note that the inequalities (6)
and (7) are implicit in w: the set of productivities of the working agents is not
necessarily a half line, of the form w � !, but can be a union of intervals. At the
optimum, around any pivotal agent !, income is discontinuous, while for the agents
in A1, utility is constant, equal to WR. If the agents do not work for w smaller
than !, they receive c(a) = r(!�; x), while the agents who work with w larger than
! get c(a) = R(!+; x). The inequality (6) expresses the fact that the discontinuity
R(!+; x)�r(!�; x) = �(r(a); a) is equal to the productivity ! of the pivotal agent.

Consider the particular case where the utility functions u and v do not depend
on the productivity w, but only on the agents's types x. Then the work aversion
� also only depends on x. From Proposition 2, we know that r and R depend on
x, but not on w. In that case, inequality (6) gives explicitly the set of workers: the
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c(w)
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R(x)

w

r(x)

R(x) -r(x)

45°

Figure 1: First best allocation: R� r = w for the marginal agent

workers are all the agents with productivity w higher than the threshold �(r(x);x).
Figure 1 represents the income collected by agent (w; x) as a function of w, for a
�xed x (recall that, in the �rst best situation, the government observes x and
can condition the schedules on x). In the picture, we have assumed that agents
with productivity lower than R(x) � r(x) do not work, while those with a larger
productivity are in the labor force.

The workers are exactly compensated for the penibility of their labor and receive
an income R(a) = r +�(r; a). There is zero taxation at the margin: the marginal
agent who decides to work pockets all her productivity. Indeed, all agents such that
w(a) > �(r; a) are working at the �rst best Rawlsian optimum, while all agents
such that w(a) < �(r; a) are not working and receiving r. On the other hand,
income is disconnected from productivity away from the margin, being equal either
to the subsistence level, or to the reservation wage.

2.2.3 Determination of welfare at the optimum

In view of Proposition 2, it is easy to �nd the Rawlsian optimum. Let W be
the unknown social utility level, and for all a such that W > v(0; a), let �(W ; a)
be the unique positive real number which satis�es v(�(W ; a); a) = W . Also, for
W � v(0; a) let R(W ; a) be the solution of u(R(W ; a); a) = W when u(0; a) < W ,
or zero otherwise. Then the excess of commodity, or government budget surplus, if
one were to implement a Rawlsian allocation satisfying Theorem 2 for this level of
W , is

T (W ) =

Z
v(0;a)>W

[w(a)�R(W ; a)]11u(w(a);a)�WdF (a)

+

Z
v(0;a)�W

�
[w(a)��(�(W ; a); a)]11w(a)��(�(W ;a);a) � �(W ; a)

	
dF (a): (8)

Theorem 3 The government net revenue T (W ) is a continuous and decreasing
function of W . There exists a unique value W ? such that T (W ?) = 0. This value
determines the �rst best Rawlsian welfare. The corresponding allocation is given by
Proposition 2 above, with WR =W ?.

Proof First note that the functions under the sign
R
are continuous with respect

to W . Furthermore, when W = v(0; a), �(W ; a) = 0 and �(�(W ; a); a) = R(W ; a).
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Since both � and R are increasing in W by construction and � is increasing in its
�rst argument by Assumption 2, T (W ) is decreasing in W . For W = ess inf u(0; a),
T (W ) =

R
w(a)dF (a) is positive. ForW = ess sup v(w(a); a), �(W ; a) is larger than

w(a), so that T (W ) is negative. The Rawlsian optimum corresponds to the unique
solution of the equation T (W ) = 0.

2.2.4 Introducing a normative assumption

The existence of agents with a utility larger than the social warrantyWR is directly
linked to the heterogeneity of the utilities of the agents when unemployed. More
speci�cally, the undesirable property of optimal utilitarian allocations, namely the
fact that agents di�ering only through their productivity are better o� when they
do not work, also appears with the Rawlsian criterion, but only in the region A2:
agents a 2 A2 indeed prefer not working (and receiving zero income) than working
(their utility when working is WR, while it is greater than WR when they do not
work). This leads us to introduce the following assumption.

Assumption 3: The utility out of work is �xed, independent of the agent type

v(c; a) = v(c):

Under Assumption 3, the Rawlsian outcome is at least equal to v(0) (it is feasible
to leave everyone on the beach), so that the sets A2 and A3 of Proposition 2 are
empty. The undesirable property mentioned above is thus ruled out in the Rawlsian
�rst best. Furthermore, at the �rst best optimum, all unemployed persons get the
same income r, de�ned by W = v(r), while the workers receive r +�(r; a).

Let us insist on the normative nature of Assumption 3. For any well de�ned
v(c), we can always rede�ne the utility when employed2 leaving the participation
decision unchanged through

u(c+�(c; a); a) = v(c):

Thus Assumption 3 is a value judgment. It says that the social planner does not
make any di�erence between the unemployed persons. All the unemployed individ-
uals have the same contribution to the social welfare.

2.2.5 Some comparative statics

The purpose of this section is to compare the optimal �rst best allocations in
economies which only di�er by their distributions of productivities.

