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Abstract

We introduce a class of nonlinear dynamic processes, called compound au-
toregressive (CAR), and characterized by the conditional log-Laplace trans-
forms which are aÆne functions of the lagged values of the process. The
CAR processes resemble the linear autoregressive processes in that their
forecasting distributions at all horizons admit analytical expressions, and
can be used to derive the ergodicity conditions, the stationary distribution,
as well as the �ltering formula. Among the CAR processes we are able to
identify and describe all reversible processes, i.e. those with identical dis-
tributional properties in calendar and reverse time. In particular, we study
their nonlinear canonical decompositions that arise as extensions of non-
linear canonical decompositions of a gaussian AR(1) process and the Cox-
Ingersoll-Ross model. Estimation of CAR models can be performed using
either parametric or nonparametric methods. For illustration, a CAR model
is �tted to a series of �nancial returns, and its application to nonparametric
derivative pricing is also discussed.

Keywords: Nonlinear Dynamics, Laplace Transform, Nonlinear Canonical
Analysis, Cox-Ingersoll-Ross Process, Kernel Estimation, Derivative Pricing.

JEL Classi�cation: C14, C22.

R�esum�e

Nous introduisons une classe de mod�eles dynamiques non lin�eaires, dont les
propri�et�es sont similaires �a celles d'un processus autor�egressif gaussien. Les
mod�eles autor�egressifs compos�es (CAR) sont d�e�nis �a partir du logarithme
de la transform�ee de Laplace conditionnelle, suppos�ee aÆne en la variable
conditionnante. Nous donnons la forme n�ecessaire de la distribution invari-
ante, la condition d'ergodicit�e, la d�ecomposition canonique non lin�eaire, et
nous d�ecrivons tous les processus CAR r�eversibles. Ce type de mod�ele est
en�n appliqu�e �a une s�erie de rendements �nanciers et �a la valorisation non
param�etrique de produits d�eriv�es.

Mots cl�es: Dynamique non lin�eaire, Transform�ee de Laplace, D�ecomposition
canonique non lin�eaire, Processus de Cox-Ingersoll-Ross, Estimation par
Noyau, Valorisation de produits d�eriv�es.

Classi�cation JEL: C14, C22.



1 Introduction

The aim of this paper is to introduce nonlinear dynamic models, called
compound autoregressive processes (CAR), with the same type of properties
as a gaussian autoregressive model :

yt = �yt�1 + "t; "t IIN(0; �2):

Especially the gaussian dynamics lends itself easily to prediction making.
For instance the linear prediction at any horizon is given by : E(yt+hjyt) =
�hyt, that is depends on the power of the autoregressive coeÆcient. The
nonlinear predictions are also easily computed since :

E[Hj(yt+1)jyt] = �jHj(yt); j varying;

where Hj denotes the Hermite polynomial of degree j. This property allows
us to compute the prediction of any nonlinear transformation of y by ex-
panding this transformation on the basis of Hermite polynomials. Finally,
in a multivariate linear setup, it is also easy to derive the prediction of latent
factors by using the Kalman �lter.

The conditionally gaussian models are also important in �nancial ap-
plications. This is due to the simple expression of the conditional moment
generating function (or Laplace transform) :

E[exp�uytjyt�1] = exp[�u�yt�1 + u2�2

2
]:

For instance, a portfolio management based on an expected Constant
Absolute Risk Aversion (CARA) utility function is equivalent to a simple
mean-variance management. Moreover, for derivative pricing, explicit ex-
pressions of risk neutral distributions are easily derived from the Girsanov
theorem. Typical examples are the Black-Scholes and Vasicek models.

However, in applied �nance there is a pressing need for nonlinear dy-
namic models that are easily applicable to both prediction making and
derivative pricing. Nonlinear features to be accommodated arise from the
speci�c problems of interest, such as forecasting at various horizons, value
constrained variables, as for instance, interest rates, volatilities, intertrade
durations, or trade counts, that admit only nonnegative or discrete values.
In derivative pricing, nonlinearity arises from the form of dependence be-
tween the cash-
ow and price of underlying asset.

There exist three di�erent approaches that allow to specify a nonlinear
relation between Yt and Yt�1, say.

i) The joint distribution can be de�ned by the joint cumulative distribu-
tion function (cdf henceforth) F (yt; yt�1), which can be written as:

F (yt; yt�1) = C[F1(yt); F2(yt�1)];
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where F1 (resp. F2) is the marginal cdf of Yt (resp. Yt�1), and C is a copula,
that is a cdf whose marginal distributions are uniform on the interval [0,1],
[see e.g. Joe (1997)].

ii) The joint distribution can also be analyzed through the joint probabil-
ity density function (pdf henceforth) f(yt; yt�1) and its nonlinear canonical
decomposition:

f(yt; yt�1) = f1(yt)f2(yt�1)

(
1 +

1X
n=1

�n�n(yt)	n(yt�1)

)
;

where f1 (resp. f2) is the marginal pdf of Yt (resp. Yt�1), �n, 0 � �n �
1, is the decreasing sequence of nonlinear canonical correlations and �n (
resp. 	n) are the so-called current [resp. lagged] canonical variates. This
decomposition allows to distinguish the marginal e�ects in f1; f2 from the
time dependence e�ects in �n;�n;	n.

iii) Finally, the joint distribution can be characterized by the joint Laplace
transform [or moment generating function], de�ned as E exp(uYt + vYt�1),
for any u; v.

The latter approach seems better suited for �nancial applications due to
important role of the exponential function in �nance. This function appears,
for instance, in a) the formula of the CARA utility function, b) the de�nition
of a european call with a cash-
ow that is a simple function of an exponential
transform of geometric returns 1 c) standard speci�cations of the stochastic
discount factors used in derivative pricing.

This paper develops an approach based on the Laplace transform. We
introduce a class of nonlinear dynamic models, that are similar to gaus-
sian autoregressive processes with respect to their properties. We call them
compound autoregressive (CAR) processes . A CAR model is de�ned in Sec-
tion 2 in terms of the conditional log-Laplace transform, which is an aÆne
function of the past values of the process. We give the necessary form of
the invariant distribution of a CAR, and we explain how to perform predic-
tions at any horizon h. In Section 3 we consider the nonlinear prediction
problem. We examine spectral decomposition of the conditional expectation
operator. We show that the eigenvalues form a geometric sequence while the
associated eigenfunctions are polynomials of increasing orders. The time re-
versibility condition is discussed in Section 4. In particular, we describe
various reversible compound autoregressive models, such as the autoregres-
sive gaussian, the autoregressive gamma, and the compound Poisson pro-
cesses. A CAR process admits a nonlinear state space representation. The
corresponding �ltering and smoothing equations are presented in Section 5.
In Section 6 we consider multivariate extensions of CAR processes and we

1Note that a european call written on a price St+1 with payo� (St+1� kSt)
+, where k

is the moneyness strike, is a multiple of the call written on exp yt+1 with payo� (St+1=St�
k)+ = (exp yt+1 � k)+, where yt+1 is the geometric return of the underlying asset.
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derive the associated stationarity condition. Nonparametric statistical in-
ference is discussed in Section 7 and the CAR speci�cation is estimated on
a series of �nancial returns on Standard and Poor 500 in Section 8. Finally,
we discuss the nonparametric derivative asset pricing in Section 9, and we
conclude in Section 10.

2 The Autoregressive Speci�cation

In this section the dynamics of the process is de�ned by a Laplace transform
with autoregressive path dependence. For this reason, the model under
study shares some common features with a standard gaussian AR(1) process.
First, we de�ne the CAR process and introduce the forecasting formula.
Next we derive the ergodicity conditions.

2.1 De�nition

Let us consider a n-dimensional process Y = (Yt, t � 0) and denote by Yt�1
the information set including the lagged values of the process up to and
including t� 1.

De�nition 2.1 : The process Y is compound autoregressive of order p
[CAR(p)] if and only if the conditional distribution of Yt given Yt�1 admits
a conditional Laplace transform of the type:

E
h
exp(�u0Yt) j Yt�1

i
= exp

��a01 (u)Yt�1 � :::� a0p (u)Yt�p + b (u)
�
;

(2.1)
where ap 6= 0.

