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Abstract

We propose a new method of e�ective dimension reduction for a multi-index model
which is based on iterative improvement of the family of average derivative estimates.
The procedure is computationally straightforward and does not require any prior in-
formation about the structure of the underlying model. We show that in the case
when the e�ective dimension m of the index space does not exceed 3, this space can
be estimated with the rate n�1=2 under rather mild assumptions on the model.

R�esum�e

Nous proposons une nouvelle m�ethode d'estimation de la dimension e�ective d'un
mod�ele de r�egression �a directions r�ev�elatrices, bas�ee sur une am�elioration it�erative
d'un estimateur de la d�eriv�ee moyenne. La proc�edure est simple �a impl�ementer et ne
n�ecessite aucune information a priori sur la structure du mod�ele. Nous montrons que
dans le cas o�u la dimension e�ective m de l'espace des directions r�ev�elatrices n'est pas
sup�erieure �a 3, cet espace peut être estim�e �a la vitesse n�1=2 sous des conditions tr�es
g�en�erales sur le mod�ele.

Keywords: dimension-reduction, multi-index model, index space, average derivative
estimation, structural adaptation.
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1 Introduction

Suppose that the observations (Yi;Xi) , i = 1; : : : ; n , are generated by the regression
model

Yi = f(Xi) + "i (1)

where Yi is a scalar response variables, Xi 2 [�1; 1]d are d -dimensional explanatory
variables, "i are random errors and f(�) is an unknown d -dimensional function f :
IRd ! IR .

We assume that f(x) has the speci�c structure:

f(x) = g0(Tx): (2)

Here g0(�) is an unknown m -dimensional link function and T is a linear orthogonal
mapping from the high-dimensional space IRd onto the space IRm with an essentially
smaller dimension m , satisfying the condition T T> = Im , where T> stands for the
transpose of T . In the statistical literature relations as in (1) and (2) are referred to as
multi-index regression models. Model (2) is a rather general expression of the hypothesis
that all the information about f(x) is \concentrated" in a low-dimensional projection
Tx . If we adopt such a model, our intention can be both to �nd the e�ective dimension

m and to describe the index space I = ImT> which is also referred to as the e�ective

dimension space or the space of e�ective dimension reduction in Li (1991, 1992, 2000)
and Cook (1998). In the present paper we propose an algorithm to estimate the index
space when the e�ective dimension m is known a priori. Some extensions are discussed in
Section 6.

Note �rst that the representation (2) is not unique. For instance, if Om is an orthog-
onal transform in IRm , then the function f can be rewritten in the form f(x) = g1(T1x)
with g1(z) = g0(Omz) and T1 = O>

mT . Nevertheless, the index space I is de�ned
uniquely by (2) and it contains very important information about the model. As soon as
the operator T which maps IRd onto IRm is �xed, the link function g0 can be estimated
in a nonparametric way.

Various methods for dimension reduction have been proposed in the literature. Clas-
sical theory of principal component analysis considers mostly the case of multiple linear

regression. Brillinger (1983) extended the method to the so called \generalized linear
model" with normally distributed regressors. The underlying idea is to make some data
transformation and then to proceed as if the model were linear. Under a similar as-
sumption on the distribution of regressors, Li (1991) o�ered the so called \sliced inverse
regression" approach. A modi�cation of this method (principal Hessian directions) is ex-
plored in Li (1992) and Cook (1998). Samarov (1993) discussed an approach relying on
average derivative estimation of some linear functionals of the gradient of the regression
function f . However, the conditions for this method to work appear to be quite restric-
tive in application to real data. The main problem here is that, for large d , the data
in the high dimensional space IRd is very sparse (the so called \curse of dimensionality"
problem).

Our approach can be seen as an iterative improvement of the average derivative estima-
tor and can be used under weak assumptions on the model. The proposed procedure can
be regarded as an extension of the method developed in Hristache, Juditsky and Spokoiny
(2001) for the single-index model to the multi-index situation. In the sequel the latter
paper is referred to as HJS01.

The paper is organized as follows: in the next section we discuss the heuristics behind
the proposed approach. Then in Section 3 the estimation procedure is presented. The
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performance of the method is tested for some simulated datasets in Section 4. The theoretic
properties of procedure are discussed in Section 5. In particular, it is shown that the
procedure leads to root-n consistent estimation of the index space if m � 3 . Section 6
shortly summarizes main results and discusses possible extensions and open problems.
Finally, the proofs are collected in the appendix.

2 Basic ideas

Since the gradient F (Xi) = rf(Xi) of the regression function f at every point Xi

belongs to the index space I , it seems quite natural to apply the principal component
analysis for estimating this space: one can compute the matrix M� =

Pn
i=1 F (Xi)F

>(Xi)
and then use the eigenvalue decomposition of M� , M� = O>

d �Od . Here Od is an or-
thonormal matrix and � is a diagonal matrix with decreasing eigenvalues. These matrices
deliver a valuable important information about model (2): the �rst m columns of Od (i.e.
the �rst m eigenvectors of M� ) provide an orthonormal basis of the index space I ; the
corresponding eigenvalues show how fast the function f varies in each direction. In par-
ticular, the �rst eigenvector of M� is the direction in which f varies most (cf. Samarov
(1993)). This leads to the natural idea, to �rst estimate M� from the data Y1; : : : ; Yn
and then to recover the index space I using this estimate. Note that the matrix M�

is a quadratic functional of the gradient of the regression function f . There exists some
literature on estimation of such functionals in the framework of nonparametric regression.
Various estimation algorithms and results on their optimality can be found in Ibragimov,
Nemirovskii and Khasmiskii (1986), Donoho and Nussbaum (1990), Fan (1991). The esti-
mators in Samarov (1993) and Doksum and Samarov (1995) are based on kernel estimators
of the regression function f , Huang and Fan (1998) applied the local polynomial �t, the
procedure from Ibragimov, Nemirovskii and Khasmiskii (1986) is based on the Fourier
expansion of the gradient F of the function f . Let us see how this latter idea applies to
our problem.

Suppose that we are given a collection f ` ; ` = 1; : : : ; Lg of functions  ` : IR
d ! IR

which satisfy
nX
i=1

 `(Xi) `0(Xi) = Æ``0

where Æ`` = 1 and Æ``0 = 0 for ` 6= `0 . Now, let ��` ,

��` =

nX
i=1

F (Xi) `(Xi); (3)

be the ` -th Fourier coeÆcient of F with respect to the basis system f `g . Note that
each d-vector ��` is a linear functional of the gradient and hence belongs to I . Thus if
the dimension of the space spanned by ��1; : : : ; �

�
L equals m, this set of vectors completely

characterizes the index space I , and one can identify the space I by looking for the �rst
m principal components of the set �1; : : : ; �L .

In order to estimate M� , one can �rst construct an estimate b�` of each Fourier
coeÆcient ��` , e.g. b�` = nX

i=1

bF (Xi) `(Xi) (4)
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on the basis of a pilot estimate F̂ of the gradient, and then compose the estimate

M̂L =

LX
`=1

b�`b�>`
of M� . Note that in order to ensure cML to be a consistent estimate of the matrix M�

the number L of basis functions  ` should be taken growing with n . Otherwise cML

estimates the matrix M�
L with

M�
L =

LX
`=1

�`�
>
` :

On the other hand, recall that it is the index space I we are interested in, and not the
estimation of M� . It would be suÆcient for our purposes to point out a �xed (possibly
small) number of \test functions"  ` such that rank(M�

L) = m and the value kM��M�
Lk

(that is, the maximal eigenvalue of M� �M�
L ) is not too large. The choice of a proper

set of test functions  ` , ` = 1; : : : ; L is discussed in more details in Section 3.4.

2.1 Equivalent representation

As we have already noticed, the model representation (2) is not unique. It is more conve-
nient for our purposes to work with another one, which is distinctly de�ned by the set of
test functions  ` , ` = 1; : : : ; L and the regression function f .

Let us denote B� the d � L matrix with the columns ��` , ` = 1; : : : ; L , where the
vectors ��` are as in (3). Obviously, each vector ��` belongs to I and hence rank(B�) �
m . We additionally suppose that rank(B�) = m which means that this matrix completely
describes the index space I .