Theorem 4 Under Assumptions 1 and 2, consider two identical economies except
for their productivities, the productivity of the prime economy being larger

w0(a) � w(a) for all a in A:

Then the Rawlsian optimum of the prime economy yields a higher utility than that
of the second

W 0
R �WR:

2This only de�nes u on [�(0; a);+1). As far as optimal Rawlsian allocations are concerned,
the shape of u on the rest of its domain [0;�(0;a)) is of no importance, since under Assumption 3
the allocations never assign a consumption lower than �(0; a) to someone who works.
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Proof The government revenue in the prime economy is given by formula (8), where
w(a) is replaced by w(a0). Note in particular that the quantities �(W ; a), R(W ; a)
and �(�(W ; a); a) are identical in both economies (this follows from the assumption
that the economies are identical: u(c; a) = u0(c; a) and v(c; a) = v0(c; a) for all a).
The government revenue is therefore higher in the prime economy: T 0(W ) � T (W )
for all W , which gives the result.

Does unemployment and income support disappear at the Rawlsian optimum
when society becomes richer and richer? The answer depends, not too surprisingly,
on the evolution of the dispersions of both productivities and disutilities for work.

We consider a sequence of economies indexed by k where the agents have the
same work aversion �(c; a) and productivity equal to wk(a). We assume that the
average productivity in the economy tends to +1

Z
wk(a) dF (a)! +1

as k ! +1. The index k can be seen as an index of aggregate productivity. We
are interested in the asymptotic behavior of the employment rate �GFB

k at the �rst
best optimum

�GFB
k = P(wk(a)��(rk ; a) � 0):

More precisely, we investigate the following question: does the employment rate
tends to 1 when the economy becomes richer and richer? We �rst check that the
welfare at the optimum goes to in�nity with k.

Lemma 1 Under assumptions 1 to 3, the subsistence revenue rk at the �rst best
optimum increases and tends to +1 as k ! +1.

Proof It is easy to check that the government net revenue increases with k for all
r, which implies that rk increases with k. Now use the budget constraint to get

rk =

Z
wk(a)��(rk;a)�0

(wk(a)��(rk; a)) dF (a) �

Z
(wk(a)��(rk ; a)) dF (a):

It follows that

rk +

Z
�(rk ; a) dF (a) �

Z
wk(a) dF (a);

which gives the result (using Assumption 2).

It turns out that the behavior of �GFB
k depends on the di�erence of �� w from

its mean, denoted �

�k(c; a) = �(c; a)� wk(a)�

Z
(�(c; a)� wk(a)) dF (a):

Theorem 5 A necessary condition for the employment rate �GFB
k to tend to 1 as

k ! +1 is that P(�k(rk; a) � rk) tends to 1 as k ! +1.
A su�cient condition is that P(�k(rk; a) � rk) = 1 for k large enough.

In the additive case (wk(a) = w(a) + k), the quantity �k depends on k only
through rk . Therefore the condition only involves the dispersion of �(c; a) � w(a)
around its mean as c! +1.

To illustrate the above theorem, consider the following economy. The agents are
characterized by a = (w + k; x), their utility when not working is v(c) = ln c while

10



their utility at work is u(c;x) = v(c) � lnx, where x is larger than 1. w and x are
independently distributed, with mean in the population respectively equal to Ew
and Ex. The work aversion of the typical agent is �(c;x) = c(x � 1). We have in
that case

P(�(rk) � rk) = P [rk (x�Ex) � rk + w �Ew] :

Now a direct application of Theorem 5 yields in this particular case :

1. everybody is employed for k large enough if the maximum value of x is strictly
smaller than Ex+ 1 or if it is just equal to Ex+ 1 when w is non random;

2. the probability of employment does not tend to 1 when k goes to in�nity if the
maximum value of x is strictly larger than Ex+ 1, or if it is equal to Ex+ 1
and the distribution of w is not degenerate.

There is no presumption that the employment rate goes to one when the economy
gets richer and richer.

3 Second best allocations

When all the characteristics of the agents, productivities and disutilities for work,
are known to the government, the preceding section has shown that the optimal
taxation scheme is very abrupt: give maximum incentives at the margin, i.e. income
up to w + r, to everyone that is worth having in the labor force, when w is larger
than the work aversion. This amounts to a marginal tax rate equal to �1 at
that point, a large downward tax discontinuity. Such incentives to work are not
implementable in practice. In France, apart from a temporary subsidy, there is a
100% marginal tax rate on earnings when one takes a job; in the US, the earned
income tax credit creates some incentives to work, which vary with the composition
of the family. The EITC can amount to 40% of earnings, i.e. each dollar earned
yields 1.4 dollar for the wage earner (the marginal overall tax rate however is larger
than -40%, because of social contributions, the phasing out of some social bene�ts
and the phasing in of the income tax in this income range). Still, this is far from
the kind of discontinuities shown by the optimal subsidy scheme of the last section.
It is worth investigating features that would bring the theoretical prescriptions of
the model closer to the observed facts. One dimension particularly seems worth of
attention: typically work aversions are unobserved by the �scal authorities and this
fact is likely to smooth the shape of the optimal subsidy scheme.