Thus we assume that the Log-Laplace transform of the conditional distri-
bution is an aÆne function of the p most recent lagged values of the process.
In particular Y is a Markov process of order p. The Laplace transform may
not be de�ned for all values u 2 R

n . It is known that in one dimensional
processes, it is de�ned on an interval including zero. The size of this interval
depends on the tails of the conditional distribution. In particular, its lower
bound is zero, when the decay rate of the right tail is less than exponen-
tial, and it is in�nite for a thin right tail. The same result holds for the
upper bound of the interval, determined by the left tail. In the sequel we
will assume that the Laplace transform is de�ned in an open neighbourhood
of zero 2. Under this assumption the Laplace transform characterizes the
distribution.

2We will not attempt to estimate the support of the Laplace transform, which would
be equivalent to examining the tails. Note that the conditional tails of �nancial returns
are generally thinner than or equal to exponential tails.
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Like in the class of gaussian autoregressive processes, a study of a CAR
process of order p is equivalent to examining a process of order one obtained
by stacking the lagged values into a vector of dimension p.

Proposition 2.1 : The process Y is a CAR(p) process if and only if the
process (eYt) = (Y 0t ; Y

0

t�1; :::; Y
0

t�p)
0 is a CAR(1) process.

Proof: Let us consider a CAR(p) process. The conditional Laplace trans-
form associated with the conditional p.d.f. of eY is:

E
h
exp(�v0 eYt) j eYt�1i

= E
h
exp(�v01Yt � v02Yt�1 � :::� v0pYt�p+1) j Yt�1

i
= E

h
exp(�v01Yt) j Yt�1

i
� exp(�v02Yt�1 � :::� v0pYt�p+1)

= exp
��[a01 (v1) + v02]Yt�1 � :::� [a0p�1 (v1) + v0p]Yt�p+1 � a0p(v1)Yt�p + b(v1)

�
QED

The above expression of the Laplace Transform de�nes a CAR(1) process
with:

a(v) =

266664
a1 (v1) + v2

:
:

ap�1 (v1) + vp
ap(v1)

377775 :

2.2 Examples

In the de�nition of the distribution in terms of its Laplace transform, we
do not distinguish the set of admissible values of the process. The process
can be continuously valued as well as discretely valued. Various examples
described below depend on the set of admissible values of the process Y .
For clarity of exposition, we consider univariate processes of order one.

Example 2.1 : Autoregressive gaussian process

When: Yt = �Yt�1 + "t, where ("t) is a standard gaussian white noise, we
get:

E [exp(�uYt) j Yt�1] = exp

�
�u�Yt�1 + u2

2

�
;

and a(u) = �u, b(u) = u2

2 .
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Example 2.2 : Integer valued process

This type of processes is useful in the queuing analysis. Let us assume that
Yt�1 counts the number of individuals in a queue at the end of period t� 1,
or equivalently at the beginning of period t. Let us denote by "t the number
of individuals arriving in the queue at period t and by Zt the number of
individuals among the waiting Yt�1 individuals who have not been served at
this period. We get :

Yt = Zt + "t:

It is not possible to specify a standard linear autoregression :

Yt = �Yt�1 + "t;

since Zt = �Yt�1 has to take integer values. However the determinis-
tic autoregression can be replaced by a stochastic autoregression, where the
individuals are randomly served with probability � :

Yt =

Yt�1X
i=1

Zi;t + "t;

where the variables Zi;t admit Bernoulli distribution B(1; �)
More generally let us introduce integer valued independent variables Zi;t,

i , t 2 N , and "t, t varying. We assume that the Z variables admit a Laplace
transform:

E [exp(�uZ)] = exp [�a(u)] ;
whereas the Laplace transform of " is:

E [exp(�u")] = exp [b(u)] :

Then the process de�ned by:

Yt =

Yt�1X
i=1

Zi;t + "t;

admits the conditional Laplace transform:

E
h
exp(�u0Yt) j Yt�1

i
= exp [�a (u)Yt�1 + b (u)] :

Yt arises as the sum of a random number of variables Zi; this is why the
process is called a \compound process"3.

Example 2.3 : Nonnegative valued process

Similarly, in order to build a CAR process with nonnegative real values, we
set:

3It is called thinning model in Grunwald et alii (1997)
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� exp[b (u)], the Laplace transform of a nonnegative variable �t;

� exp [�a (u)], the Laplace transform of another nonnegative variable,
with an in�nitely divisible distribution.

The latter example shows that the class of CAR models is quite large.
Indeed, we see that to characterize the Laplace transform of a nonnegative
variable, we can choose for function b any in�nitely di�erentiable function
on R

+ such that b(0) = 0 and exp b(u) satis�es the property of complete
monotonicity (see [18, Feller (1971)]):

8j; u : (�1)j d
j

duj
[exp b(u)] � 0:

Similarly we can select for function a any in�nitely di�erentiable func-
tion of R+ such that a(0) = 0, exp[�a(u)] satis�es the property of complete
monotonicity, and a(u) is an increasing function with alternating signs of
the derivatives (see [27, Joe (1997), Theorem A.1]).

2.3 Invariant distributions

Since a CAR(1) process is a Markov process of order one, we are interested
in �nding the invariant distributions of Y with Laplace transform:

E
�
exp(�u0Yt)

�
= exp [c (u)] : (2.2)

By the invariance property, we get:

exp [c (u)] = E
�
exp(�u0Yt)

�
= E

�
E
�
exp(�u0Yt) j Yt�1

��
= E

�
exp

��a0 (u) Yt�1 + b (u)
��

= exp [c[a (u)] + b (u)] :

Proposition 2.2 : The log-Laplace transform of an invariant distribution
of a CAR(1) process is a function c such that 4:

b(u) = c(u) � c[a(u)]:

Example 2.4 : For a gaussian autoregressive process, it is known that the
equation in Proposition 2.2 admits a unique solution c(u) = u2=[2(1 � �2)]
corresponding to the gaussian distribution N [1; 1=(1 � �2)], if j�j 6= 1, and
has no solution in the unit root case.

4Note that the c function satisfying this condition does not necessarily exist, and if it
exists it is not necessarily unique.
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Therefore, if an invariant distribution exists, we can parametrize the
conditional Laplace transform either by a and b, or by a and c. In the �rst
case the functional parameters a and b represent the time dependence and
distribution of the innovations [see examples 2.2, 2.3]; in the second case a
and c represent the time dependence and marginal distribution, respectively.
Under the latter parametrization, we get:

E
�
exp(�u0Yt) j Yt�1

�
= exp

��a0 (u) Yt�1 + c(u)� c[a(u)]
�
: (2.3)

2.4 Forecasts at various horizons

We derive the forecasting distribution [this approach is called density fore-
casting] at any horizon h for a CAR(1) process.

Proposition 2.3 : For a CAR(1) process we get:

E
h
exp(�u0Yt) j Yt�h

i
= exp

"
�aÆh(u)0Yt�h +

h�1X
k=0

b[aÆk(u)]

#
; (2.4)

where aÆh denotes the function a compounded h times with itself.

Proof: The result is obtained by recursion �
The forecasting formula simpli�es, when the process admits a stationary

distribution associated with the Log-Laplace transform c. Indeed we get:

h�1X
k=0

b[aÆk(u)] =
h�1X
k=0

n
c[aÆk(u)]� c[aÆ(k+1)(u)]

o
= c(u)� c[aÆh(u)]:

Corollary 2.1 : For a CAR(1) process with an invariant Log-Laplace trans-
form c, we get:

E
h
exp(�u0Yt) j Yt�h

i
= exp

h
�aÆh(u)0Yt�h + c(u)� c[aÆh(u)]

i
: (2.5)

We deduce an ergodicity condition for the process Y .

Corollary 2.2 : Let us consider a CAR(1) process with an invariant Log-
Laplace transform c. The conditional Laplace transform tends to a limit
independent of the conditioning variable if and only if:

lim
h!1

aÆh(u) = 0;8u:

Proof: It is clear that this condition is a necessary condition. It is suÆcient
since:

lim
h!1

c[aÆh(u)] = c[ lim
h!1

aÆh(u)] = c(0) = 0:

7



QED

We note that the limit corresponds to the stationary distribution:

lim
h!1

E
�
exp(�u0Yt) j Yt�h

�
= exp [c (u)] ;

which is necessarily unique.

Remark 2.1: A suÆcient condition for ergodicity is easily derived in the
unidimensional case, when the function a is the Log-Laplace transform of
an in�nitely divisible distribution on R+ . Indeed we know that a(u) � 0 for
u � 0, satis�es a(0) = 0, and is increasing and concave. We note that:

a(u) � a(0) +
da

du
(0) � u = da

du
(0) � u, for u � 0;

where da
du(0) � 0. Therefore if da

du (0) < 1, the solution of the recursive
equation uh = a(uh�1) tends to zero by the Lipschitz condition for any
initial condition u0. This is equivalent to:

lim
h!1

aÆh(u) = 0;8u � 0.