Let �1 � �2 � : : : � �d be the ordered set of eigenvalues of the symmetric d�d -matrix
M�

L = B�(B�)> . Since rank(M�
L) = m , only the �rst m of them are positive and the

remaining are equal to zero. Without loss of generality we assume that all eigenvalues are
di�erent, i.e. �1 > �2 > : : : > �m which ensures that the corresponding eigenvectors of
unit length e1; : : : ; em are uniquely de�ned (up to a sign). These vectors belong to the
index space I and can be used as a natural basis in it. We also denote �k =

p
�kek ,

k = 1; : : : ;m . Since �k = 0 for k > m , it also holds �k = 0 for those k .
We now represent the model (1), (2) in the form

f(x) = g
�
�>1 x; : : : ; �

>
mx
�

(5)

where the new link function g is uniquely de�ned as soon as the vectors �1; : : : ; �m are
�xed. Usually a similar representation with vectors ek = �k=j�kj in place of �k is used:

f(x) = g1

�
e>1 x; : : : ; e

>
mx
�
: (6)

However, the value �k characterizes a variability of the function f in the direction ek .
Thus the function g1 in (6) inherits the inhomogeneity of f in di�erent directions. The
bene�t of using (5) is that the corresponding link function g is homogeneous w.r.t. its
variables.

Let R� be a m�d -matrix such that its transpose (R�)> = (�1; : : : ; �m) has vectors
�1; : : : ; �m as columns. Then (5) can be rewritten as f(x) = g(R�x) . The matrix R�

maps IRd onto IRm and determines the required e�ective dimension space. In what
follows we refer to R� as the e�ective dimension reduction matrix, or simply the e.d.r.

The following well known matrix result o�ers an explicit representation of the matrix
R� via the orthogonal decomposition of the symmetric L�L -matrix (B�)>B� .
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Lemma 2.1 Let (B�)>B� = O�LO
> be the orthogonal decomposition of (B�)>B� where

O is an orthogonal L�L -matrix and �L is a diagonal matrix with non-increasing eigen-

values �01 � �02 � : : : � �0L . Let also Om be the block of the �rst m columns of O . Then

�0k = �k for k � d and

R� = (B�Om)
>: (7)

Due to this lemma, the model (5) can be now rewritten in the form

f(x) = g(R�x) = g
�
(B�Om)

>x
�

(8)

which is used in the sequel.

2.2 Gradient estimation

Next we discuss the problem of estimating each linear functional ��` using a nonparametric
estimate bF of the gradient F , see (4). A standard way to estimate both f(Xi) and F (Xi)
is to apply the local linear least squares approach: bf(Xi)bF (Xi)

!
= arg inf
c2IR; b2IRd

nX
j=1

h
Yj � c� b>(Xj �Xi)

i2
K

� jXj �Xij2
h2

�
; (9)

where a kernel K(�) is positive and supported on [0; 1] , so that the weights of all points Xj

outside a spherical neighborhood Uh(Xi) of diameter h around Xi vanish. The solution
to this quadratic optimization problem can be represented as bf(Xi)bF (Xi)

!
=

8<:
nX

j=1

�
1
Xij

��
1
Xij

�>
K

� jXij j2
h2

�9=;
�1

nX
j=1

Yj

�
1
Xij

�
K

� jXij j2
h2

�
where Xij = Xj �Xi . As many other nonparametric estimates, the estimate (9) su�ers
from the data sparseness for large d . This phenomenon is often referred to as curse

of dimensionality. Indeed, one has to select the bandwidth h in a way to provide at
least d+ 1 design points in every (or almost every) spherical neighborhood Uh(Xi) . For
the case of a random design with a positive density, this implies that a bandwidth h of
order n�1=d or even larger should be taken. For large d this leads to a very poor rate
n�1=d in estimation of F , and the same applies to the estimation of the vectors ��` (see
Proposition 5.1 below).

At the same time, suppose for a moment that we know the mapping T : IRd ! IRm .
Then we could use this information for estimating the m -dimensional link function g0
and its gradient rg0 . This also provides an estimate of the gradient F (x) = T>rg0(Tx)
of much better accuracy, which corresponds to an m -dimensional nonparametric problem
on the \true" index space, instead of the original d -dimensional nonparametric estimatebF (x) . More speci�cally, a function f(x) of the form (8) remains constant when x varies
in any direction orthogonal to the m -dimensional subspace I . The above considerations
leads to another estimate: bf(Xi)bF (Xi)

!
= arg inf

c2IR; b2IRd

nX
j=1

h
Yj � c� b>(Xj �Xi)

i2
K

� jT (Xj �Xi)j2
h2

�

=

8<:
nX

j=1

�
1
Xij

��
1
Xij

�>
K

� jTXij j2
h2

�9=;
�1

�
nX

j=1

Yj

�
1
Xij

�
K

� jTXij j2
h2

�
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The latter estimate of F (Xi) is based on averaging over a narrow cylinder fx : jT (x �
Xi)j � hg , centered at Xi , which spans I? . This allows to use an essentially smaller
bandwidth h and still have enough design points in every such neighborhood. On the
other hand, the smaller bandwidth would decrease drastically the bias of estimation. Un-
fortunately this \ideal" estimate cannot be implemented in practice since it requires the
explicit knowledge of the target index space I . A natural idea is to substitute the map-
ping T by its pilot estimate. This leads to the following structural adaptation approach.
We proceed iteratively starting with the estimates b�` =

Pn
i=1

bF (Xi) l(Xi) , ` = 1; : : : ; L

based on the fully nonparametric gradient estimate bF with some h = h1 , see (9). Al-
though this estimate is very rough, it contains some information about the structure of
the model function f and, in particular, about the mapping T : all vectors b�` up to the
estimation error, belong to the index space I . This information can be used for produc-
ing another, more careful estimate of the gradient function and hence, of the vectors ��` .

More precisely, let bB1 be the matrix composed from the vectors b�`, ` = 1; : : : ; L . We
de�ne the gradient estimate bF2(Xi) at Xi by a local linear �t using the elliptic neigh-
borhood fx : jS2(x � Xi)j � h2g , with S2 = (I + ��22

bB1 bB>1 )1=2 for some �2 < 1 and
h2 > h1 (instead of the spherical windows fx : jx�Xij � h1g ). In other words, we shrink
the original windows in all the directions b�` (since �2 < 1 ) and stretch them in all the
orthogonal directions (since h2 > h1 ): bf2(Xi)bF2(Xi)

!
= arg inf

c2IR; b2IRd

nX
j=1

h
Yj � c� b>(Xj �Xi)

i2
K

� jS2(Xj �Xi)j2
h22

�

=

8<:
nX

j=1

�
1
Xij

��
1
Xij

�>
K

� jS2Xij j2
h22

�9=;
�1

�
nX

j=1

Yj

�
1
Xij

�
K

� jS2Xij j2
h22

�
:

This leads to the estimates b�2;` = 1
n

Pn
i=1

bF2(Xi) `(Xi) of ��` producing the matrix bB2 .
We continue this way each time compressing the averaging windows in the direction of the
current estimate bBk and expanding them in orthogonal directions.

The results presented below show that this procedure allows to estimate the index
space I at the rate n�1=2 provided that m < 4 .

3 Estimation procedure

We now present the description of the method. The whole estimation procedure is carried
out in two basic steps : estimation of the vectors ��` and estimation of the e.d.r. matrix
R�. Below we discuss each step separately.

3.1 Estimation of ��` 's

The procedure involves input parameters h1 < hmax and �min < �1, so that � decreases
geometrically from �1 to �min by the factor a� < 1 and h increases geometrically from
h1 to hmax by the factor ah > 1 during iterations. The choice of these parameters as well
as the set of basis functions f `g will be discussed in the next section. The algorithm
reads as follows :
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1 Initialization: specify parameters �1; �min; a�; h1; hmax, ah and the set of

functions f `g; set k = 1, bB0 = 0;

2 Compute Sk =
�
I + ��2k

bBk�1 bB>k�1�1=2;
3 For every i = 1; : : : ; n , compute bFk(Xi) from the expression:� bfk(Xi)bFk(Xi)

�
= V �1

k (Xi)

nX
j=1

Yj

�
1
Xij

�
K

� jSkXijj2
h2k

�

where Xij = Xj �Xi and Vk(Xi) =
Pn

j=1

�
1
Xij

��
1
Xij

�>
K

� jSkXij j2
h2k

�
;

4 Compute the vectors b�k;` = 1
n

Pn
i=1
bFk(Xi)  `(Xi), ` = 1; : : : ; L and compose the

matrix bBk with columns b�k;1; : : : ; b�k;L;
5 Set hk+1 = ahhk, �k+1 = a��k. If �k+1 � �min, then set k = k + 1 and

continue with Step 2; otherwise terminate.

By k(n) we denote the total number of iterations. The estimates b�k(n);` from the last
iteration are used as the �nal estimates of ��` .