To formalize this idea, we assume that agent a's productivity w(a) is observed by
the government only when agent a work, but that no other individual characteristics
of the agent can be used to base the tax-subsidy scheme. The government, however,
knows the distribution of individual characteristics in the economy.

3.1 Characterization of second best Rawlsian allocations

In the remainder of the paper, Assumptions 1, 2 and 3 are supposed to hold.

3.1.1 From incentive compatibility to schedules

In the game between the government and the agents, the government acts as a
Stackelberg leader (the government is the `principal'). The informational structure
is as described above: the government observes w(a) only when a works. We begin
by de�ning the incentive compatible allocations (c(a); s(a)) in that game.

11



We �rst de�ne the function U(c; s; a) on IR+ � f0; 1g�A by

U(c; 1; a) = u(c; a) and U(c; 0; a) = v(c; a):

Then an allocation (c(a); s(a)) is incentive compatible if

1. c(a) depends only on w(a) when s(a) = 1,

2. c(a) is a constant c0, independent of a, when s(a) = 0,

3. for all a0 such that either s(a0) = 0 or w(a0) = w(a)

U(c(a); s(a); a) � U(c(a0); s(a0); a): (9)

Equation (9) expresses the fact that agent a can mimic any agent a0 who either
does not work or has the same productivity as a.

Suppose that the government posts a menu (R(w); r) of income schedules, re-
spectively for the (potential) workers and for the (potential) unemployed. Facing
such a menu, an agent a chooses either to work and receive R(w(a)) or not to
work and receive r. This gives rise to an allocation (c(a); s(a)). It is very easy to
check that this allocation is incentive compatible. The following lemma states the
converse.

Lemma 2 Let (c(a); s(a)) be an incentive compatible allocation such that

v(0) �WR = ess inf U(c(a); s(a); a): (10)

We let r be such that

WR = ess inf U(c(a); s(a); a)) = v(r): (11)

We note Ew the set of workers with productivity w: Ew = fa 2 A; s(a) = 1 and w(a) =
wg. For all w � 0, we de�ne R(w) by

R(w) =

�
c(a) for a 2 Ew if Ew 6= ;
0 if Ew = ;:

(12)

Then the menu of schedules (r; R(w)) implements the allocation (c(a); s(a)).

Proof of Lemma 2 Consider �rst a worker a (s(a) = 1). We have to show
that this agent, when she faces the schedule (r; R(w)), is willing to work and collect
c(a). In case she chooses to work, she collects R(w(a)) = c(a). Then the problem
is reduced to check that u(R(w(a)); a) � v(r). This inequality follows from the
de�nition of r.

Now suppose a does not work (s(a) = 0) and receives c0. It follows from the
incentive compatibility conditions that: v(c0) = WR, therefore c0 = r. In other
words, all unemployed individuals (if there are any) receive utility WR. Now we
have to check v(c0) = v(r) � u(R(w(a)); a). This inequality follows from (9) if
Ew 6= ; and from Assumption 1 in the other case.

It is always possible to attain a value of the Rawlsian welfare greater than (or
equal to) v(0) (take the allocation (c(a) = 0; s(a) = 0) for all a): all the allocations of
interest satisfy (10). Therefore Lemma 2 allows us to work with schedules (r; R(w))
rather than with allocations (c(a); s(a)).

Actually, it will turn out to be more convenient to use the quantity D(w) =
R(w)�r, which measures the �nancial incentives to work, rather than the net wage
R(w). Since R � 0, the incentive D is larger than �r. When she is in front of such
a menu (r;D(w)), agent a decides to work when �(r; a) � D(w), with indi�erence
in case of equality.
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3.1.2 Rewriting the budget constraint

In the sequel, we note Gr;w the c.d.f. of the distribution of work aversions �(r; a)
conditional on the agent productivity w

Gr;w(D) = Pr (�(r; a) � D j w)

Note that Assumption 2 implies that Gr;w(D) is a nonincreasing function of r.

Suppose now that the government posts a schedule (r;D(w)). Then the prob-
ability that an agent with productivity w works when she faces this schedule is
Gr;w(D(w)). The government revenue under the scheme (r;D(w)) can be written
as

T (r;D(:)) =

Z
[w(a)�D(w(a))]11�(r;a)�D(w(a))dF (a)� r

=

Z
[w �D(w)]Gr;w(D(w))d ~F (w) � r; (13)

where ~F is the distribution of productivities in the population. The pair (r;D(w))
is feasible when it satis�es the budget constraint

T (r;D(:)) = 0: (14)

By de�nition, a Rawlsian second best optimum maximizes WR among all feasible
incentive compatible allocations.

To characterize second best allocations, we follow the same path as in the �rst
best case. We �rst take the value of the welfare WR as given and determine the
function D(w). The schedule D(w) must maximize the government revenue (oth-
erwise an increase of revenue could be used to increase welfare). Then the value of
r is chosen so that the budget constraint is binding: the government revenue must
be zero at the optimum.

3.1.3 Characterization of the schedule D(w)

Suppose that the government tries to reach an allocation leading to a Rawlsian util-
ity level equal to WR. We let �d(rjw) (possibly equal to +1) denote the maximum
of the support of Gr;w.