Example 2.5 : For a gaussian autoregressive process the conditional dis-
tribution at horizon h is N [�hYt�h; (1�2�2h)=(1��2)] = N [�hYt�h; 1+�

2+

� � �+�2(h�1)]. We see that aÆh(u)=�hu, c(u)�c[aÆh(u)] =
h

1
1��2 � �2h

1��2

i
u2

2 ,Ph�1
k=0 b[a

Æk(u)]=
�Ph�1

k=0 �
2h
�

u2

2 .

2.5 Invariance by aggregation

The class of CAR(1) processes is invariant by aggregation. Indeed let us
consider independent processes Yj;t, j = 1; :::; J , whose conditional Laplace
transforms are given by:

E
h
exp(�u0Yj;t) j Yj;t�1

i
= exp

��a (u)0 Yj;t�1 + bj (u)
�
,

and denote Yt =
PJ

j=1 Yj;t the aggregated process. We have:

E
h
exp(�u0Yt) j Yj;t�1; j = 1; :::; J

i
=

JY
j=1

E
h
exp(�u0Yj;t) j Yj;t�1

i

=

JY
j=1

exp
��a (u)0 Yj;t�1 + bj (u)

�

= exp

24�a (u)0 JX
j=1

Yj;t�1 +
JX

j=1

bj(u)

35
= exp

24�a (u)0 Yt�1 + JX
j=1

bj (u)

35 .
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Thus the aggregated process is Markov of order one, with a CAR repre-
sentation.

3 Analysis of the Conditional Expectation Oper-

ator

To examine more carefully the structure of temporal dependence, we derive
the spectral decomposition of the conditional expactation operator 5.

For ease of exposition we consider an univariate CAR(1) process. We
assume that this process is stationary and that Y has conditional moments
at any order. We denote by f(yt j yt�1) and f(yt) the conditional and the
marginal p.d.f. of the Y process, respectively.

3.1 Conditional moments

Proposition 3.1 : We have:

E [Y n
t j Yt�1] = Pn(Yt�1); (3.1)

where Pn is a polynomial of degree n, and its coeÆcient of the highest degree
is: �

da

du
(0)

�n
. (3.2)

Proof: We just need to identify the series expansions of:

E [exp(�uYt) j Yt�1] =
1X
n=0

un

n!
E [Y n

t j Yt�1] ,

and of:

exp [�a (u) Yt�1 + b (u)] =

1X
n=0

[�a (u) Yt�1 + b (u)]n

n!

=

1X
n=0

1

n!

 
1X
k=1

�
�da

k(0)

duk
uk

k!
Yt�1 +

dbk (0)

duk
uk

k!

�!n

,

to prove the proposition.

QED

In particular, the CAR processes are such that E(YtjYt�1) = �Yt + �,
that is they satisfy a linear AR(1) model as de�ned by Grunwald et alii
(1997).

5This is the discrete time analogue of the in�nitesimal generator examined in continuous
time models.
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3.2 Spectral decomposition of the conditional expectation

operator

We deduce from Proposition 3.1 the spectral properties of the conditional
expectation operator.

Proposition 3.2 : Let us consider the conditional expectation operator
 ! T de�ned by:

T (y) = E [ (Yt) j Yt�1 = y] : (3.3)

This operator admits real eigenvalues �n =
�
da
du (0)

�n
, n � 0, and the

eigenfunction associated with �n is a polynomial of degree n, Pn say.

Proof: From Proposition 3.1, the space of polynomial functions of degree
less or equal to n is invariant with respect to the conditional expectation
operator. The operator restricted to this space can be represented by a
diagonal matrix, with diagonal elements �j, j = 0; :::; n. The result follows
directly .

QED

Thus, for a CAR(1) process it is easy to predict both the exponential
and power transforms of Yt. Any transformation 	(Yt) can in practice be
expanded using the polynomial eigenfunctions:

	(Yt) =

1X
n=0

< 	; Pn > Pn(Yt);

and its expectation is:

E[	(Yt)jYt�1] =
1X
n=0

�
da

du
(0)

�n
< 	; Pn > Pn(Yt):

Corollary 3.1 : A necessary condition for the stationarity of an univariate
CAR(1) process is: ����dadu (0)

���� � 1:

Proof: Indeed the norm of the conditional expectation operator is less or
equal to one.

QED

This condition has to be compared with the suÆcient condition for er-
godicity

�� da
du (0)

�� < 1 derived in Remark 2.1.
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4 Reversible Processes

A number of �nancial applications in continuous time are based on one
dimensional di�usion processes. It is known that these processes are re-
versible, that is they have the same dynamics in calendar and reversed time.
To establish a link with the �nancial literature and point out the reversible
processes with jumps, we examine below the CAR(1) processes which are
shown to have the reversibility property.

4.1 De�nition and characterization

The process Y is said to be reversible if its dynamic properties in calendar
and reversed time are identical. Since the process is Markov, the reversibility
condition is equivalent to the symmetry of the joint distribution of (Yt; Yt�1)
with respect to both arguments. We can write this condition in terms of the
joint Laplace transform. We have:

E [exp(�uYt � vYt�1)] = E [exp(�vYt�1)E [exp(�uYt) j Yt�1]]
= E [exp (�(a(u) + v)Yt�1 + c(u) � c [a(u)])]

= exp (c [a(u) + v] + c(u)� c [a(u)])

= exp (	(u; v)) (say).

Proposition 4.1 : The CAR(1) process Y is reversible if and only if 	(u; v) =
c [a(u) + v] + c(u) � c [a(u)] is a symmetric function of u and v.

The above condition implies some restrictions on the functions c and a
(see Appendix A).

Proposition 4.2 : When the process Y is reversible:

i) a(u) =
�
dc
du

��1 hda(0)
du

n
dc(u)
du � dc(0)

du

o
+ dc(0)

du

i
;

ii) the function 
(u) = d2c
du2

Æ � dcdu��1 (u) is quadratic.
Therefore the log-Laplace transform of the marginal distribution of a

reversible CAR process necessarily satis�es a Ricatti di�erential equation:

d2c

du2
(u) = �0 + �1

dc

du
(u) + �2

�
dc

du
(u)

�2

. (4.1)

This equation will be solved in Subsection 4.3, where we will show the
examples of reversible CAR processes.

When the marginal distribution is found, the dynamics of a reversible
CAR process is characterized by a single parameter da

du(0).
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4.2 Nonlinear canonical decomposition

Proposition 4.3 : Let us assume
�� da
du (0)

�� < 1. For a reversible stationary
CAR(1) process, the eigenfunctions Pn, n � 0, of the conditional expectation
operator are orthogonal with respect to the inner-product associated with the
invariant distribution f .

Proof: Let us consider the inner-product: E [Pk (Yt)Pl (Yt�1)], with k 6= l.
This quantity is equal to:

E [E [Pk (Yt) j Yt�1]Pl (Yt�1)] = �kE [Pk (Yt�1)Pl (Yt�1)] .

It is also equal to:

E [E [Pl (Yt�1) j Yt]Pk (Yt)] = �lE [Pk (Yt)Pl (Yt)] ,

by the reversibility property. By comparing both expressions and by noting
that �k 6= �l, if

�� da
du (0)

�� < 1, we deduce that E [Pk (Yt)Pl (Yt�1)] = 0, 8k 6= l:

QED

We can now derive the nonlinear canonical decomposition of the transi-
tion probability (see [31, Lancaster (1958)]).

Proposition 4.4 : If
�� da
du (0)

�� < 1, and the stationary CAR(1) process is
reversible, we have:

f(yt j yt�1) = f(yt)

"
1 +

1X
n=1

�
da

du
(0)

�n
Pn(yt)Pn(yt�1)

#
, (4.2)

where Pn, n varying, is an orthonormal basis of polynomial eigenfunctions
of the conditional expectation operator.

Proof: By Proposition 4.2 we can introduce an orthonormal basis (Pn,
n � 0) of polynomial eigenfunctions of the conditional expectation operator,
and write the Fourier expansion of f(yt j yt�1)=f(yt) for any yt�1, whenever
this function is square integrable. We get:

f(yt j yt�1) = f(yt)

"
1X
n=0

Pn(yt)Qn(yt�1)

#
, say.

Let us now compute the conditional expectation of Pl(Yt). We get:

E [Pl (Yt) j Yt�1] =
1X
n=0

E [Pl (Yt)Pn (Yt)]Qn(Yt�1) = Ql(Yt�1),

since the polynomial functions Pn are orthonormal. Thus we deduce:

Ql(Yt�1) =

�
da

du
(0)

�l
Pl(Yt�1):

12



QED

By recursion we derive the forecasting distributions at any horizon.