3.2 Modi�ed estimator

In the above algorithm, at each step, we use a linear combination of the estimated gradient
vectors bF (Xi) as the estimate of the vector ��` . To guarantee some useful properties of
this procedure, the estimates bF (Xi) should be well de�ned, which in turn requires some
local regularity of the design in the corresponding neighborhood of the point Xi; see
Assumption 5 in Section 5. If such a condition is not satis�ed even at a few points, then
the corresponding gradient estimates would have a very large standard deviation which
may deteriorate the quality of the index estimates b�`. We can avoid this problem by
weighting each summand in the expression for b�k;` with some coeÆcients which express
the degree of local regularity of the design.

De�ne w as the square root of the minimal eigenvalue of the matrix V with

V =
1

EK(�>�)
E

�
1
�

��
1
�

�>
K(�T �);

where � is random and uniformly distributed over the ball B1 = fx 2 IRd : jxj � 1g:
w2 = �min

�V� ; set k = 1, bB0 = 0 .
Let also Cw be a positive number. The steps 2{4 of the above algorithm are modi�ed

as follows :

2' Compute cMk = bBk�1 bB>k�1. If kcMkk > 1, then normalize it by its maximal

eigenvalue : cMk := cMk=kcMkk: Set Sk =
�
I + ��2k

cMk

�1=2
:

3' For every i = 1; : : : ; n , compute the matrix bVk(Xi) with

bVk(Xi) =
1

nP
j=1

K
�
W>

ij;kWij;k

� nX
j=1

�
1

Wij;k

��
1

Wij;k

�>
K
�
W>

ij;kWij;k

�
;
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where Wij;k = h�1k Sk(Xj �Xi) and define wi as the square root of the

minimal eigenvalue of bVk(Xi) : w2
i = �min

�bVk(Xi)
�
: If the condition

n�1(w1 + : : :+ wn) � Cww

is fulfilled then compute bfk(Xi)bFk(Xi)

!
= V �1

k (Xi)

nX
j=1

Yj

�
1
Xij

�
K

� jSkXij j2
h2k

�
;

otherwise increase hk by the factor ah, that is, hk := ahhk. If hk >
hmax, then terminate, otherwise repeat this step.

4' For every ` = 1; : : : ; L , compute the vector b�k;`
b�k;` =

 
nX
i=1

wi

!�1 nX
i=1

bFk(Xi) `(Xi)wi

with the previously obtained wi 's. Compose the matrix bBk with columnsb�k;`, ` = 1; : : : ; L .

3.3 Computing the e�ective dimension reduction matrix

Let bB be an estimate of the matrix B� obtained by the previously described iterative
procedure. We will see (Theorem 5.3) that this matrix estimates the target matrix B�
with a reasonable accuracy, but it is typically of the rank d and hence, it does not provide
any dimension reduction. We estimate the e�ective dimension reduction matrix R� using
the singular value decomposition of bB in place of B�, cf. (7). Namely, the product bB> bB ,
being symmetric and non-negative, can be represented in the form bB> bB = bOb� bO> with
the orthogonal L�L -matrix bO and the diagonal matrix b� = diagfb�1; : : : ; b�Lg with non-
increasing eigenvalues b�1 � : : : � b�L � 0 (the squared singular values of bB). The estimate
Rm of the true e.d.r. matrix R� from (7) is de�ned by

Rm =
� bB bOm

�>
(10)

where bOm is the submatrix of bO composed of its �rst m columns.

3.4 Choice of parameters of the algorithm

It is obvious that the quality of estimation by the proposed method strongly depends on the
rule for changing the parameters h and �, and, in particular, on their values at the initial
and �nal iteration. Some related discussion about this choice can be found in HJS01. The
general approach is to provide that at every iteration k there exist enough design points
in every or almost every local ellipsoidal neighborhoods Ek(Xi) = fx : jSk(x�Xi)j � hkg .

Note also that assuming the structure of the matrix bBk�1 bB>k�1 to follow the structure
of the target matrix M�, neighborhood Ek(Xi) is stretched at each iteration step by
factor ah in all directions and is shrunk by factor a� in directions of the m -dimensional
index space I. Therefore, the Lebesgue measure of every such neighborhood is changed
each time by the factor adha

m
� . This leads to the constraint adha

m
� > 1, cf. Assumption 4
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in Section 5 below. Under the assumption of a random design with a positive density, this
would result in an increase of the mean number of design points inside each Ek(Xi).

The main constraint on the set f `g is that the matrix B� is of the same rank as T
and that the function g from the equivalent representation (8) is suÆciently smooth, see
Assumption 3 below. It can be easily shown that the \ideal" choice of the set f `g can
be obtained by orthogonalization of the components Fj = @f=@xj , j = 1; : : : ; d of the
gradient F . This \ideal" collection of functions  ` would contain only m elements. Of
course, this choice cannot be realized since it involves the unknown regression function f .

Note next that the functions (vectors)  1; : : : ;  L form an orthonormal system in IRn

and ��` is the scalar product of the gradient F and the basis function  `. The sum

FL =
LX
`=1

��` `

is the projection of the gradient F on the linear subspace in IRn spanned by f `g.
One can easily check that M�

L =
Pn

i=1 FL(Xi)FL(Xi)
>. Thus, to prevent the loss of

information due to the substitution of M� for M�
L , the set f `g should be selected rich

enough. Our proposals is to de�ne f `g by orthogonalizing the set of all polynomials
x`1 : : : x`q of the coordinate functions for some q � 1 and all 1 � `1 � : : : � `q. The
procedure from HJS01 corresponds to the family of all linear coordinate functions (i.e.
q = 1 ). The simulation results are overall in favour of a larger q, e.g. q = 2.

A suitable alternative, especially for large d , is a basis system constructed by ortho-
gonalizing a fully nonparametric estimate of the gradient.

4 Implementation and simulated results

In this section we illustrate the performance of the proposed algorithm on some simulated
examples. In our simulation study we apply the modi�ed procedure with the following
parameter setting:

�1 = 1; �min = n�1=3; a� = e�1=6;

h1 = n�
1

4_d ; hmax = 2
p
d; ah = e

1
2(4_d) :

Since e
d

2(4_d)
�m

6 > 1 for all m � 3 and d > m, the condition adha
m
� > 1 is ful�lled; see

Section 3.4 or Assumption 4 in Section 5 below.
We also set Cw = 2�1. In case of high dimensionality, i.e. d > 20; a smaller value of

Cw was necessary to guarantee the existence of valid bandwidths hk. The basis system
f `g is obtained by orthogonalization of the set of functions f1; xj ; xjxk, j; k = 1; : : : ; dg.
This setting leads to the number of iterations k(n) � log(�1=�min)

log a�
= 2 log n.

The performance of the method is illustrated by means of the following examples.
We consider the model Yi = g(X>

i �1; : : : ;X
>
i �m) for m between 1 and 3. The design

X1; : : : ; Xn is modeled randomly with independent components so that every component
of (Xi+1)=2 follows B(1; �) -distribution. The parameter � controls the skewness of the
beta-distribution with � = 1 corresponding to the uniform design. We also set

m = 1 : g(u) = u sin(
p
5u) and � = (1; 2; 0; : : : ; 0)>=

p
5;

m = 2 : g(u1; u2) = (u31 + u2)(u1 � u32) and �1 = (1; 1; 0; : : : ; 0)>=
p
2,

�2 = (1;�1; 0; : : : ; 0)>=p2;
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m = 3 : g(u1; u2; u3) = (u31 + u2)(u1 � u32) + u3 and �1 = (1; 1; 1; 0; : : : ; 0)>=
p
3,

�2 = (1;�1; 0; : : : ; 0)>=p2 , �3 = (1; 1;�2; : : : ; 0)>=p6.

The �rst situation corresponds essentially to example 8.2 from Li (1992). The pro-
cedure utilizes the biweight kernel K(jxj2) = (1 � jxj2)2+. The quality of estimation is
measured using the criterion kR�(I � Pm)k2 with kAk22 = trAA>, where Pm is the

projector on the estimated index space bI; see Section 5.2 for more details.
Our objective is to illustrate the following features of the procedure :

� How the quality of estimation improves during iteration;
� Dependence on the sample size n and the dimensionality d.
� How the results depend on skewness of the design and on the error variance �2.
� Relative performance of the method.

For the latter, we compare the performance of our iterative procedure to sliced inverse
regression II (SIR II), principal Hessian directions (PHD) (see, for example, Li (1991,
1992, 2000)), and our �rst step estimate which is actually the version of the usual average
derivative estimator (ADE), cf. King (1997). The parameters of all the competitors were
selected to optimize the criterion at hand while our procedure was implemented with the
default parameter choice. Note that for our examples SIR I, which is based on means over
di�erent slices fails to recover the dimension reduction space. We do not report results
for SIR and PHD for the tuird case (m = 3) since both methods only recover a two
dimensional subspace.