The following lemma provides a characterization of the least costly incentive
compatible allocation that guarantees a welfare level equal to WR.

Theorem 6 Let WR � 0 be given. Let (c(a); s(a)) be the allocation that maximizes
government revenue among all incentive compatible allocations such that WR =
ess inf U(c(a); s(a); a). Consider the schedule (r;D(w)) associated with (c(a); s(a))
by Lemma 1.

Then D(w) is an element of

argmax D(w �D)Gr;w(D): (15)

As a consequence, we have, for all w, 0 � D(w) � w and D(w) � �d(rjw).

Proof The result follows directly from equation (13).

An interesting property of the optimal allocation is that, for each w � 0, there
exists an agent with productivity w whose utility is equal to WR. This is a conse-
quence of Theorem 6.
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Indeed, if there exists an unemployed agent with productivity w, we know that
this agent's utility is WR (from Lemma 1, all unemployed individuals receive utility
WR).

Otherwise, all agents of productivity w work, so that Gr;w(D(w)) = 1. Thus
D(w) � �d(rjw). Since Theorem 6 gives the inequality in the other direction, D(w) =
�d(rjw). Now an agent a with productivity w and work aversion �(r; a) = �d(rjw)
consumes c(a) = r +D(w) = r +�(r; a), and has utility u(c(a); a) = v(r) =WR

3.

It is important to remark that workers with productivity w and work aversion
strictly lower than D(w) get a rent, i.e. their utility is strictly larger than the social
norm. In the second best environment, the government cannot extract all the rent
from the agents. Hereafter, we denote Kr(w) the value of the maximum

Kr(w) = maxD�w(w �D)Gr;w(D): (16)

The quantityKr(w) is related (but not equal) to the tax collected by the government
on workers (recall w �D(w) = w � R(w) + r). It can be interpreted as the share
of the total surplus w collected by the government on agents with productivity w
(the government leaves D(w) to the workers as an incentive to work). We can now
complete the characterization by determining the value of r.

3.1.4 Determination of the subsistence revenue r

Theorem 6 gives a procedure to construct a Rawlsian optimum. For any r in
[0;
R
wd ~F (w)], we note T (r) (with a slight abuse of notation) the government net

revenue

T (r) =

Z
w

Kr(w)d ~F (w)� r: (17)

Under Assumptions 1-3, we have

Lemma 3 For all productivity w, the surplus Kr(w) is a continuous and nonin-
creasing function of r.

The proof of Lemma 3 is given in Appendix. The fact that Kr(w) decreases in
r is obvious (from Assumption 2). The continuity of Kr(w) holds even though the
c.d.f. Gr;w is discontinuous (for instance, when the distribution of work aversions is
discrete). The characterization of the subsistence revenue r easily follows from the
lemma.

Theorem 7 The government revenue T (r) given by (17) is a continuous and de-
creasing function of r. The value of the subsistence revenue at the second best
Rawlsian optimum is the unique solution to T (r?) = 0. The incentives to work
D(w) = R(w)� r are then given by Theorem 6.

Proof The �rst assertion (T (:) continuous and decreasing) follows directly from
Lemma 3). It is positive when r = 0 and negative when r =

R
wd ~F (w). Its unique

zero corresponds to the Rawlsian optimum.

3It may happen that all agents work in the second best optimal allocation. A necessary condi-
tion for no unemployment at the optimum is w � �d(rjw) for all w (this requires in particular that
�d(rjw) < +1 for all w). The welfare is then given by WR = v(r), where r is the unique solution
to the government budget constraint, which writes, in that caseZ

wd ~F (w) = r +

Z
�d(rjw)d ~F (w):
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3.1.5 Basic comparative statics

Some easy comparative statics results follow. Using the de�nition (16) of Kr, we see
that the function Kr decreases when the distribution of work aversions �rst order
stochastically increases (Gr;w decreases). Therefore the government revenue also
decreases for all r (see equation (17)). It follows that the optimal value of r (solution
to T (r) = 0) also decreases. To establish a similar result for the distribution of
productivities, we need an additional assumption.

Assumption 4: The work aversion �(r; a) is independent of w.

Under Assumption 4, the distribution of work aversions is independent of the
productivity of the agents: Gr;w does not depend on w, and can be written as Gr.

Using de�nition (16), we see that Kr(w) is a nondecreasing function of w. It
follows that the government revenue T (and consequently the optimum r) increases
when the distribution of w stochastically increases (Gr being �xed and thus also
the function Kr). Since r is equal to v

�1(WR), we have shown

Theorem 8 Under Assumptions 1 to 4, the second best Rawlsian optimum utility
level WR

� decreases when the distribution of work aversions Gr �rst order stochastically
increases in r for all w;

� increases when the distribution of productivities ~F (w) �rst order stochastically
increases.

The same arguments4 as above show that the employment rate in the economy

�GSB =

Z
Gr(D(w))d ~F (w);

has the same behavior as the welfare WR when the distributions of risk aversions
and productivities �rst order stochastically increase.