Corollary 4.1 : fh(yt j yt�h) = f(yt)

�
1 +

1P
n=1

�
da
du (0)

�hn
Pn(yt)Pn(yt�h)

�
.

We note that the distribution of the process is characterized by the
function c and the scalar da

du (0), and that the condition
�� da
du (0)

�� < 1 is
suÆcient for the ergodicity of the process, i.e. to ensure that:

lim
h!1

fh(yt j yt�h) = f(yt).

4.3 Examples

The aim of this section is to describe in detail various types of reversible
processes. To do this, we solve the Ricatti equation in (4.1) [see Appendix
A] to �nd the expression of the c function and infer the a function from
Proposition 4.2.

The processes given below are distinguished according to the properties
of the characteristic equation: �0 + �1x+ �2x

2 = 0, i.e. the degree 0,1,2 of
the polynomial in x, and the type of roots in a polynomial of degree two.
Note that the processes do not have the same domain of admissible values.
Some of them take real nonnegative values, some are integer valued, and
some other ones are qualitative dichotomous.

Example 4.1 :Autoregressive gaussian process

The gaussian processes are obtained when �1 = �2 = 0, i.e. the 
-function
is constant. Then Yt = �Yt�1 + "t, where ("t) is a standard gaussian white
noise, and we get:

� Conditional distribution: N (�yt�1; 1);

� Marginal distribution: N (0; 1
1��2

);

� Log-Laplace transforms: a(u) = u�, b(u) = u2

2 , c(u) =
u2

2(1��2)
;

� Stationarity condition:
�� da
du (0)

�� = j�j < 1;

� Polynomial eigenfunctions: Hermite polynomials;

� Forecasting distribution at horizon h: N (�hyt�h;
1��2h

1��2 );

� Compound function a: aÆh(u) = �hu;

� 
-function: 
(u) = 1
1��2

;

13



� Joint log-Laplace transform: 	(u; v) = 1
2(1��2)

(u2 + v2 + 2�uv).

Example 4.2 :Compound Poisson process

This process is obtained when �2 = 0, �1 6= 0, i.e. when the 
-function is

aÆne. Then Yt =
PYt�1

i=1 Zi;t + "t, where Zi;t � B(1; �), "t � P(�(1 � �)).
We get:

� Conditional distribution: B(yt�1; �) � P(�(1� �));

� Marginal distribution: P(�);
� Log-Laplace transforms: a(u) = � log [� exp(�u) + 1� �],
b(u) = ��(1� �) [1� exp(�u)], c(u) = �� [1� exp(�u)];

� Stationarity condition: 0 < � < 1;

� Polynomial eigenfunctions: Charlier polynomials;

� Forecasting distribution at horizon h: B(yt�h; �h) � P(�(1� �h));

� Compound function a: aÆh(u) = � log
�
�h exp(�u) + 1� �h

�
;

� 
- function: 
(u) = �u;
� Joint log-Laplace transform: 	(u; v) = ��(2 � �) + �� exp(�u � v)
+�(1� �) [exp(�u) + exp(�v)].

The joint distribution is known as the correlated bivariate Poisson distribu-
tion (see [5, Campbell (1934)], [6, Consoel (1952)], [37, Teicher (1954)],
[13, Dwass, Teicher (1957)], [24, GriÆths et alii (1980)], [28, Johnson et
alii (1997)], chap. 37), and has been used to examine the dynamics of the
number of car accidents (see [15, Edwards, Gurland (1961)], [26, Hamdan,
Al-Baggati (1971)]). It has been extended to moving average processes for
count data [see Gourieroux, Jasiak (2001)].

Example 4.3 :Autoregressive gamma process (see [20, Gourieroux,
Jasiak (2000)])

This process is obtained when the 
-function is quadratic and has a double
root, i.e. for �2 6= 0, �21 � 4�0�2 = 0. Then the conditional distribution
Yt j Yt�1 is de�ned by: Yt j Xt � 
 (Æ +Xt), and Xt j Yt�1 � P(�Yt�1). It
is the discrete time counterpart of the Cox, Ingersoll, Ross di�usion process
[Cox, Ingersoll, Ross (1985)]. We get:

� Conditional distribution: 
(Æ; �yt�1);

� Marginal distribution: (1� �)Yt � 
(Æ);

14



� Log-Laplace transforms: a(u) = �u
1+u , b(u) = �Æ log(1 + u),

c(u) = �Æ log(1 + u
1�� );

� Stationarity condition:
�� da
du (0)

�� = j�j < 1;

� Polynomial eigenfunctions: Laguerre polynomials:

Pn(y) =

�
�(Æ)�(n+ 1)

�(Æ + n)

� 1
2

nX
k=0

(
(�1)k �(Æ + n)

�(Æ + k)�(n� k + 1)

(1� �)k yk

k!

)
;

� Forecasting distribution at horizon h: 1��

1��h
Yt � 
(Æ; �h 1��

1��h
yt�h);

� Compound function a: aÆh(u) = �hu
h
1 + 1��h

1�� u
i
�1
;

� 
- function: 
(u) = u2

Æ ;

� Joint log-Laplace transform: 	(u; v) = �Æ log
h
1 + uv+u+v

1��

i
.

Example 4.4 :Bernoulli process with switching regimes

This process is obtained when the 
-function is quadratic with two distinct
real roots, i.e. for �2 6= 0, �21 � 4�0�2 > 0.
The process is qualitative with two admissible values 0 and 1, and corre-
sponds to a Markov chain with two states. We get:

� Conditional distribution: B(1; �(1� 
) + 
yt�1);

� Marginal distribution: B(1; �);

� Log-Laplace transforms: a(u) = � log
h
(1�(1��)(1�
)) exp(�u)+(1��)(1�
)

�(1�
) exp(�u)+1��(1�
)

i
,

b(u) = log(1� �(1� 
) + �(1 � 
) exp(�u)), c(u) = log(� exp(�u) +
1� �);

� Stationarity condition:
�� da
du (0)

�� = j
j < 1;

� Polynomial eigenfunctions: Two polynomials only, which are the �rst
Krawtchouk polynomials (see[1, Abramowitz, Stegun (1970), 22.17]).

� Forecasting distribution at horizon h: B(1; �(1� 
h) + 
hyt�1);

� Compound function a: aÆh(u) = � log
h
(1�(1��)(1�
h)) exp(�u)+(1��)(1�
h)

�(1�
h) exp(�u)+1��(1�
h)

i
;

� 
- function: 
(u) = �u(1 + u);

� Joint log-Laplace transform: 	(u; v) = log[(1 � �)(1 � �(1 � 
))
+�(1��)(1�
)(exp(�u)+exp(�v))+�(1�(1��)(1�
)) exp(�(u+
v))].
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Example 4.5 :

Let us �nally describe a process, when the 
-function is quadratic with con-
jugate complex roots, i.e. for �2 6= 0, �21 � 4�0�2 < 0. We get:

� Log-Laplace transforms: a(u) = arctan [
 tanu], b(u) = � log cosu +
log cos arctan [
 tan u], c(u) = � log cos u;

� Stationarity condition:
�� da
du (0)

�� = j
j < 1;

� Compound function a: aÆh(u) = arctan
�

h tanu

�
;

� 
- function: 
(u) = 1 + u2;

� Joint log-Laplace transform: 	(u; v) = � log[cos(u+v)+(1�
) sinu sin v].

5 State Space Representation

5.1 A stochastic nonlinear autogressive process

When both exp [�a(u)Yt�1] and exp [b(u)] are Laplace transforms, we can
introduce a nonlinear autoregressive representation of the CAR(1) process.
Indeed let us introduce a process (Zt) such that the conditional distribu-
tion of Zt given Yt�1 admits Laplace transform exp [�a(u)Yt�1] and "t is a
variable conditionally independent of Zt with Laplace transform exp [b(u)].
Then we can write:

Yt = Zt + "t: (5.1)

Moreover, we can always write Zt as a nonlinear function of Yt�1 and a
stochastic simulator �t independent of "t. Finally we obtain:

Yt = �(Yt�1; �t) + "t:

This is a nonlinear autoregressive representation, including an additional
stochastic term in the regression function.