Figure 1 illustrates the quality of estimation of the index space for m = 1, d = 10,
n = 200 and � = :1, providing the view obtained by a one step estimate with the optimized
bandwidth (left) and the view gained from our procedure (right). Simulation results for
di�erent dimensionality d and sample size n are given in Tables 1, 2 and 3.

-1.0 -0.5 0.0 0.5 1.0

-0.
2

0.0
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0.4
0.6
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best one step estimate

R m
T x

y
an

d
f(x

)

-1.0 -0.5 0.0 0.5 1.0

-0.
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0.0
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0.4
0.6

0.8
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final estimate

R m
T x

y
an

d
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)

Figure 1: Best view for a one step estimate (left) and view from the last iteration (right) for

g(u) = u sin(
p
5u), m = 1, d = 10, n = 400 and � = :1. Values of y and f(x) are indicated by Æ

and � respectively.

All results show a considerable gain using the proposed iterative method. This gain

9



Table 1: Case m = 1: mean loss

R�(I � P̂m)



2
=

R�



2
for the \best" one step estimate (ADE)

and the �rst, second, fourth, eighth and �nal iteration, SIR II and PHD. Results are obtained from

N = 250 simulations. The interquartile range of the losses is given in parentheses.

d n � � ADE 1st 2nd 4th 8th �nal SIR II PHD

3 200 0.1 1 0:0442
(0:032)

0:0508
(0:038)

0:0419
(0:031)

0:0359
(0:026)

0:0271
(0:019)

0:0236
(0:014)

0:106
(0:050)

0:113
(0:072)

4 200 0.1 1 0:0558
(0:034)

0:0606
(0:033)

0:0484
(0:024)

0:0417
(0:025)

0:0339
(0:02)

0:0309
(0:018)

0:121
(0:061)

0:122
(0:066)

6 200 0.1 1 0:0807
(0:036)

0:0829
(0:034)

0:0631
(0:024)

0:0536
(0:024)

0:0437
(0:02)

0:0389
(0:018)

0:150
(0:059)

0:159
(0:066)

10 100 0.1 1 0:343
(0:14)

0:341
(0:14)

0:208
(0:083)

0:146
(0:067)

0:105
(0:047)

0:0903
(0:04)

0:283
(0:107)

0:323
(0:121)

10 200 0.1 1 0:172
(0:066)

0:173
(0:065)

0:109
(0:036)

0:0854
(0:026)

0:0646
(0:02)

0:0537
(0:017)

0:205
(0:058)

0:220
(0:067)

10 400 0.1 1 0:101
(0:029)

0:103
(0:031)

0:0698
(0:024)

0:0573
(0:019)

0:0438
(0:015)

0:0369
(0:012)

0:150
(0:045)

0:158
(0:046)

10 800 0.1 1 0:0619
(0:019)

0:0642
(0:019)

0:0479
(0:015)

0:0409
(0:013)

0:032
(0:011)

0:0271
(0:0084)

0:122
(0:031)

0:122
(0:033)

increases drastically as the dimensionality d grows. The results from Table 2 for d = 10
and di�erent � -values clearly illustrate the bias-variance trade-o�. For the �rst step
estimate as well as for the \best" one-step estimate the bias dominates and the quality of
estimation only weakly depends on the noise variance while for our procedure the bias is
essentially reduced during iteration and the �nal quality of estimation is proportional to
the standard deviation �. We also observe a very stable performance of the procedure in
case of moderate error variance and design asymmetry.

SIR II initial step 2 step 4 step 8 final

1
2

3
4

d = 10 m= 2 n= 200

SIR II initial step 2 step 4 step 8 final

1
2

3
4

d = 10 m= 2 n= 400

SIR II initial step 2 step 4 step 8 final

1
2

3
4

d = 10 m= 2 n= 800

Figure 2: Simulation results in terms of
p
nkR�(I � P̂m)k2

ÆkR�k2 for m = 2, d = 10 and

n = 200; 400; 800 for the estimates obtained by SIR II, initial estimate, 2nd, 4th, 8th and �nal

iteration

The box-plots in Figure 2 provide some information about the distribution of the crite-
rion

p
nkR�(I�P̂m)k2 for the \best" one step estimate and after the �rst, second, fourth,

eighth and �nal iteration for d = 10, m = 2 and di�erent sample size n. Results displayed
are obtained from N = 250 simulations. The results con�rm the root-n consistence of the
�nal estimate as claimed by Theorem 5.1 from Section 5. Note that the losses even being
multiplied by

p
n are still slightly improved with growing n.
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Table 2: Case m = 2: mean loss kR�(I � P̂m)k2
ÆkR�k2 for the \best" one step estimate (ADE),

the �rst, second, fourth, eighth and �nal iteration, SIR II and PHD. Results are obtained from

250 simulations (100 for d > 10). The interquartile range of the losses is given in parentheses.

d n � � ADE 1st 2nd 4th 8th �nal SIR2 PHD

3 200 0.1 1 0:0203
(0:015)

0:0207
(0:016)

0:0142
(0:01)

0:0124
(0:0085)

0:0116
(0:0074)

0:0114
(0:0076)

0:0647
(0:042)

0:0728
(0:056)

4 200 0.1 1 0:0398
(0:019)

0:0398
(0:019)

0:0273
(0:013)

0:0224
(0:011)

0:0203
(0:01)

0:0208
(0:0099)

0:102
(0:045)

0:11
(0:055)

6 200 0.1 1 0:0832
(0:033)

0:0837
(0:034)

0:058
(0:021)

0:048
(0:019)

0:037
(0:016)

0:0313
(0:014)

0:14
(0:049)

0:162
(0:052)

10 100 0.1 1 0:327
(0:092)

0:33
(0:095)

0:223
(0:072)

0:189
(0:062)

0:181
(0:08)

0:182
(0:087)

0:315
(0:083)

0:37
(0:093)

10 200 0.1 1 0:18
(0:046)

0:18
(0:046)

0:11
(0:033)

0:0897
(0:027)

0:0616
(0:019)

0:0472
(0:016)

0:209
(0:051)

0:246
(0:06)

10 400 0.1 1 0:109
(0:025)

0:109
(0:025)

0:0617
(0:016)

0:0484
(0:014)

0:0289
(0:009)

0:0216
(0:0062)

0:146
(0:038)

0:169
(0:039)

10 800 0.1 1 0:0636
(0:014)

0:0636
(0:014)

0:0404
(0:0092)

0:0325
(0:0083)

0:0192
(0:0056)

0:012
(0:0033)

0:105
(0:023)

0:114
(0:026)

20 800 0.1 1 0:162
(0:022)

0:166
(0:021)

0:107
(0:013)

0:0821
(0:014)

0:0462
(0:0088)

0:0227
(0:0047)

0:157
(0:027)

0:18
(0:03)

50 800 0.1 1 0:617
(0:15)

0:617
(0:15)

0:349
(0:056)

0:252
(0:03)

0:146
(0:033)

0:0623
(0:011)

0:265
(0:031)

0:324
(0:033)

10 400 0.05 1 0:107
(0:024)

0:107
(0:024)

0:0577
(0:015)

0:0444
(0:014)

0:0237
(0:0075)

0:0141
(0:004)

0:141
(0:036)

0:168
(0:037)

10 400 0.2 1 0:117
(0:028)

0:117
(0:028)

0:0766
(0:02)

0:0622
(0:016)

0:0444
(0:012)

0:0397
(0:01)

0:161
(0:04)

0:172
(0:041)

10 400 0.1 0.75 0:102
(0:023)

0:102
(0:025)

0:0628
(0:019)

0:0531
(0:018)

0:0306
(0:012)

0:0191
(0:0054)

0:153
(0:037)

0:165
(0:039)

10 400 0.1 1.5 0:11
(0:029)

0:115
(0:027)

0:0784
(0:024)

0:0789
(0:031)

0:0662
(0:039)

0:0424
(0:018)

0:19
(0:048)

0:197
(0:055)

Table 3: Case m = 3: mean loss kR�(I � P̂m)k2
ÆkR�k2 for the \best" one step estimate and

the �rst, second, fourth, eighth and �nal iteration, SIR II and PHD. Results are obtained from

N = 250 simulations (N = 100 in case of d > 10). The interquartile range of the losses is given in

parentheses.

d n � � ADE 1st 2nd 4th 8th �nal SIR2 PHD

10 800 0.1 1 0:0614
(0:013)

0:0614
(0:013)

0:0454
(0:01)

0:036
(0:0084)

0:0229
(0:0061)

0:017
(0:0036)

0:499
(0:14)

0:471
(0:19)

10 800 0.1 0.75 0:0677
(0:015)

0:0677
(0:015)

0:054
(0:013)

0:0476
(0:012)

0:0345
(0:011)

0:018
(0:0054)

0:535
(0:075)

0:467
(0:19)

10 800 0.1 1.5 0:0701
(0:016)

0:0701
(0:016)

0:0571
(0:013)

0:0532
(0:011)

0:0472
(0:013)

0:0293
(0:0093)

0:416
(0:2)

0:229
(0:065)

5 Main results

In this section we present some results describing the properties of the previously intro-
duced basic procedure. The modi�ed procedure can be considered similarly.