3.2 Qualitative analysis

The Rawlsian second best optimum is particularly easy to characterize when as-
sumption 4 holds. In the remainder of this section, suppose that Assumptions 1 to
4 hold.

Theorem 9 Consider a second best Rawlsian allocation. Under Assumption 4, we
have

1. The surplus Kr(w) = (w �D(w))Gr(D(w)) raised by the government at the
optimum is an increasing convex positive function of w, of slope at most equal
to 1.

2. D(w) is an increasing function of w, with D(w) � w. The proportion of
agents of productivity w at work, Gr(D(w)), is also increasing in w.

Proof From Theorem 5, K(w) is the supremum of the set of linear mappings
(w� d)Gr(d), where d is any real number. It is positive (d = w is possible), convex
as the supremum of convex functions. Gr(D(w)) is a subgradient of K(w), whose
slope cannot thus exceed 1. Convexity implies that the subgradient is nondecreasing,
which implies that Gr(D(w)) is nondecreasing in w, and D(w) as well.
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The theorem shows that, under Assumption 4, the marginal tax rates T 0(w) =
1 �D0(w) are less than 1. The fact that D(w) is increasing implies that it would
not be in the interest of an agent to announce a productivity lower than hers, if this
were allowed. The tax schedule is incentive proof to the mimicking of agents with
lower productivities..

A graphical representation helps to understand the structure of the problem.
On Figure 2, the c.d.f. Gr(D) is plotted: if D is selected by the government, Gr(D)
is the proportion of agents that are willing to work. For a given value of w, the
problem (see the de�nition of Kr (16)) is to �nd the maximum value of k such that
k=(w �D) intersects the graph of the c.d.f..

On Figure 2, therefore, for a given w, we draw a bunch of isoquants of the form
k=(w�D), all arcs of hyperbola whose asymptotes are the negative D axis and the
vertical line of abscissa w. The solution is at the highest isoquant which is tangent
to the c.d.f.. When w increases, the hyperbolas translate to the right, so that both
D(w) and Kr(w) increase.

The upper panel of Figure 2 is the `regular' case, where there is a nice unique
tangency point. But the program needs not be so well behaved. The middle panel
shows a situation where there are two tangency points. At this particular value
of w, both D1(w) and D2(w) yield the optimum Kr(w). All the agents with work
aversions between these two values are always treated in the same way, either non
employed (for productivities smaller than w) or employed (for productivities larger
then w): they are bunched together. When productivity varies, the incentive scheme
has a discontinuity at w: D(w�) < D(w+). Formally, the bunches associated with
a discontinuity of the schedule at w are

B(w; �w) = fa 2 A;w(a) = �w and D(w�) � �(r; a) � D(w+)g:

When �w > w, agents a 2 B(w; �w) work and receive R(w) = r + D(w). When
�w < w, they do not work and receive r. When �w = w, their (common) work
status depend on whether the government chooses D(w) = D(w�) or D(w) =
D(w+) (the government is indi�erent between the two possibilities). Note that
such discontinuities have nothing pathological: they will occur as soon as the c.d.f.
has pieces that are �atter than the arc of hyperbola going through them, for instance
for discrete distributions.

The bottom panel of Figure 2 shows another possibility, whereD(w) andGr(D(w))
stay constant on a range of productivities. In that case, agents a with the same
work aversion �(r; a) = d and productivity w1 � w(a) � w2 are treated the same
way. When d < D(w1) = D(w2), they work and receive r + D(w1). When
d > D(w1) = D(w2), they do not work and receive r. This occurs when the
optimum is at a kink of the graph of the c.d.f..

Even though the point wise optimization problem can be badly behaved, the
overall optimization is simple, as shown on Figure 3. The two upper panels show
the plan (w;K(w)). The maximization involves taking the upper envelope K(w) of
a set of straight lines of equation (w � D)Gr(D), with varying D's. As shown in
the top panel, the typical line intersect the w axis at D, and has slope Gr(D), a
number between 0 and 1. The function Kr(w) is increasing convex (and therefore
continuous). Linear portions of K correspond to �at portions of the schedule, while
kinks in K correspond to a discontinuity of D.

4We will see in the next section that, under Assumptions 4, D(w) and Gr(D(w)) are nonde-
creasing functions of w.
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Proposition 10 When G is log concave, there is no bunching and the marginal tax
rate is nonnegative.

Proof The problem (15) can be rewritten maxD�w ln(w�D)+H(D), with H(D) =
lnG. Since H is concave, the function D ! ln(w �D) +H(D) is strictly concave
and has a unique maximum, characterized by the �rst order conditions5

H 0(D) =
1

w �D
:

Since D is nondecreasing and H 0 is nonincreasing, it follows that w�D(w) increases
in w, which gives the result.

As mentioned in the introduction, one feature of Mirrlees framework is that
marginal tax rates are nonnegative at the optimum. We recover this property
in our setup whenever the distribution of work aversions is log-concave. In this
circumstance, the use of negative tax rates (like with EITC in the US or WFTC
in the UK) is not justi�ed by incentive purposes. Recall, however, that when the
distribution is not log-concave, this property needs not to hold. In particular,
bunching gives rise to negative tax rate. Indeed, at a point w such that D(w�) <
D(w+), the marginal tax rate is negative (it is actually �1, since w �D(w) has a
downwards discontinuity).