5.2 Filtering and Smoothing

We are now interested in forecasting the processes (Zt), ("t) given the ob-
servable process (Yt). We denote by g(zt j yt�1) the conditional distribution
of Zt given Yt�1, with Laplace transform exp [�a(u)yt�1], and by h("t) the
marginal distribution of the noise with Laplace transform exp [b(u)]. The
proposition below is proven in Appendix B.

Proposition 5.1 : i) The variables Zt, t varying, are independent condi-
tional on the observable process.
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ii) The conditional distribution of Zt given all the values of (Yt) coincides
with the conditional distribution of Zt given Yt�1, Yt only. This �ltering
distribution is given by:

l(zt j yt�1; yt) = g(zt j yt�1)h(yt � zt)R
g(z j yt�1)h(yt � z)dz

:

iii) The smoothing distribution of "t follows directly, since "t = yt � zt.

For example, the following distributions characterize the processes intro-
duced in Subsection 4.3.

Example 5.1 :Autoregressive gaussian process

� Conditional distribution of Zt: point mass at �Yt�1;

� Marginal distribution of "t: N (0; 1);

� Smoothing distribution of Zt: point mass at �Yt�1;

� Smoothing distribution of "t: point mass at Yt � �Yt�1;

Example 5.2 :Autoregressive gamma process

� Conditional distribution of Zt:

It is de�ned in two steps : ZtjXt � 
(Xt), and XtjYt�1 � P[�Yt�1]. It
is a mixture of a point mass at zero with probability exp(��Yt�1) and
a continuous distribution with p.d.f.:

[1�exp(��Yt�1)]�1
1X
x=1

�
exp(��Yt�1)(�Yt�1)

x

x!

1

�(x)
exp(�z)zx�1

�
1z>0:

� Marginal distribution of "t: 
(Æ), with p.d.f. : h(") =
1

�(Æ) exp(�")"Æ�11">0.

� Smoothing distribution of Zt: It is a mixture of a point mass at zero
with probability:

(Y Æ�1
t =�(Æ))

 
1X
x=0

Y Æ+x�1
t (�Yt�1)

x�(x+ Æ)

x!

!
�1

;

and a continuous distribution with the following p.d.f.:

"
1X
x=1

(�Yt�1)
xY Æ+x�1

t

x!�(x+ Æ)
�(Æ)

#
�1 1X

x=1

(
(�Yt�1)

xY Æ+x�1
t

x!�(x)

1

Yt

�
z

Yt

�x�1�
1� z

Yt

�
11>z=Yt>0

)
:
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This continuous distribution is a mixture of beta distributions, up to a
homothetic function of 1=Yt.

Example 5.3 :Compound Poisson process

� Conditional distribution of Zt: B(Yt�1;�);
� Marginal distribution of "t: P(�(1� �));

� Smoothing distribution of Zt: l(zt j yt�1; yt) _ �z(1��)yt�1�z[�(1��)]yt�z

z!(yt�1�z)!(yt�z)!
,

0 � z � min(yt�1; yt).

6 Increasing the Autoregressive Order

We have already mentioned that any CAR model of order p can be written
as a CAR(1) process of higher dimension. Conversely, it is easy to construct
CAR(p) processes from the basic CAR(1) process. We �rst describe the
approach, and next we discuss the stationarity condition.

6.1 De�nition

Let us consider an unidimensional CAR(1) process, with Laplace transform:

E
h
exp(�u1Yt) j Yt�1

i
= exp [�a (u1)Yt�1 + b (u1)] ;

where: b (u1) = c(u1) � c [a(u1)]. We can introduce more lags by replacing
Yt�1 by a linear combination of lagged values, �1Yt�1+�2Yt�2+ :::+�pYt�p
(say). Then the conditional Laplace transform becomes:

E
h
exp(�u1Yt) j Yt�1

i
= exp

��a (u1) ��1Yt�1 + �2Yt�2 + :::+ �pYt�p
�
+ b (u1)

�
:

In this setup the p-dimensional process Yt = (Yt; :::; Yt�p+1)
0 is a Markov

process of order one, whose conditional Laplace transform is given by:

E
h
exp(�u1Yt � u2Yt�1 + :::� upYt�p+1) j Yt�1

i
= exp(�u2Yt�1 + :::� upYt�p+1)E

h
exp(�u1Yt) j Yt�1

i
= exp(�u2Yt�1 + :::� upYt�p+1)

� exp
��a (u1) ��1Yt�1 + �2Yt�2 + :::+ �pYt�p

�
+ b (u1)

�
= exp

h
�A(u)0Yt�1 +B(u)

i
;

where:

A(u) =
�
a (u1) �1 + u2; ::::; a (u1)�p�1 + up; a(u1)�p

�
0

;

B(u) = b(u1);

Yt�1 = (Yt�1; :::; Yt�p):

Thus the p-dimensional process (Yt) satis�es a CAR(1) model.
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6.2 Stationarity condition

By Corollary 2.2, the stationarity condition is limh!1AÆh(u) = 0, where
the function A has the expression given above. This condition implies re-
strictions on a(:), �1, ..., �p. To illustrate these restrictions, let us consider
for example the gaussian and nonnegative processes.

i) The gaussian process

In the gaussian case we have a(u1) = u1 and the transformation A is linear.
It corresponds to the matrix:266664

�1 1 0 : 0
: 1 :
: 1 0
0 : : 1

�p 0 : : 0

377775 :

The stationarity condition limn!1AÆh(u) = 0 is equivalent to the condi-
tion implying that the eigenvalues of A are less than one (in absolute value),
or equivalently that the roots of the autoregressive equation lie outside the
unit circle.

ii) Nonnegative processes

Let us consider a nonnegative process. We get the proposition below:

Proposition 6.1 : If �1; :::; �p are nonnegative, and if the function a is
bounded, increasing and concave, then the stationarity condition is:
da
du(0) (�1 + � � �+ �p) < 1.

Proof: See Appendix C.

QED

This proposition is valid, for instance, for the autoregressive gamma
process.

7 Statistical Inference

In this section we consider two models that represent the Markov process
Y . In the �rst model, the path dependence is left unspeci�ed, and is char-
acterized by the unconstrained conditional Laplace transform:

E exp(�uYtjYt�1) = L(u; y) = exp	(u; y); say:

The second model is a CAR(1), with the conditional Laplace transform
Lo(u; y) = exp	o(u; y) = exp(�a(u)y+b(u)): Thus we impose the constraint
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of linearity on the function 	 with respect to the conditioning past value of
y. In the sequel, this model will be referred to as the constrained one.

In this section, we �rst consider nonparametric estimation of the func-
tions a and b in a CAR(1) process. Next, we develop two speci�cation tests
of the CAR(1) model. The �rst one compares the unconstrained and the
CAR constrained Laplace transform estimators whereas the second one is
based on a set of seemingly unrelated regressions, that involve power trans-
formations of the current and lagged values.

The observations in our sample are denoted Yt; t = 1; : : : ; T .

7.1 Nonparametric estimation of the distribution of a CAR(1)
process

Estimation of the constrained Laplace transform can be performed by non-
linear least squares. The estimator of a(u) and b(u) is de�ned by:hbaT (u);bbT (u)i = argmin

a;b

TX
t=1

[exp(�uyt)� exp(�ayt�1 + b)]2 ; (7.1)

u 2 I, and the constrained estimator of the Laplace transform is:bL0
T (u; y) = exp

h
�baT (u)y +bbT (u)i :

Under standard regularity conditions and when the CAR(1) model is well-
speci�ed, the estimator [âT (u),b̂T (u)]

0 is consistent asymptotically normal,
such that:

p
T

�� baT (u)bbT (u)
�
�
�
a(u)
b(u)

��
! N [0;
(u)];

where:

(u) = J(u)�1I(u)J�1(u);

and :

J(u) = E

�
exp[�2a(u)Yt + 2b(u)]

�
Y 2
t �Yt
�Yt 1

��
;

I(u) =

+1X
h=�1

�h(u);

�h(u) = Cov

�� �Yt�1
1

�
exp[�a(u)Yt�1 + b(u)]fexp�uYt � exp[�a(u)Yt�1 + b(u)]g ;

� �Yt�h�1
1

�
exp[�a(u)Yt�h�1 + b(u)]fexp�uYt�h � exp[�a(u)Yt�h + b(u)]g

�
:

Note that the pointwise rate of convergence is of order
p
T , that is the

standard parametric rate of convergence.
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7.2 Comparison of the Constrained and Unconstrained es-

timator of the Laplace transform

The unconstrained Laplace transform can be estimated by:

bLT (u; y) =

PT
t=2 exp(�uyt)KhT (yt�1 � y)PT

t=2KhT (yt�1 � y)
; u 2 I = (u0; u1); y varying,

(7.2)
where KhT (v) = K(v=hT )=hT , hT is the bandwidth and K is a positive ker-

nel. bLT (u; y) is the Nadaraya-Watson estimator of the regression function
L(u; y) (see [33, Nadaraya (1964)], [38, Watson (1964)]), with well-known
asymptotic properties. Under standard regularity conditions and if the in-
terval I = (u0; u1) is strictly included in the support of the true conditional
Laplace transform, this estimator is consistent, asymptotically normal, such
that: p

ThT

hbLT (u; y)� L(u; y)
i
! N [0;�(u; y)]; (7.3)

where:

�(u; y) =
1

f(y)

Z
K2(v)dv V [exp(�uYt) j Yt�1 = y]

=
L(2u; y) � [L(u; y)]2

f(y)

Z
K2(v)dv; (7.4)

and f is the marginal p.d.f. of Yt.
Following a commonly used procedure, the goodness of �t can be assessed
by considering the functional residual plots of either bLT (u; y)� bL0

T (u; y), or

log bLT (u; y) � log bL0
T (u; y), u; y varying.

7.3 Power autoregression

Another speci�cation test can be based on seemingly unrelated regressions
(SUR) where the dependent and explanatory variables are power transfor-
mations of the observed series. More precisely, let us introduce an integer J
and the seemingly unrelated regressions model, where we regress the current
powers Y j

t , j = 1; :::; J on the lagged powers 1, Y j
t�1, j = 1; :::; J . Let us

denote by �ij the regression coeÆcient of Y i
t on Y j

t�1 in these regressions.
Under the CAR(1) speci�cation, we know from Proposition 3.1 that the
upper diagonal coeÆcients �ij = 0, if j > i. Thus in practice we can esti-
mate the SUR model and test the null hypothesis H0 : f�ij = 0, if j > i,
i; j 2 f1; :::; Jgg. We denote by � the associated Fisher test statistic adjusted
for conditional heteroscedasticity.

This approach can be extended in order to �nd a data transformation
for which the CAR(1) model is well-speci�ed. Let us consider a set of para-
metric transformations g(Yt; 
), say, and assume that g(Yt; 
0) is a CAR(1)
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process. The parameter 
0 can be estimated in the following way. For each
admissible value of the 
 parameter, we estimate the SUR model based on
the powers g(Yt; 
)

j ; j = 1; :::; J and compute the test statistic �(
). Then

0 is estimated by b
 = argmin



�(
).

8 Application

There is a large body of literature on nonlinear dynamics of �nancial returns
rt, say. The dynamic models used in empirical research have to accom-
modate various observed stylized facts, including the volatility persistence,
leverage e�ect, and the pattern of nonlinear autocorrelograms. A CAR pro-
cess cannot represent the return process itself. Indeed it is known that rt
and rt�1 are weakly correlated, whereas a signi�cant correlation may exist
between rt and r

2
t�1, due to the existence of a risk premium [This the so-

called ARCH-M e�ect [16, Engle, Lilien, Robbins (1987)]. However it has
also been observed (see [10, Ding, Granger, Engle (1993)], [9, Ding, Granger
(1996)], [19, Gourieroux, Jasiak (1999)]) that the maximum of autocorrela-
tions jrt�hjk viewed as a function of the exponent k for any �xed lag h is
located around k = 1. Therefore for any �xed lag h the autocorrelations de-
crease when the exponent k moves away from 1. This particular pattern of
autocorrelations is typical for a reversible CAR(1) model of absolute values
of returns jrtj, due to the form of its nonlinear canonical decomposition. In
this section we �t a CAR(1) model to a well chosen power transform of the
absolute return.

8.1 Data description

We consider daily returns on the S&P 500 index over the period January
1st 1988 to December 28th 2000, obtained from the DataStream.

[Insert Figure 8.1: Returns]

This sample contains 3480 daily observations. Figure 8:1 displays the
time series of returns, while Figure 8:2 shows the marginal density of the
short rate, estimated by kernel smoothing. We observe a commonly encoun-
tered peak at zero, as well as heavy tails. This last feature suggests that the
marginal distribution of the data is not normal.

[Insert Figure 8.2: Marginal Density of Returns]

The autocorrelogram of returns is given in Figure 8:3. We observe that
the autocorrelations are not signi�cant and conclude on the absence of linear
time dependence in the series of returns.

[Insert Figure 8.3: Autocorrelogram of Returns]
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Signi�cant temporal dependence can be found in the autocorrelations of
squared returns (see Figure 8:4). It re
ects the so-called volatility persis-
tence, for squared returns viewed as a proxy of volatility.

[Insert Figure 8.4: Autocorrelogram of Squared Returns]

8.2 Power autoregression

We now search for a power transformation Yt = jrtj
 of the series of absolute
values of returns, such that the coeÆcients of seemingly unrelated power
autoregressions up to J = 3 form a lower triangular matrix. For the interval
of 
 values lying between 0:2 and 1:5, we compute the test statistic �(
) of
the null hypothesis H0 : f�ij = 0 if j > i, i; j = 1; 2; 3g. The functional form
of � is plotted in Figure 8:5, where the minimum is reached for 
̂ = 0:8. Note
that this value is close to the autocorrelation maximizing exponent equal to
one, reported in the literature.

[Insert Figure 8.5: �(
) Statistic]

For the �xed value of 
 = 0:8, the constrained regression coeÆcients
under the null hypothesis H0 are:

jrtj
 = 0:015 + 0:093jrt�1j

(41:427) (5:399)

jrtj
 = 0:3e � 03 + 0:006jrt�1j
 � 0:002jrt�1j2

(12:929) (2:190) (�0:050)

jrtj
 = 1:1e� 05 + 0:1e � 03jrt�1j
 + 0:007jrt�1j2
 � 0:084jrt�1j3

(5:424) (0:426) (0:671) (�0:751)

8.3 Eigenfunctions

The previous approach can be completed by considering the three �rst eigen-
functions of the conditional expectation operator, and checking if they ap-
proximately correspond to polynomials of degree 1, 2, and 3, respectively
(see Figures 8:5-8:7). We observe that the patterns are not entirely compat-
ible with this assumption, since the �rst canonical variate is not exactly a
straight line, and some asymmetry is displayed by the second one. However
these features turn out to be insigni�cant when the pointwise con�dence
bands are considered. Recall that the x-axis corresponds to the values of
jrj0:8 over the interval (0; 0:04) compatible with the 99% of the probability
mass observed from the marginal distribution plot in Figure 8.2 and knowing
that the process takes values larger than 0.032 with a small probability.

[Insert Figure 8.6: First Canonical Variate]
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[Insert Figure 8.7: Second Canonical Variate]

[Insert Figure 8.8: Third Canonical Variate]

8.4 Nonparametric estimation of the conditional Laplace trans-

form

We still consider the series Yt = jrj0:8.
i) An insight on temporal dependence

The conditional Laplace transform L(u; y) has been estimated by the
kernel method (7:2), and plotted in Figure 8:9. The argument u is measured
on the right axis, while the conditioning value y on the left axis.

[Insert Figure 8.9: Unconstrained estimator of Laplace Transform]

ii) Constrained estimator

Next, the conditional Laplace transform Lo(u; y) of the CAR(1) model
is estimated according to the procedure outlined in Subsection 7.1. As ex-
pected, the estimated a and b functions display patterns suggesting their
complete monotonicity [see Figures 8.10, 8.11]. The function a [resp. b] is
increasing concave [resp. decreasing convex]. The con�dence bounds have
been derived by a block bootstrap algorithm [see 19, Kunsch (1989)]. The
accuracy of the functional estimator of b (which depends on the marginal
distribution) is better than the accuracy of the estimator for a (which de-
pends on nonlinear temporal dependence). The estimated CAR(1) Laplace
transform is illustrated in Figure 8.12.

[Insert Figure 8.10: a(u) Function]

[Insert Figure 8.11: b(u) Function]

[Insert Figure 8.12: (Constrained) CAR(1) Laplace Transform]

iii) Comparison of the estimators

The relative error, which represents the di�erence between the con-
strained and unconstrained estimates of Laplace transforms, is given in
Figure 8.13. Its value is less than 5%, even for large y's corresponding
to extreme risks observed in the past.