5.1 Assumptions

We consider the following assumptions:

Assumption 1. (Kernel) The kernel K(�) is continuously di�erentiable, monotonously
decreasing function on IR+ with K(0) = 1 and K(x) = 0 for all jxj � 1.

Assumption 2. (Errors) The random variables "i in (1) are independent and normally
distributed with zero mean and variance �2 .
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Assumption 3. (Link function) The function g from (8) is two times di�erentiable
with a bounded second derivative, so that, for some constants Cg and for all u; v 2
IRm , it holds

jg(v) � g(u) � (v � u) g0(u)j � Cg ju� vj2;
Assumption 4. (Range of parameters hk, �k ) The parameters of the procedure

ful�ll �1 = 1, �min = n�1=3, h1 = C0n
� 1

4_d with a constant C0 � 1, hmax � 1 and
adha

m
� � 1.

Our last assumption concerns the design properties. In what follows we assume de-
terministic design, that is, X1; : : : ;Xn are non-random points in IRd. Note however that
the case of a random design can be considered as well, supposing X1; : : : ;Xn i.i.d. ran-
dom points in IRd with a design density p(x). Then all the result should be understood
conditionally on the design.

In order the algorithm to work, we have to suppose that the design points (Xi) are
\well di�used" and, as a consequence, all the matrices Vk(Xi) are well de�ned.

The estimation procedure utilizes the matrices Sk with S2k = I+��2k B̂k�1B̂>k�1 where

B̂k�1 is the estimate of the matrix B� constructed at the preceding iteration step. We

also introduce an `ideal' matrix S�k =
�
I + ��2k B�(B�)>�1=2 and de�ne the matrix

Uk = (S�k)
�1S2k(S

�
k)
�1:

This matrix Uk characterizes the accuracy of estimating the matrix B� by B̂k�1 . If
B̂k�1 = B� , then Uk = I . We shall see that these matrices Uk are typically close to I .
De�ne now, given a matrix U and k � k(n);

Zij;k = h�1k S�k(Xj �Xi); i; j = 1; : : : ; n;

Ni;k(U) =
nX

j=1

K
�
Z>
ij;k U Zij;k

�
; i = 1; : : : ; n;

Vi;k(U) =
nX

j=1

�
1

Zij;k

��
1

Zij;k

�>
K
�
Z>
ij;k U Zij;k

�
; i = 1; : : : ; n:

Our design assumption means in particular that the (d+1)�(d+1) -matrices Vi;k(U) are
well de�ned for all U close to I and for all i � n.

We use below the notation kAk for the sup-norm of A : kAk = sup� jA�j=j�j .
Assumption 5. (Design) There exist constants CV , CK , CK0 and some � > 0, such

that for all matrices U satisfying kU � Ik � � and for all k � k(n) the following
conditions hold :

(1) the inverse matrices Vi;k(U)
�1 are well de�ned and

Ni;k(U)
Vi;k(U)�1 � CV ; i = 1; : : : ; n;

(2) For j = 1; : : : ; n

nX
i=1

1

Ni;k(U)
K
�
Z>
ij;k U Zij;k

�
� CK ;

nX
i=1

1

Ni;k(U)

���K 0
�
Z>
ij;k U Zij;k

���� � CK0 :

Here K 0 means the derivative of the kernel K.
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Remark 5.1 One can easily checked that for the case of a random design with a con-
tinuous positive density, one can �x some constant CV , CK and CK0 depending on the
dimension d and design density only and such that the conditions from Assumption 5 are
ful�lled with a high probability converging exponentially fast to 1 as n grows.

In what follows by C;C1; C2; : : : we denote generic constants depending on d, Cg,
CV , CK , CK0 ,  `, L and � only.

5.2 Loss of information caused by estimated e.d.r.

An important characteristic of the estimated e.d.r. Rm is the loss of information caused
by this reduction. Due to the representation (8), the information contained in a unit vector
v 2 IRd can be measured by the value jR�vj . A loss of information occurs if jR�vj > 0
but jRmvj = 0 . Let �� be the projector in IRd onto the true index space I and similarly,
Pm denote the projector in IRd onto the estimated index space Î corresponding to the
e.d.r. Rm , that is Î = ImR>

m . Then the total loss of information by e.d.r. Rm can be
measured by the value

kR�(I �Pm)k2
where kAk2 means the Euclidean norm of the matrix A, that is, kAk22 = trAA> =
trA>A. In the sequel we use the following obvious inequalities: kAk � kAk2 �

p
m kAk,

where m is the rank of A.
The next result claims that the loss of information caused by the e.d.r. Rm is of order

n�1=2.

Theorem 5.1 Let Rm be de�ned by (10). For m � 3 , there exists a sequence {n ! 0
as n!1 such that under Assumptions 1 through 5, it holds for suÆciently large n and

every z � 1 :

P

�
kRm(I ���)k2 >

2zH1p
n

+ Ct2nn
�2=3

�
< z e�(z

2�1)=2 +
3k(n)

n
;

P

 
kR�(I �Pm)k2 >

2zH1p
n(1� {n)

+ Ct2nn
�2=3

!
< z e�(z

2�1)=2 +
3k(n)

n
;

with tn = (1 + 2 log n+ 2 log logn)1=2 and

H1 =
p
2 �CV CK

� 
p
L;

� = max
i=1;:::;n

max
`=1;:::;L

j `(Xi)j: (11)

5.3 Estimation of the index space

By construction, R� is an orthogonal mapping from IRd to IRm, that is, R�(R�)> is
diagonal m�m -matrix with the diagonal elements �1; : : : ; �m. Moreover, the product

�� = (R�)>
�R�(R�)>

��1
R� is the projector in IRd onto the corresponding index space

I. Similarly Pm = R>
m(RmR

>
m)

�1Rm is the projector onto the estimated e.d.r. space.
Thus the quality of the identi�cation of the true index space can be quali�ed with the
error of estimating �� with Pm. We encounter the following identi�ability problem : if,
for instance, the last eigenvalue �m is (close to) zero, then the corresponding eigenvector
em is not uniquely de�ned. The next result states that if the eigenvalue �m is separated
away from zero, the estimated projector Pm recovers �� at the rate n�1=2.
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Theorem 5.2 Let m � 3 and Assumptions 1 through 5 hold. For n suÆciently large,

P

 
k�� �Pmk2 >

2
p
2�

�1=2
m zH1p

n(1� {n)
+ Ct2nn

�2=3

!
� z e�(z

2�1)=2 +
3k(n)

n
;

with {n and H1 from Theorem 5.1.

Remark 5.2 Since �m is the m th eigenvalue of the matrix M�
L, the condition �m > 0

rely both on the model function f and on the basis system  1; : : : ;  L. If �
�
m is the m th

eigenvalue of M�, then the ratio �m=�
�
m characterizes the quality of the basis f `g. This

value typically approaches one as L grows. Our numerical examples are also in favour of
a larger L.

5.4 Estimation of the matrix B�

In this section we present some results describing the quality of estimating the vectors ��`
by the proposed estimation procedure. The �rst result describes the accuracy of the �rst
step estimate, and the next result describes the quality of the �nal estimate.

5.4.1 The �rst-step approximation

Let �̂1;`, ` = 1; : : : ; L be the family of the estimates obtained at the �rst step of the
iterative procedure with �1 = 1, S1 = I and some h1.

