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RESUME

Les mouvements saisonniers pendant la journ�ee et la semaine sur les march�es bour-

siers sont idiosyncrasiques et doivent donc être pris en compte dans la mod�elisation

des donn�ees. Dans ce papier, nous proposons un mod�ele �a composantes pour

l'analyse des dur�ees �nanci�eres. Le mod�ele est semiparam�etrique, la saisonnalit�e

�etant calcul�e de fa�con nonparam�etrique et la dynamique �etant sp�eci��ee param�etriquement.

L'estimation est jointe, les paramtres et la courbe de saisonnalit�e sont estim�es de

fa�con consistant et eÆcace. En outre, nous montrons que les dur�ees nulles sont in-

formatives et une fa�con de les traiter est propos�ee. La m�ethode est appliqu�ee

au processus des dur�ees inter-transaction de Bankinter, une banque espagnole

moyenne cot�ee sur la Bolsa de Madrid.

ABSTRACT

Seasonal patterns during the day and during the week in the stock exchange mar-

kets are idiosyncratic and thus they should be taken into account when modelling

these data. In this paper we propose a component model for the analysis of �nan-

cial durations, that can be extended easily to any other high frequency �nancial

variable. The model is semiparametric where the seasonality is computed nonpara-

metrically and the dynamics are speci�ed parametrically. Estimation is joint and

parameters and seasonal curve are proved to be consistent and eÆcient. Addition-

ally, durations equal to zero are shown to be informative and a way to deal with

them is proposed. All the methodology is applied to the trade duration process of

Bankinter, a medium size spanish bank traded in Bolsa de Madrid
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1 Introduction

The issue of modeling �nancial duration processes is a fashionable area of research
since Engle and Russell (1998) introduced the Autoregressive Conditional Duration
(ACD) model. Its analysis is justi�ed from an economic and a statistical point of
view. On one hand, market microstructure theory shows that time between events
in a stock exchange market conveys information and thus time has to be analyzed.
On the other hand, since data are the "so called" tick-by-tick data,1 they are
nothig else than a one dimensional point process, with time as space. Thus time is
the random variable of the point process and in each point there is an associated
vector of marks, and both time and the marks can be modeled.

Since the former model a plethora of modi�cations and alternatives have been
proposed. Among others, Bauwens and Giot (2000) introduced the Log-ACD
model, which is an exponential version of the ACD. Grammig and Mauer (2000)
used a Burr distribution in the ACD model. Zhang et al. (1999) introduced a
threshold ACD. Drost and Werker (2001) provide a method to obtain eÆcient es-
timators of the ACD model without need to specify the distribution. Camacho and
Veredas (2001) consider the analysis of a bivariate duration process using random
aggregation techniques. Alternative models are the the Stochastic Conditional Du-
ration (SCD) model of Bauwens and Veredas (1999) and the Stochastic Volatility
Duration (SVD) model of Ghysels et al. (1998) which are both based on latent
factor models. Almost all these models are surveyed in Bauwens et al. (2000).

In most of the above studies, the variable that has been considered show a
strong intradaily and intraweekly seasonality. In a explanatory graphic analysis
the strong seasonal component is detected by the presence of the U (or inverted
U) shape that ultra high frequency �nancial variables exhibit during the day and
during the week (see �gure 5 in section four).

This problem is well known when dealing with regularly spaced variables, that
is, when dealing with variables that are observed every �xed periods of time.
Moreover this analysis has focused mainly in the volatility's intradaily behaviour
of either an stock exchange market or a foreign exchange (FX) market. Engle et al.
(1990) analyze how the information ow is transmitted through world regions in
the FX market using hourly data. Harris (1986) does a panel data analysis using 15
minute interval returns data of �rms traded in NYSE. Baillie and Bollerslev (1990)
studied the intra-day and inter-market FX volatility using a qualitative approach
with hourly data. Bollerslev and Domowitz (1993) do a similar analysis but for
returns and bid-ask spread of the deutsche mark-dollar exchange rate using data
recorded at 5 minute intervals. Andersen and Bollerslev (1997) used a frequency
domain approach for �ltering the �ve minutes deutsche mark-dollar exchange rate
and getting rid o� the seasonal pattern. Andersen and Bollerslev (1998) used a

1Other ways to term these type of data are high frequency data (HFD) or ultra high frequency
data (UHFD). We prefer either tick-by-tick or point process, since using the former two implies
that we assume the existence of a certain frequency and one of the main characteristics of these
kind of processes is the lack of periodicity.
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di�ent approach and analyze the intradaily and intraweekly seasonality using spec-
tral analysis and they took into account macroeconomic announcements. Finally,
Beltratti and Morana (1999) used half hour deutsche mark-dollar exchange rate
and they modeled it following a structural approach "�a la Harvey".