3.3 Examples

3.3.1 A single dimension of heterogeneity

Suppose that the only heterogeneity parameter is the productivity of the agents,
which also in�uences their utilities (a = w). Suppose also that the work aversion
depends only on w (not on r). In other words, the utility functions satisfy: u(c;w) =
v(c��(w)).

Under Assumption 4, at the �rst best, r is de�ned through WR = v(r). Every
agent is indi�erent between working or not: R(w) = r + �(w). The work rule is
given by s(w) = 11w��(w). Finally, the unknown subsistence income (and therefore
the social utility level) is determined by the budget constraint

r =

Z
[w ��(w)]11w��(w)d ~F (w):

In the �rst best, the central planner knows the productivity of every agent. In the
second best, he only observes the productivity of the agents that are employed.
Nevertheless, since the �rst best allocation gives the same utility to all agents,
it is incentive compatible, and is equal to the second best. Indeed, formally, the
distribution Gr;w is the Dirac mass at �(w). Then

Kr;w = [w ��(w)]11w��(w);

so that all the agents with w > �(w) work.

3.3.2 Discrete distribution of work aversions

Assume that, independently of w, the work aversion �(c; a) takes two values �j(c),
with probability pj , j = 1; 2, p1 + p2 = 1 and �1(c) � �2(c) for all c. Assumptions
2 and 3 are supposed to hold: �1 and �2 are nondecreasing functions of c on the
one hand, the utility v when not working does not depend on j on the other hand.
Since �j and pj do not depend on w, note that Assumption 4 is also satis�ed.

5When G has a kink, the �rst order condition is that 0 is in the subgradient of ln(w�D)+H(D).
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In the �rst best situation, the government observes w and j. For a given j, we
know that the income schedule is given by Dj(w) = �j(r)11w��j(r), as shown on
the upper panel of Figure 4. The government revenue is given by

TFB(r) =

Z �
p1(w ��1(r))11w��1(r) + p2(w ��2(r))11w��2(r)

�
d ~F (w) � r:

In the second best situation, the government does not observe j and the schedule
can only depend on w. The government solves

Kr(w) = max[0; p1(w ��1(r)); w ��2(r)];

as shown in the middle panel of Figure 4. The government revenue is given by

T SB(r) =

Z �
p1(w ��1(r))11�1(r)�w� �w(r) + (w ��2(r))11w� �w(r)

�
d ~F (w)� r:

It is easy to check that the government revenue is always greater in the �rst best than
in the second best: TFB(r) � T SB(r) for all r. Therefore the subsistence revenue
and the welfare are higher in the �rst best than in the second best: rFB � rSB. The
schedule, represented on the lower panel of Figure 4, is given by

D(w) =

8<
:

any value < �1(r) if w � �1(r)
�1(r) if �1(r) � w � �w
�2(r) if �w � w;

where �w(r) = (�2(r)�p1�1(r))=(1�p1). Note that �w(r) � �2(r). The correspond-
ing values of the probability Gr(D(w)) are 0; p1 and 1. Note that the productivity
of the pivotal agent �w is strictly larger than the di�erence �2(r) ��1(r).

3.4 The inverse problem

In the �rst best case, the distribution G degenerates into a Dirac mass at some
point d: D(w) is zero for w smaller than d, and equal to d for w larger than d.
The second best situation obviously yields more general shapes for social transfers.
Indeed, essentially any increasing function of w, smaller than w, is the incentive
schedule of a well chosen economy.

In this section, we investigate the inverse problem: a schedule (r;D(w)) being
given, is it possible to �nd an economy (i.e. utility functions u and v and distribu-
tions Gr;w and ~F ) such that (r;D(w)) is a Rawlsian second best optimal scheme?
To give a precise answer to this question, it is useful to introduce the following
integral

I(y) =

Z +1

y

dx

D�1(x) � x
:

This integral is positive, possibly equal to +1.

Theorem 11 Let (r;D(w)) be a scheme such that D(w) is nondecreasing on [0;+1[,
satis�es D(w) � w for all w and there exists some y with I(y) �nite.

Let y0 be the smallest number, y0 � D(0), such that I(y) is �nite for y larger
than y0. De�ne the distribution G, with support in [y0;+1) by

G(d) = exp(�I(d)): (18)

Let ~F be any distribution on R+ satisfying the budget constraint T (r) = 0.

Consider the following economy. Let the space of agents a = (w; x) be a subspace
of IR2, such that w and x are independently distributed according to respectively ~F
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and G. Take any increasing concave di�erentiable function v(c) on IR+, and de�ne
u(c; a) on [y0;+1) through u(c + x; a) = v(c) (u(c; a) can be any number smaller
than v(0) for c smaller than y0). Then the scheme (r;D(w)) implements the second
best Rawlsian optimum of this economy.

The proof can be found in Appendix. It is interesting to remark that G given
by (18) is log-concave if and only if the marginal tax rate is nonnegative for all
w. Indeed the function lnG = �I(d) is concave if and only if D�1(x) � x is a
nondecreasing function of x or, equivalently, w �D(w) is a nondecreasing function
of w.