Proposition 5.1 Under Assumptions 1 through 5, it holds for every ` � L

�̂1;` � ��` = C1;` h1 +
�1;`
h1
p
n
;

where C1;` is a constant and �1;` is a zero mean normal random vector in IRd satisfying

C1;` �
p
2Cg CV

� ` ;

Ej�1;`j2 � 2�2 C2
V C

2
K
� 
2
` :

Remark 5.3 The bandwidth h1 should be at least of order n�1=d to provide at least
d + 1 in almost every spherical neighborhood of radius h1. The optimization of the risk
of the �rst step estimate under the constraint h1 � Const: h�1=d leads to the following
rule for the choice of h1 : h1 = Const: n�

1
4_d . Hence, we get the accuracy for �̂1;` :

j�̂1;` � ��` j � Const: n�(
1
4
^ 1
d):

5.4.2 Accuracy of the �nal estimate

Let �̂` 's be the estimates of ��` 's obtained at the last iteration, ` = 1; : : : ; L. As previ-
ously, B̂ denotes the matrix composed by the vectors �̂`. It turns out that the quality of
estimation delivered by B̂ is not homogeneous w.r.t. to the orientation in the space IRd.
This heterogeneity is caused by application of elliptic windows for estimating the gradient
vectors F (Xi). To mimic this property, we introduce for every k � k(n) an operator

( d�d -matrix) P �
�k

=
�
I + ��2k B�(B�)>��1=2 = (S�k)

�1 which, roughly speaking, multi-
ply by the factor �k within the index space I while, being restricted to the orthogonal
subspace I?, it coincides with the identity mapping.

14



Theorem 5.3 Let m � 3 and Assumptions 1 through 5 hold. There exist a Gaussian
zero mean random d�L -matrix �� 2 IRdL such that, with � = �k(n) and n large enough

P

�P �
� (B̂ � B�)�

��p
n


2

> C1t
2
nn

�2=3

�
� 3k(n)� 1

n

and
E k��k22 � 2�2 � 

2
LC2

V C
2
K = H2

1 :

Corollary 5.1 Under the conditions of Theorem 5.3, for every z � 1

P

�P �
� (B̂ � B�)


2
>
zH1p
n

+C1t
2
nn

�2=3

�
� z e�(z

2�1)=2 +
3k(n)� 1

n
:

6 Conclusions and outlook

We introduce a new method of dimension reduction based on the idea of structural adap-
tation. The method applies for a very broad class of regression models under mild as-
sumptions on the underlying regression function and the regression design. The procedure
is fully adaptive and does not require any prior information. The results claim that the
proposed procedure delivers the optimal rate n�1=2 of estimating the index space pro-
vided that the e�ective dimensionality of the model is not larger than 3. The simulation
results demonstrate an excellent performance of the procedure for all considered situa-
tions. An important feature of the method is that it is very stable with respect to high
dimensionality and for a non-regular design.

If the e�ective dimension m exceeds 3, then the procedure still applies and allows to
estimate the index space but the corresponding accuracy would be worse than n�1=2. A
detailed study for this situation is an important topic of further research.

The procedure can be easily extended to the situation with a multivariate response
variable Y 2 IRp with p > 1. The underlying multi-index assumption remains of the same
functional form : E (Y j X) = f(x) = g(X>�1; : : : ;X

>�m) where g is a vector function
on IRm with values in IRp. This means that the gradient Fj = rfj of each component
fj of f belongs to the index space spanned by vectors �1; : : : ; �m and one can utilize the
same ideas as previously for estimating the index space I. The only di�erence is that the
basis functions f `g should also be vectors in IRp. A reasonable example corresponds
to the procedure which estimates for every component fj, j = 1; : : : ; p, of the regression
function f 2 IRp the vectors ��1;j ; : : : ; �

�
L;j with

��`;j =

nX
i=1

Fj(Xi) `(Xi); ` = 1; : : : ; L;

and the same  ` 's and then utilizes the total collections of the vectors f�̂`;jg with ` =
1; : : : ; L and j = 1; : : : ; p for estimating the index space I.

One more open question corresponds to the case of an unknown e�ective dimension.
This immediately leads to the following two problems: estimation of m and testing a
m -index hypothesis. An important feature of the proposed iterative procedure is that it
does not rely on the speci�c value of m. One can therefore expect that the matrix B̂ from
the last step of the algorithm, can be used for answering the above mentioned problems.

Another interesting issue arises when considering multiple time series and especially
�nancial data. We regard such extensions as topics for further research.
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One more important question is semiparametric eÆciency. Our procedure is shown to
be rate optimal. In the single-index situation there are several methods which are also
asymptotically eÆcient in the semiparametric sense, see e.g. Carroll et al. (1997). For
our procedure this issue needs to be studied further.

7 Appendix A: Proofs

Here we collect the proofs of the assertions formulated previously. All our results are based
on the following technical assertion describing an improvement of the estimate B̂ at each
iteration step.

7.1 One-step improvement

Suppose that we are given some �xed numbers h and � (which mean the current values
hk and �k ) and a �xed d�L -matrix B which can be viewed as an approximation B̂k�1
of B� obtained at the previous step. Set also

SB =
�
I + ��2BB>

�1=2
;

VB(Xi) =
nX

j=1

�
1
Xij

��
1
Xij

�>
K

� jSBXij j2
h2

�
;

�
f̂B(Xi)

F̂B(Xi)

�
= VB(Xi)

�1
nX

j=1

Yj

�
1
Xij

�
K

� jSBXij j2
h2

�
; (12)

�̂B;` =
1

n

nX
i=1

F̂B(Xi) `(Xi); (13)

where, recall, Xij = Xj�Xi, and de�ne the matrix B̂B with columns �̂B;` , ` = 1; : : : ; L.

We aim to evaluate the estimation errors B̂B �B�. To describe the results, we introduce

the matrix (linear operator) P �
� =

�
I + ��2B�(B�)>��1=2. De�ne also for some positive

Æ < �=4 , the set BÆ;� by

BÆ;� =
n
B :

P �
� (B � B�)


2
� Æ
o
:

Proposition 7.1 Let Assumptions 1 through 5 hold. Then there exists Gaussian random

d�L -matrix � such that it holds with � = 2Æ=�+ Æ2=�2

P

 
sup

B2BÆ;�

P �
� (B̂B � B�)�

�

h
p
n


2

>

p
2Cg CV

� 
p
L

(1� �)3=2
h �2 +

� � 
p
LC�;n �

h
p
n

!
� 2

n
;

where

C�;n =
1

2

 p
2CV CK0

(1� �)2
+

2
p
2C2

V CK0 CK

(1� �)3

!�
2 +

p
(3 + dL) log(4n)

�
(14)

and

E k�k22 � 2�2C2
V C

2
K
� 
2
L: (15)

Before prove this statement, we present one straightforward corollary.
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Corollary 7.1 It holds under Assumptions 1 through 5 for every z � 1

P

 
sup

B2BÆ;�

P �
� (B̂B � B�)


2
> � 

p
L

 p
2Cg CV h �

2

(1� �)3=2
+
z
p
2 � CV CK

h
p
n

+
� C�;n�

h
p
n

!!
� z e�(z

2�1)=2 +
2

n
:

Indeed, the Gaussian vector � 2 IRdL ful�lls with every z � 1

P

�
k�k2 � z

q
E k�k22

�
� z e�(z

2�1)=2;

see Lemma 9 in HJS01, and the assertion follows from Proposition 7.1.
Proof of Proposition 7.1 : We follow the line of the proof of Proposition 2 in HJS01
and focus here only on the essential points omitting technical details.

It is useful to de�ne

u = ��1P �
� B; U = P �

�

�
I + ��2BB>

�
P �
� = (P �

� )
2 + uu>;

and similarly

u� = ��1P �
�B�; U� = P �

�

�
I + ��2B� (B�)>

�
P �
� = I;

so that u; u� are d�L -matrices and U; U� are d�d symmetric matrices. Clearly
B = B� implies U = I and the condition kB � B�k2 � Æ implies ku� u�k2 � Æ=�, that
is, the inclusion B 2BÆ;� is equivalent to u 2 fu : ku� u�k2 � Æ=�g . Due to Lemma 7.7
from Appendix B it also follows kU � U�k = kuu> � u�(u�)>k � � = 2Æ=� + Æ2=�2 for
all such u.