[Insert Figure 8.13: Residuals]

In particular the CAR(1) model is not rejected for jrtj0:8.
iv) Comparison with the Cox-Ingersoll-Ross model
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Since jrtj0:8 may be seen as a proxy for volatility and the Cox-Ingersoll-
Ross model is often used to represent the volatility dynamics, it is natural
to compare the nonparametric CAR(1) estimation with an autoregressive
gamma model. More precisely we calibrate the parameters � (resp. Æ) to get
the estimated function a (resp. b) close to (�u)=(1+u) [resp. �Æ log(1+u)]
for extreme risk aversion.

The comparison between the constrained and unconstrained functions is
provided in Figures 8.14 and 8.15. They show clearly that the autoregressive
gamma model [that is the discrete time equivalent of the Cox-Ingersoll-Ross
model] is rejected.

[Insert Figure 8.14: Constrained and Unconstrained a Function]

[Insert Figure 8.13: Constrained and Unconstrained b Function]

9 Derivative Pricing

The CAR model relies on an aÆne speci�cation of the log-Laplace trans-
form. In a continuous time framework similar models exist and are used for
instance for examining the term structure of interest rates [Dai, Singleton
(1999), DuÆe, Kan (1996), DuÆe, Pan, Singleton (1999), Lui (1997), Sin-
gleton (2000)]. It is known that these models can also be used for derivative
pricing. In this section, we show that with any historical CAR dynamics it
is possible to associate a risk neutral CAR-type dynamics. The change of
probability is obtained by the change of parameters.

9.1 The historical distribution

For ease of exposition we consider the case of a riskfree asset with zero risk-
free rate and a risky asset with price St at date t. We denote the geometric
return by rt+1 = � log St+1.
We assume:

rt+1 = Zt+1jrt+1j,

where (Zt+1) = ( sgn rt+1) and (jrt+1j) are independent processes;

Zt+1jZt � 1
2Æ+1 +

1
2Æ�1;

exp(�ujrt+1j jZt; rt) = exp[�a�(u)jrtj+ b�(u)].

Thus the dynamics of rt+1 is determined by two components. The �rst
one corresponds to a binomial tree with equal probabilities of the up and
down price changes. The second one represents the size of price changes, is
independent of the direction of change, and admits a CAR(1) structure.
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The conditional Laplace transform of the return process is:

exp	t(u) = Et[exp(�uZt+1jrt+1j)]
= 0:5fexp[�a�(u)jrtj+ b�(u)] + exp[�a�(�u)jrtj+ b�(�u)]g:

9.2 Risk neutral distribution

We search for a risk neutral distribution, such that the stochastic discount
factor for the period t; t+ 1 admits an exponential form in rt+1:

Mt;t+1 = exp(�trt+1 + �t); say: (9.1)

This corresponds to the standard Esscher transform [see Esscher (1932)
for the de�nition, Buhlman et alii (1996), Gourieroux, Monfort (2001)a,b
for applications to derivative pricing]. We assume that the price at t of a
derivative providing the cash-
ow g(rt+1) at date t+ 1 is:

Ct(g) = Et[Mt;t+1g(rt+1)] = Et[exp(�trt+1 + �t)g(rt+1)]:

When the riskfree and risky assets are actively traded on the market, this
pricing formula can be written for both of them. We get the arbitrage free
conditions, that determine the values of �t and �t:

�
EtMt;t+1 = 1;
Et(Mt;t+1 exp rt+1) = 1;

,
�
Et[exp(�trt+1 + �t)] = 1;
Et[exp((�t + 1)rt+1 + �t)] = 1;

()
�

�t = �	t(��t);
	t(��t) = 	t � (�t + 1):

In particular �t is the solution of:

exp[�a�(�t)jrtj+ b�(�t)] + exp[�a�(��t)jrtj+ b�(��t)]
= exp[�a�(�t + 1)jrtj+ b�(�t + 1)] + exp[�a�(��t � 1)jrtj+ b�(��t � 1)]:

It is easy to check that the solution of this equation is �t = �0:5. Thus we
get a unique SDF in this class, which is compatible with the arbitrage free
conditions.
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9.3 Application

The pricing method above is applied to the S&P data, after replacing the
functions a�, b� by their constrained estimators. Then we deduce the cor-
responding values �̂t = �0:5 and �̂t = � ̂t(0:5) of the risk correcting fac-
tors. The derivative price at horizon H : Ct(g) = Etf�H

h=1 exp(�t+h +
�t+h�1)g(rt+H )] can be approximated by the kernel regressogram :

Ĉt(g) =

PT
�=1�

H
h=1[exp(�0:5r�+1 + �̂�+h�1)g(r�+H)K( r��rth )PT

�=1K( r��rth )
;

where K is a kernel. This price depends on the current value rt and on
the residual maturity, which is �xed to H = 21 days, corresponding to one
month of tradable days. We show in Figure 9.1 the corresponding call prices
as functions of the moneyness strike and in Figure 9.2 the associated Black-
Scholes implied (conditional) volatilities. The call prices were computed
conditionally on the current return rt set equal to zero and 1.2% respectively.
For comparison the �gures also display the Black-Scholes price computed
with the annualized historical volatility of 14.7%. We observe a (skewed)
smile e�ect typical for a stochastic volatility model, which is compatible with
the assumed dynamics of jrtj, when jrtj is considered as a proxy for volatility.
A positive shock on jrtj implies an increase of the implied volatility.

[insert Figure 9.1: Call Prices]

[insert Figure 9.2: Black-Scholes Implied Volatilities]

Figure 9.3 displays the implied volatilities for two opposite situations of
observed extreme return : rt = �1:2%.

[Insert Figure 9.3: Positive and Negative Schocks]

We observe an asymmetric reaction of the market to decreasing and
increasing prices. The market price of risk is higher when the observed
return is negative. The implied volatility curves in Figures 9.2 and 9.3 have
been derived from the data on the underlying asset and does not take into
account additional data on derivatives. Implied volatility curves derived
from european call (or put) prices are regularly di�used by Bloomberg, for
instance.

Figure 9.4 displays the put and call implied volatilities, directly deduced
from the observed derivative prices by inverting the Black-Scholes formula
with respect to the volatility. They can also be interpreted as implied volatil-
ities computed from bid and ask call prices.

[Insert Figure 9.4: Implied Call and Put Volatility]

It is easily checked that the skewed smiles are typical for the period of
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interest, that the di�erence between the bid and ask curves increases for
derivatives which are out of the money, and that the curve derived from the
historical returns by the CAR methodology lies generally between the bid
and ask curves deduced from option prices.

Finally note that the approach to pricing has been implemented as if the
S& P 500 was an asset directly traded on the market. 6 In practice this is
not the case which may also explain in part the observed bid-ask spread.

10 Concluding remarks

In this paper we proposed a new class of processes with past dependent
Laplace transforms. To this class of processes belong various compound pro-
cesses whose conditional Laplace transforms are aÆne functions of lagged
values, such as the autoregressive gaussian and gamma processes, and a
compound Poisson process. The advantage of introducing temporal depen-
dence into the Laplace transform is that this approach allows to represent
various forms of nonlinear persistence and to derive the stationarity and
ergodicity conditions, that are not always available under the traditional
approach. Estimation of the compound processes can be performed either
nonparametrically or parametrically. Both methods yield consistent estima-
tors. The goodness of �t of the model can be evaluated using the functional
residual plots. We illustrate this approach using data on stock returns to
which we �t a Compound Autoregressive Process. We also show how CAR
processes can be used for derivative pricing.

6There exist traded mimicking portfolios such as the SPDR (Standard & Poor Depos-
itory Receipt). However it can be checked that the dynamics of the S&P 500 and of the
SPDR di�er signi�cantly, especially when taking account for nonlinear e�ects.
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Appendices

A The Reversibility Condition

i) The reversibility condition can be written as:

c[a(u) + v]� c[a(u)] � fc[a(v) + u]� c(u)g � c(v) + c[a(v)] = 0;8u;

()
1X
j=1

1

j!

�
djc

duj
[a (u)]� djc

duj
(0)

�
vj =

1X
j=1

1

j!