Note also that, in the above economy, the distribution of work aversions does
not depend on w nor on r.
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Appendix

Proof of Proposition 2

First consider the set A1 of agents such that WR � v(0; a). All the agents in
A1 get a utility level equal to WR at the optimum (otherwise, if a non null set had
more, it would be possible to reduce their income, and use the proceeds to increase
the social optimum). Let

T1 =

Z
A1

f[w(a)�R(a)]11s(a)=1 � r(a)11s(a)=0gdF (a)

denote total government revenue, after transfers, from the agents in A1. This quan-
tity can be rewritten as

T1 =

Z
A1

f[w(a)��(r(a); a)]11s(a)=1 � r(a)gdF (a):

Keeping the agents in A1 at the same utility level, one maximizes T1 by choosing
the employment status according to 6.
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Second, consider the set A2 of agents such that u(0; a) � WR < v(0; a). De�ne
R(a) by the equality u(R(a); a) = WR. Then the government receipts from these
agents are

T2 =

Z
A2

[w(a)�R(a)]11s(a)=1dF (a):

Keeping them at a utility level at least as large as WR, it is optimal to put to work
the agents such that w(a) > R(a), i.e. u(w(a); a) > WR, and to leave the others
out of work, with a zero income.

Finally, consider the agents such that WR < u(0; a). One cannot lower their
utility. Obviously, it is optimal to put them to work and to collect their wage to
redistribute it to the rest of society.

The proof of Theorem 5 relies on two preliminary lemmas.

Lemma 4 Suppose P(�k(rk;a) � rk) = 1. Then everybody works.

Proof We take rk such that
Z
(�(rk ; a)� wk(a)) dF (a) = rk;

and check that it corresponds to the �rst best. By assumption, we have

�(rk ; a)� wk(a) = �(rk ; a)� wk(a)�

Z
(�(rk ; a)� wk(a)) dF (a)� rk

= �k(a)� rk � 0:

The result follows from the characterization of the FB optimum (Theorem 3): the
allocation where everybody works and receive rk +�(rk ; a) is optimal.

We now study the case where the dispersion of ��w is high when r increases.
We begin with a simple inequality.

Lemma 5 The employment rate at the �rst best optimum satis�es

�GFB
k � P (�k(rk ; a) � rk) ; (19)

with equality if and only if everybody works at the optimum ( �GFB = 1).

Proof By using the budget constraint, we get (dropping the index k)

w ���

Z
(w ��) dF � w ���

Z
w���0

(w ��) dF = w ��� r: (20)

It follows that

w �� � 0 =) w ���

Z
(w ��) dF + r � 0

which gives (19). Equality in (19) and in (20) are both equivalent to w�� � 0 for
almost all a.

Proof of Theorem 5 The necessary part follows directly from Lemmas 1 and 5.
The su�cient part is Lemma 4.

Proof of Lemma 3
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We write Kr(w) as

Kr(w) = max(D;p)2B(r)(w �D)p

where B(r) is the set

B(r) = f(D; p) j 0 � p � Gr;w(D) and � r � D � wg:

We want to prove the continuity with respect to r. To simplify notations, we drop
the index w in the expression Gr;w(D). The proof follows from three preliminary
properties.

Claim 1: For each r, the set B(r) is compact.

Claim 2: The graph of the correspondence r ! B(r) is closed, namely

(Dk; pk; rk)! (D; p; r) and (Dk; pk) 2 B(rk) =) (D; p) 2 B(r):

or, to be more speci�c

(Dk; pk; rk)! (D; p; r) and pk � Grk(Dk) =) p � Gr(D): (21)

Claim 3: For each sequence rk ! r and each (D; p) 2 B(r) with D < w, there exists
a sequence (Dk; pk) 2 B(rk) such that (Dk; pk)! (D; p).

Proof of the continuity of r ! Kr:

Pick a sequence rk ! r. Take some (D; p) 2 B(r) such that (w � D)p = Kr.
We can assume that D < w (if D = w, then Kr = 0 and we can take any D < w
and p = 0). >From Claim 3, there exists (Dk; pk) 2 B(rk) ! (D; p). Passing to
the limit in

(w �Dk)pk � Krk

we get Kr � lim infKrk .
Now consider another sequence (Dk; pk) de�ned by

(Dk; pk) 2 B(rk) and (w �Dk)pk = Krk : (22)

This sequence (Dk; pk) is clearly bounded, then we can pick a convergent subse-
quence. We denote (D; p) the limit. >From Claim 2, we know that (D; p) 2 B(r).
Passing to the limit in (22) gives lim supKrk � Kr, which completes the proof of
continuity.

Proof of Claim 1: Since D ! Gr(D) is nondecreasing and right continuous, the set
B(r) is closed. The fact that it is bounded is obvious.

Proof of Claim 2: The claim is obvious when G is continuous. In the general case,
we use the properties of G: Gr(D) is right continuous and nondecreasing with
respect to D, and left continuous and nonincreasing with respect to r (since � is
continuous and nondecreasing).