Next, for every i; j � n , de�ne

Zij = h�1 (P �
� )

�1 (Xj �Xi);

Vi(U) =

nX
j=1

�
1
Zij

��
1
Zij

�>
K(Z>

ij U Zij);

bsi(U) = h�1Vi(U)�1
nX

j=1

�
1
Zij

�
YjK(Z>

ij U Zij):

It is easy to check that bsi(U) =
 
h�1f̂B(Xi)

P �
� F̂B(Xi)

!
and hence,

P �
� �̂B;` = Ed n�1

nX
i=1

ŝi(U) `(Xi);

where Ed denotes the projector from IRd+1 onto IRd keeping the last d coordinates.
The model equation (2) implies

bsi(U) = si(U) + �i(U)

with

si(U) = h�1 Vi(U)�1
nX

j=1

�
1
Zij

�
f(Xj) K(Z>

ij U Zij);

�i(U) = h�1 Vi(U)�1
nX

j=1

�
1
Zij

�
"jK(Z>

ij U Zij);
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so that

P �
� (�̂B;` � ��`) =

1

n

nX
i=1

�Ed si(U)� P �
�F (Xi)

	
 `(Xi) + Ed n�1

nX
i=1

�i(U) `(Xi):

Clearly �`(U) = Edn
�1
Pn

i=1 �i(U) `(Xi) is for every U a linear combination of the
Gaussian errors "i and therefore it is also a Gaussian vector in IRd. We de�ne �(U) as
d�L matrix with columns �`(U) and set � = �(U�). It is easy to see that the following
three statements imply the desirable result :

sup
u : ku�u�k2�Æ=�

jEd si(U)� P �
�F (Xi)j �

p
2Cg CV

(1� �)3=2
h�2; i = 1; : : : ; n; (16)

P

 
sup

u : ku�u�k2�Æ=�
k�(U)� �(U�)k2 >

�C�;n�

h
p
n

!
� 2

n
; (17)

with U = (P �
� )

2 + uu> and U� = I , and for all ` = 1; : : : ; L

Ej�`(U�)j2 � 2�2C2
V C

2
K
� 
2
`

h2n
: (18)

To check these statements, the following lemma will be useful.

Lemma 7.1 Let kU � Ik � � < 1. Then for all i; j with Z>
ij U Zij � 1, it holds

jZij j2 � (1� �)�1.

Proof. Note that the inequalities Z>
ij U Zij � 1 and kU � Ik � � imply���Z>

ij U Zij � jZij j2
��� = ���Z>

ij (U � I)Zij

��� � � jZij j2

and hence jZij j2 � (1� �)�1Z>
ij U Zij .

First we evaluate the \bias" term Ed si(U)� P �
� F (Xi) . Since�

h�1f(Xi)
P �
� F (Xi)

�
= Vi(U)�1

nX
j=1

�
1
Zij

��
1
Zij

�> �
h�1f(Xi)
P �
� F (Xi)

�
K(Z>

ij U Zij)

= h�1 Vi(U)�1
nX

j=1

�
1
Zij

� n
f(Xi) + (Xj �Xi)

>F (Xi)
o

K(Z>
ij U Zij)

it holds

si(U)�
�
h�1f(Xi)
P �
� F (Xi)

�
= h�1 Vi(U)�1

nX
j=1

�
1
Zij

� n
f(Xj)� f(Xi)� (Xj �Xi)

> F (Xi)
o
K(Z>

ij U Zij)

= h�1 Vi(U)�1
nX

j=1

�
1
Zij

�
rijK(Z>

ij U Zij)

where in view of (8)

rij = g(R�Xj)� g(R�Xi)� (R�Xj �R�Xi)
> g0(R�Xi):
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The use of P �
�B

�(B�)>P �
� = �2(I � (P �

� )
2) and kI � (P �

� )
2k � 1 provide

j(B�)>Xj � (B�)>Xij2 = (Xj �Xi)
>B�(B�)>(Xj �Xi)

=
�
(P �

� )
�1(Xj �Xi)

�>
P �
� B�(B�)> P �

� (P
�
� )

�1(Xj �Xi)

= h2 �2 Z>
ij

�
I � (P �

� )
2
�
Zij

� h2 �2 jZij j2

which also implies

jR�Xj �R�Xij = j(B�Om)
>Xj � (B�Om)

>Xij2 � h2 �2 jZij j2:
This yields by Lemma 7.1 and Assumption 3 for every pair (i; j) with Z>

ij U Zij � 1 :

jrij j � Cg h
2 �2

1� �
; 1 + jZij j2 � 1 +

1

1� �
� 2

1� �

and using Assumptions 5 we bound

jEd si(U)� P �
� F (Xi)j � h�1

������Vi(U)�1
nX

j=1

�
1
Zij

�
rijK(Z>

ij U Zij)

������
� Cg h �

2

1� �
kVi(U)k�1

������
nX

j=1

�
1 + jZij j2

�1=2
K(Z>

ij U Zij)

������
�

p
2(1� �)�3=2 Cg CV h �

2

and (16) follows.
Further we study the stochastic components �`(U). It follows directly from the de�-

nition that there are vector coeÆcients ci;`(U) such that

�`(U) =

nX
i=1

ci;`(U)"i:

We now apply the following two technical results from HJS01 (see Lemmas 3, 10 there)
for a particular case with L = 1 and  ` � 1. Extension to general L and  ` 's is
straightforward.

Lemma 7.2 It holds

(i)

nX
i=1

jci;`(U�)j2 � 2C2
V C

2
K
� 
2
`

h2n
;

(ii) sup
U : kU�Ik��

nX
i=1

jci;`(U)j2 �
2C2

V C
2
K
� 
2
`

(1� �)h2n
;

(iii) For every unit vector e 2 IRd

sup
U : kU�Ik��

 d

dU
e>ci;`(U)

 � ��� `

nh

with

�� =
p
2(1� �)�3=2CV CK0 + 2

p
2 (1� �)�5=2C2

V CK0CK :
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(iv) For every unit vector e 2 IRd

sup
u : ku�u�k2�Æ=�

 ddue>ci;`(U)
 � �0�

� `

nh

with U = Uu = (P �
� )

2 + uu> and

�0� = ��(1� �)�1=2 =
p
2 (1� �)�2CV CK0 + 2

p
2 (1� �)�3C2

V CK0CK :

Lemma 7.3 Let r � 0 and let vector-functions ai(u) with u 2 IRp obey the conditions

sup
ju�u�j�r

���� ddu ai(u)
���� � �; i = 1; : : : ; n:

If "i are independent N(0; �2) -distributed random variables, then

P

 
sup

ju�u�j�r

1p
n

�����
nX
i=1

fai(u)� ai(u
�)g"i

����� > �� r
�
2 +

p
(3 + p) log(4n)

�!
� 2

n
:

Lemma 7.2, (i) implies (18). The statement (17) follows from Lemma 7.2, (iv), and
Lemma 7.3 applied to the matrix �(U) 2 IRdL with columns �`(U) and with U = Uu =
(P �

� )
2 + uu> , for details see again HJS01.

7.2 Proof of Theorem 5.3

To be able to apply Proposition 7.1 to the estimates �̂k;` at step k, we need that the

matrix B = B̂k�1 coming as the result of the preceding iteration belongs to the set B�;Æ

with � = �k and some Æ < �=4. Since the matrix B̂k�1 is random, we have to check that
the probability of the event fB̂k�1 2 B�k;Æg = fB :

P �
� (B �B�)


2
� �g is suÆciently

large. Further we show that this property is ful�lled if n is large enough.
Let the numbers hk and �k be shown in the algorithm description, k = 1; : : : ; k(n) .

De�ne successively values Æk and �k , k = 1; : : : ; k(n) by �1 = 0 and

Æk = � 
p
L

 p
2Cg CV

(1� �k)3=2
hk �

2
k +

p
2 � CV CK tn
hk
p
n

+
� C�k;n �k
2hk

p
n

!
;

�k+1 = ��2k+1
�
2Æk�k + Æ2k

�
where tn = (1 + 2 log n+ 2 log log n)1=2.

Lemma 7.4 For m � 3 and n suÆciently large, the values �k 's ful�ll max
k�k(n)

�k < 1=4.

In addition, for the last iteration k(n), it holds

�n := � 
p
L

 p
2Cg CV

(1� �k(n))3=2
hk(n) �

2
k(n) +

�C�k(n);n �k(n)

hk(n)
p
n

!
� C1t

2
nn

�2=3:

Proof. See Lemma 5 in HJS01.

Next, successive application of the results of Propositions 7.1 and Corollary 7.1 with
tn = (1 + 2 log n+ 2 log log n)1=2 leads to the following
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Lemma 7.5 Let n be suÆciently large. There exists random sets A1 � : : : � Ak(n) such
that

P (Ak) � 1� 3k

n

and it holds on Ak P �
�k+1

(B̂k � B�)

2
� Æk; k = 1; : : : ; k(n)� 1:

Proof. See Lemma 6 in HJS01.

Now the result of Theorem 5.3 can be proved by one more application of Proposition 7.1
to the last step estimate B̂ = B̂k(n) with h = hk(n) � 1 and � = �k(n) � n�1=3; see again
HJS01 for the detailed derivation.