�
djc

duj
(u)� djc

duj
(0)

�
a(v)j ;

By identifying the coeÆcients of the term vj , we deduce that there exist
constants djk such that:

8j : d
jc

duj
[a (u)] =

jX
k=1

djk
dkc

duk
(u) + dj0;8u: (A.2)

ii) Let us �rst consider the condition corresponding to j = 1. We get:

dc

du
[a (u)]� dc

du
(0) =

da

du
(0)

�
dc

du
(u)� dc

du
(0)

�
:

Thus, if dc
du is invertible, we get an expression of function a:

a (u) =

�
dc

du

�
�1 �da

du
(0)

�
dc

du
(u)� dc

du
(0)

�
+
dc

du
(0)

�
: (A.3)

iii) The condition written for j = 2 implies a constraint on function c.
Indeed this condition can be written as:

d2c

du2
[a (u)]� d2c

du2
(0) =

�
da

du
(0)

�2 � d2c
du2

(u)� d2c

du2
(0)

�
+
d2a

du2
(0)

�
dc

du
(u)� dc

du
()

�
;8u:

If we introduce the function: 
(u) = d2c
du2

Æ � dcdu��1 (u), the change of

variable v = dc
du(u), and use equation (A:2), the condition becomes:




�
da

du
(0)v +

dc

du
(0)

�
1� da

du
(0)

��
� d2c

du2
(0) (A.4)

=

�

(v)� d2c

du2
(0)

��
da

du
(0)

�2

+
d2a

du2
(0)

�
v � dc

du
(0)

�
;8v:

Thus there exist scalars �j, j = 1; :::; 4 such that:


 (�1v + �2) = �2
1
(v) + �3v + �4;8v: (A.5)
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We deduce that:

d2


du2
(�1v + �2) =

d2


du2
(v);8v;

which is satis�ed if d2

du2 is a constant function, or equivalently 
 is a quadratic

function. Thus we conclude that the function c has to satisfy a di�erential
equation of the type:

d2c

du2
(u) = �0 + �1

dc

du
(u) + �2

�
dc

du
(u)

�2

: (A.6)

We now consider the admissible solutions of the di�erential equation (A:6).

iv) case �1 = �2 = 0

The function c is quadratic, whereas the function a is linear by (A:3). We
deduce:

c(u) = Æ1u+ Æ2u
2; a(u) = 
1u;

and it is easily check that the joint Log-Laplace transform:

	 (u; v) = Æ2(u
2 + v2) + 2Æ2
1uv + Æ1(u+ v);

is symmetric in u and v. Thus we get a gaussian process with meanm = �Æ1
variance 2Æ2 and autocorrelation � = Æ2=Æ1.

v) case �1 6= 0, �2 = 0

By integrating the di�erential equation (A:6), we get for the function c a
necessary form:

c(u) = Æ1u+ Æ2(1� exp Æ3u);

and, by Equation (A:3), we deduce a necessary form for the function a:

a(u) =
1

Æ3
log [�0 exp(Æ3u) + (1� �0)] :

Then we get:

	 (u; v) = Æ1(u+ v) + Æ2(2� �0)� Æ2�0 exp[Æ3(u+ v)]

�Æ2(1� �0)(exp Æ3u+ exp Æ3v):

It includes as a special case the joint log-Laplace transform of the com-
pound Bernoulli process. The other cases are deduces by change of scale
(e�ect on Æ3), location (e�ect on Æ2), and by convolution (e�ect on Æ2).

vi) case �21 � 4�0�2 = 0, �2 6= 0

By integrating the di�erential equation (A:6), we get for the function c a
necessary form:

c(u) = Æ1u+ Æ2 log(1 + Æ3u);
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and by Equation (A:3), a necessary form for the function a:

a(u) =
�1u

1 + (1� �1)Æ3u
:

Then the joint Log-Laplace transform is symmetric:

	 (u; v) = Æ1(u+ v) + Æ2 log
�
1 + Æ3(u+ v) + Æ23(1� �1)uv

	
:

Up to a change of scale and location, we get the autoregressive gamma
processes.

vii) case �21 � 4�0�2 > 0, �2 6= 0

We get a necessary form for the function c:

c(u) = Æ1u+ Æ2 log [� exp(Æ3u) + 1� �] ;

and by equation (A:3), a necessary form for the function a:

a(u) =
1

Æ3
log

�
(1� (1� �)(1� 
)) exp(Æ3u) + (1� �)(1 � 
)

�(1� 
) exp(Æ3u) + 1� �(1� 
)

�
:

Then the joint Log-Laplace transform is symmetric:

	(u; v) = Æ1(u+ v) + Æ2 log[(1� �)(1� �(1� 
))

+�(1� �)(1� 
)(exp(Æ3u) + exp(Æ3v))

+�(1� (1� �)(1� 
)) exp(Æ3(u+ v))]:

This case is associated with the Bernoulli process with switching regimes.

viii) case �21 � 4�0�2 < 0, �2 6= 0

We get a necessary form for the function c:

c(u) = Æ1u+ Æ2 log [cos(Æ3u+ Æ4)]� Æ2 log cos(Æ4);

and by equation (A:3), a necessary form for the function a:

a(u) =
1

Æ3
[arctan (
 tan(Æ3u+ Æ4) + (1� 
) tan Æ4)� Æ4]

Then the joint Log-Laplace transform is symmetric:

	(u; v) = Æ1(u+ v)� Æ2 cos Æ4

+Æ2 log

�
cos(Æ3(u+ v) + Æ4) + (1� 
)

sin Æ3u sin Æ3v

cos Æ4

�
:

31



B The Filtering Distribution

Let us consider the distribution of Z1; :::; ZT ; Y1; :::; YT conditional to Y0. It
is given by:

l(z1; :::; zT ; y1; :::; yT j y0) =
TY
t=1

[g(zt j yt�1)h(yt � zt)] : (B.1)

Thus we deduce:

l(z1; :::; zT ; y1; :::; yT j y0) =
"

TY
t=1

g(zt j yt�1)h(yt � zt)R
g(z j yt�1)h(yt � z)dz

#

and the property follows.
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C Stationarity Condition

We have to exhibit conditions, which ensure that the solution of the p-
dimensional recursive system:

X1;t = a(X1;t�1)�1 +X2;t�1;

:

:

Xp�1;t = a(X1;t�1)�p�1 +Xp;t�1;

Xp;t = a(X1;t�1)�p;

tends to (0; :::; 0), when t tends to in�nity, for any admissible initial value
(X1;0; :::;Xp;0)

0. The system is equivalent to:

X1;t = Xp;t
�1
�p

+X2;t�1;

:

:

Xp�1;t = Xp;t

�p�1
�p

+Xp;t�1

Xp;t = a(X1;t�1)�p:

If the coeÆcients �1,..., �p are nonnegative, and the function a with
values in [0; c], we deduce that Xj;t, j = 1; :::; p takes nonnegative values
and that Xp;t is always smaller than c�p, for any nonnegative initial values.

Moreover the sequence (Xp;t) satis�es the nonlinear recursive equation:

Xp;t = a

�
Xp;t�1

�1
�p

+ ::::+Xp;t�p+1

�p�1
�p

+Xp;t�p

�
�p:

A possible limiting value l of this sequence satis�es:

l

�p
= a

�
l

�p

�
�1 + :::+ �p

��
: (C.1)

Since a(0) = 0 and a is increasing concave, we distinguish two cases.

If da
du(0)(�1 + ::: + �p) < 1, equation (C:1) admits l = 0 as the unique

nonnegative solution. Since the sequence (Xp;t) takes values in the compact
set [0; c�p], with a unique admissible value l = 0, we deduce its convergence
to zero.

If da
du (0)(�1+ :::+�p) > 1, there are two admissible nonnegative limits 0

and l�, say; in this case we can select appropriately the initial values to get
a sequence (Xp;t) constant equal to l

� 6= 0.
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Figure 8.1: Returns
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Figure 8.2: Marginal Density of Returns
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Figure 8.3: Autocorrelogram of Returns
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Figure 8.4: Autocorrelogram of Squared Returns
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Figure 8.5: �(
) statistic
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Figure 8.6: First Canonical Variate
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Figure 8.7: Second Canonical Variate
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Figure 8.8: Third Canonical Variate
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Figure 8.9: Unconstrained Estimator of Laplace Transform

42



Figure 8.10: a(u) Function
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Figure 8.11: b(u) Function
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Figure 8.12: Constrained (CAR(1)) estimator of Laplace

Transform
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Figure 8.13: Residuals
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Figure 8.14: Constrained and Unconstrained a Function
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Figure 8.15: Constrained and Unconstrained b Function
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Figure 9.1: Call Prices
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Figure 9.2: Black-Scholes Implied Volatilities
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Figure 9.3: Positive and Negative Shocks
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Figure 9.4: Implied Call and Put Volatility
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