Any sequence can be separated into (at most) four subsequences.

1. A subsequence of k's such that Dk � D and rk � r. Then pk � Grk (Dk) �
Gr(D) for k � G, which gives p � Gr(D);

2. A subsequence of k's such that Dk > D and rk < r. Then we obtain (21) by
taking the limit when k ! +1 in pk � Grk (Dk), using the right (resp. left)
continuity of Gr(D) w.r.t. D (resp. r);
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3. A subsequence of k's such that rk < r and Dk � D. Then pk � Grk (Dk) �
Grk(D), which gives (21) by passing to the limit;

4. The last case is symmetric of case 3.

Proof of Claim 3: We have to check that for all rk ! r and p � Gr(D) and each
(D; p) such that D < w, there exists (Dk; pk), such that pk � Grk(Dk) and
(Dk; pk)! (D; p).

We separate the rk's that are below r from those that are above. First, consider
the set of k's such that rk � r. Then take Dk = D and pk = min(p;Grk(D)). We
have: pk � Grk(Dk), Dk ! D and pk ! p thanks to the left continuity of Gr(D)
w.r.t. r.

Now consider the remaining k's, such that rk > r. Let Cr be a �nite upper
bound for �0c(s; a), a 2 A, s in some interval [r; r + "], which exists under our
regularity assumption. Take Dk = D + Crjrk � rj and pk = p. Then Dk � w for k
large enough. It is easy to check that, for all a 2 A and for k large enough,

�(r; a) � D ) �(rk ; a) � Dk;

which implies pk � Gr(D) � Grk (Dk). It follows that (Dk; pk) 2 B(rk). The fact
that (Dk; pk)! (D; p) is obvious.

Proof of Theorem 11

Let D be a nondecreasing function on [0;+1[. For y � D(0), we de�ne

D�1(y) = inffw � 0; D(w) � yg:

If the set fw � 0; D(w) � yg is empty, we set: D�1(y) = +1. It is easy to check
that the function D�1 is nondecreasing. Therefore D�1 is measurable on its domain
of de�nition.

Suppose that D(w) � w for all w. Then it is easy to check that y � D�1(y) for
all y � D(0). Therefore the function

y !
1

D�1(y)� y

is nonnegative with values in [0;+1] and measurable on [D(0);+1[. It follows
that for all y � D(0) the integral

I(y) =

Z +1

y

dx

D�1(x)� x
(23)

can be unambiguously de�ned (see Rudin, 1966, Real and Complex Analysis, McGraw-
Hill, Chapter 1). Its value is either a nonnegative real number or +1.

Suppose that there exists y1 � D(0) such that I(y1) < +1. It follows from
Lebesgue dominated-convergence theorem (see Rudin, 1966) that I(y) tends to zero
as y goes to +1. Finally, we de�ne y0 by

y0 = inffy � D(0); I(y) < +1g: (24)

The function y ! I(y) is �nite and decreasing on ]y0;+1[ and it tends to zero as
y goes to +1.
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Lemma 6 Let D be a nondecreasing function on [0;+1[ satisfying

� D(w) � w for all w;

� there exists y1 � D(0) such that I(y1) < +1, where I is given by (23).

Then we can de�ne the function G by

G(d) = exp(�I(d)) (25)

for all d > y0, where y0 is given by (24). The function G is the restriction on
[y0;+1[ of the cumulative distribution function of a probability measure on R. Fur-
thermore we have

maxd�D(0)(w � d)G(d) = (w �D(w))G(D(w)) (26)

for all w � 0.
Finally, suppose that D is discontinuous at some point w0. Then for every d1; d2

in [D(w�0 ); D
(w+

0 )], we have

(w � d1)G(d1) = (w � d2)G(d2); (27)

where w = D�1(d1) = D�1(d2).

Proof The �rst part of the result is obvious since the function G de�ned by (25)
is nondecreasing and tends to zero as d goes to +1. Note that G(y) tends either
to 0 or to some � > 0 when y goes to y0. In the latter case, we set: G(d) = 0 for
d < y0 (which amounts to put the positive mass � on y0).

We now check that equation (26) is satis�ed. Let w � 0. Consider �rst the case
d � D(w). For all x � D(w), we have D�1(x) � w, then D�1(x)� x � w � x and

ln
w � d

w �D(w)
=

Z D(w)

d

dx

w � x
�

Z D(w)

d

dx

D�1(x) � x
:

which is equivalent to

(w � d)G(d) � (w �D(w))G(D(w)):

We show in a similar way that the above inequality holds for d � D(w) as well,
which completes the proof of (26).

Now consider w0 such that D(w�0 ) < D(w+
0 ) and take d1 < d2 in [D(w�0 ); D(w+

0 )].
The function D�1 is constant on [D(w�0 ); D(w+

0 )]. We note w = D�1(d1) =
D�1(d2) (remark that w = w�0 ). We have

I(d2)� I(d1) =

Z d2

d1

dx

w � x
= ln

w � d1
w � d2

;

which yields (27).

Note that Kr(w) given by (16) tends to +1 as w ! +1. It follows that there
exists many distributions satisfying the budget constraint T (r) = 0.
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