7.3 Proof of Theorem 5.1

Let B̂ be the last step estimate of the matrix B� . We know from Theorem 5.3 that, with
probability close to one, B̂ ful�lls the conditionsP �

� (B̂ � B�)

2
� � ; (19)

with � = �k(n) and some small � . This implies by Lemma 7.7 from Appendix BB̂ ���B̂

2
� � (20)

where �� denotes the projector on the index space I.
Recall that B̂ approximates the d�L -matrix B� of rank m. However, it is typically of

rank d. It is useful to introduce another d�L -matrix Bm of rank m which minimizes the

expression
B̂ �Bm


2
over all such matrices. The solution to this optimization problem

can be described explicitly via the diagonal decomposition of the matrix B̂>B̂ = Ô�̂LÔ
>

with an orthogonal matrix Ô and a diagonal matrix �̂L with non increasing eigenvalues,
cf. Lemma 2.1. We use the notation Im for the diagonal L�L -matrix with the �rst m
diagonal elements equal to 1 and the remaining ones equal to zero.

Lemma 7.6 (cf. Harville (1997, Theorem 21.12.4)) The d�L -matrix Bm = B̂ÔImÔ>

minimizes the norm
B � B̂

2
over all d�L -matrices B of rank m :

Bm = B̂ÔImÔ> = arg inf
B2Bm

B̂ �B

2

(21)

where Bm denotes the set of d�L -matrices of rank m.

Proof. Let B̂>B̂ = Ô�̂LÔ
>. Then it holds for the d�L -matrix ~B = B̂Ô

~B> ~B = O>B̂>B̂Ô = Ô>Ô�̂LÔ
>Ô = �̂L

that is, the columns of the matrix ~B are orthogonal and they are ranged in a way that
their norms decrease. This clearly implies

arg inf
B2Bm

 ~B �B

2
= ~BIm
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and the assertion of the lemma follows by usual change-of-basis argument.

Recall that we de�ne the e.d.r. matrix Rm by Rm = (B̂Ôm)
>, see (10). It follows

from the last lemma that Rm = (BmÔm)
>. Also, (20) and the de�nition of Bm (see (21))

imply B̂ � Bm
2
�
B̂ ���B̂


2
� � ;

and, since kP �
� k � 1,P �

� (Bm � B�)

2
�
B̂ � Bm

2
+
P �

� (B̂ � B�)

2
� 2� : (22)

This implies by Lemma 7.8 from Appendix B

kP�;m(Bm � B�)k2 � 2� (1� {)�1=2 (23)

where P�;m =
�
I + ��2BmB>m

��1=2
and { = 4�=�+4�2=�2. Now the result of Theorem 5.1

is a straightforward application of Theorem 5.3 and Lemma 7.9 from Appendix B.

7.4 Proof of Theorem 5.2

Let B̂ be the last step estimate of the matrix B� . We know from Theorem 5.3 that, with
probability close to one, B̂ ful�lls the condition (19) with � = �k(n) and some small � .

Next, let the matrices B̂m , and Rm of rank m be de�ned as in the proof of Theorem 5.1
so that the condition (22) is ful�lled. The projectors �� and Pm are de�ned as

�� = (R�)>
�
R�(R�)>

��1
R�;

Pm = R>
m

�
RmR>

m

��1
Rm:

The use of Lemma 7.11 of Appendix B provides

k�� �Pmk2 �
p
2��1=2m 2� (1� 4�=�� 4�2=�2)�1=2

and we end up as in the proof of Theorem 5.1.

Appendix B: Some matrix inequalities

Let B and B1 be two d�L -matrices and � be some positive number. De�ne the d�d -
matrix P� as

P� =
�
I + ��2BB>

��1=2
:

Here we collect some facts which can be obtained from the inequality

kP�(B1 �B)k2 � Æ (24)

with some small Æ � 0 . Here and in what follows kAk2 denotes the L2 -norm of the
matrix A, i.e. kAk22 = trAA>, and kAk is the sup-norm: kAk = supv2IRd jAvj=jvj.

Lemma 7.7 The condition (24) impliesP� �BB> �B1B
>
1

�
P�

 � 2�Æ + Æ2:

22



Proof. Since

kP�Bk2 =
P�BB>P�

 = �I + ��2BB>
��1

BB>

 � �2

(24) yieldsP� �B1B
>
1 �BB>

�
P�

 � 2
P�(B1 �B)B>P�

+ P�(B1 �B)(B1 �B)>P�


� 2 kP�(B1 �B)k2 kP�Bk+ kP�(B1 �B)k22
� 2Æ�+ Æ2

as required.

De�ne also

P�;1 =
�
I + ��2B1B

>
1

��1=2
:

Lemma 7.8 Let B and B1 ful�ll (24) for some Æ < �=4 . Then

kP�;1(B �B1)k2 �
Æq

1� 2Æ=�� Æ2=�2
:

Proof. Let � = 2Æ=�+ Æ2=�2. By Lemma 7.7P�P�2
�;1P� � I

 = ��2
P�(BB> �B1B

>
1 )P�

 � �

and hence, P�1
�;1P�

2 =
P�P�2

�;1P�

 � 1 + � ;P�;1P�1
�

2 =
(P�P�2

�;1P�)
�1
 � (1� �)�1:

Now

kP�;1(B �B1)k2 =
P�;1P�1

� P�(B �B1)

2

�
P�;1P�1

�

 kP�(B �B1)k2 �
P�;1P�1

�

 Æ � Æ(1� �)�1=2:

Next we consider the situation when both matrices B and B1 are of rank m with
some m < d . By � we denote the projector in IRd onto the subspace L = ImB .
Similarly �1 is the projector in IRd onto the subspace L1 = ImB1.

Lemma 7.9 Let d�L -matrices B and B1 of rank m ful�ll kP�(B �B1)k2 � Æ. Then
it holds

k(I ��)B1k2 � Æ:

Proof. Since P� is the unity operator within the subspace L? = Im(I � �), it easily
follows (I � �)P� = I � � (this fact is obvious when BB> and hence P� is a diagonal
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matrix, and the general case can be reduced to that one by an orthogonal transform).
Since also (I ��)B = 0, we derive

B1 = (� + I ��)B1

= �B1 + (I ��)(B1 �B)

= �B1 + (I ��)P�(B1 �B)

so that k(I ��)B1k2 � kP�(B1 �B)k2 � Æ.

Lemma 7.10 Let � and �1 be two projectors in IRd of rank m < d . Then

k�1 ��k2 =
p
2 k�(I ��1)k2 :

Proof. Note �rst that since � and I �� are orthogonal, it holds

k�1 ��k22 = k�1(I ��)� (I ��1)�k22 = k�1(I ��)k22 + k(I ��1)�k22 :
Now, since k�k22 = k�1k22 = m , we derive

k�1(I ��)k22 = k�1k22 � k�1�k22 = m� k�1�k22 ;
k(I ��1)�k22 = k�k22 � k�1�k22 = m� k�1�k22 ;

so that k�1(I ��)k2 = k(I ��1)�k2 and the assertion follows.

Let now B>B = O�O> be the single value decomposition (SVD) of the matrix B
where O is the unitary L�L -matrix and � is the diagonal matrix with non-increasing
eigenvalues. Let then m�d -matrix R be constructed due to (7) on the base of B, that
is, R = (BOm)

> where Om is the block of the �rst m columns of O. Clearly it holds
jRvj = jv>Bj for every v 2 IRd. Similarly we de�ne R1 via the SVD of B1.

The projector � in IRd onto the value space of B can be represented in the form

� = R>
�
RR>

��1
R . Similarly �1 = R>

1

�
R1R

>
1

��1
R1. Let �m denotes the smallest

eigenvalue of RR>.

Lemma 7.11 Let the matrices B;B1 of rank m ful�ll (24) with some Æ < �=4. Then

the associated projectors � and �1 ful�ll

k���1k2 �
p
2�1=2m Æ1;

where Æ1 = Æ(1� 2Æ=�� Æ2=�2)�1=2.

Proof. The condition (24) implies by Lemma 7.8 kP�;1(B �B1)k2 � Æ1 which yields by
Lemma 7.9

kR1(I ��)k2 = k(I ��)B1k2 � Æ1:

This and Lemma 7.10 provide

k���1k2 =
p
2 k�(I ��1)k2

=
p
2

R>
�
RR>

��1
R(I ��1)


2

�
p
2

R>
�
RR>

��1 kR1(I ��)k2

� Æ1
p
2

R>
�
RR>

��1 :
24



It remains to note thatR>
�
RR>

��12 = �RR>
��1

RR>
�
RR>

��1 = �RR>
��1 = ��1m

and the assertion follows.
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