All these previous works have been done using regularly spaced data (hourly,
half-hourly, 15 minutes, or 5 minutes). In tick-by-tick data the most popular ap-
proach for dealing with intradaily seasonality was introduced by Engle and Russell
(1998). The method consists in estimating the intradaily seasonality by means of
a piecewise cubic spline. Although Engle and Russell (1998) apparently succeed in
the joint estimation of the parameters of the cubic spline and the ACD model, it is
a hard task and the convergence towards a global maximun is not assured. Because
these reasons most of other studies have focused in a two step procedure, where in
the �rst step, the inverted U shape is removed through some �lter and, in a second
step, the ACD model is estimated by using the deseasonalized variables. The �lter
basically consists in calculating the average durations every, say, 30 minutes and
then smooth this piecewise constant function through cubic splines. Alternatively
Gouri�eroux et al. (1999) analyzed the intraday market activity using kernels for
the intraday intensity as well as for the survivor function, but they do not di�er-
entiate between seasonal pattern and long-run dynamics. Gerhard and Haustch
(2000) proposed a model for �nancial durations using a proportional hazard model
where seasonality is modeled using a exible Fourier transform.

The two step procedure presents some serious drawbacks. Mainly it performs
accurately if both the seasonal and the non-seasonal components depends on some
deterministic time index, and the non-seasonal dynamics of the duration process
is linear in the parameters to be estimated. Otherwise, the two step estimation
procedure can lead to serious misspeci�cation errors.

In this paper we assume that tick-by-tick processes can be decomposed in two
components that stands for the short-run and the long-run. The short-run refers
to the intradaily and intraweekly seasonality while the long-run can be considered
as the core dynamics of the process.

In the standard theory of time series, two approaches exist for dealing with these
components. The �rst one considers that any time series can be analyzed by means
of an ARMA model that, using di�erent lags in the polynomials and exogenous
variables, account for the components. The second approach assumes that the
time series can be decomposed in latent components which are not observed but
have some dynamics and/or some patterns.

In the framework of tick-by-tick data, the ARMA approach is not feasible since
one of the main characteristics of these data is the lack of periodicity. Therefore
we focus in the second approach, assuming the decomposition of the time series in
components that are estimated separately but not independently. In order to do
so, we rely on the assumption that the conditional expectation of the duration of
some �nancial variable can be decomposed in the three mentioned terms. Under
this assumption, they can be estimated simultaneously.
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The short-run component is modeled nonparametrically and the long-run com-
ponent is assumed to belong to the parametric ACD family. Both components are
estimated simultaneously by maximizing alternatively a local and a global version
of the likelihood function respectively. Under the correct choice of the smoothing
parameter, this estimation method provides root-N consistent semiparametric es-
timators of the parameters of the Log-ACD model. Furthermore, if the conditional
likelihood is correctly speci�ed the estimators are eÆcient.

We also deal with durations equal to zero. These durations are often found
in the trade process. Previous studies eliminate them using the microstructure
argument that all the trades executed in the same second come from the same
trader that has split a big order block in small blocks. We show that this is not
always true and, indeed, most of the times the durations zero are clustered around
round prices due to the fact that the limit orders of the retail traders are set for
being executed at the round prices and hence trades executed in the same second
do not belong to the same trader but to many retail traders.

The plan of the paper is a as follows. Section two develops a general framework
for analyzing tick-by-tick �nancial variables, decomposing the process in the two
above mentioned terms. Notice that even if notation and empirical application is
done for duration processes, any other variable can be easily analyzed. Section
three is devoted to the analysis of each one of components introducing a modelling
strategy for the analysis of durations equal to zero and a discussion on how to
model the seasonal component. Section four estudies the theoretical properties
of the estimators, that is, the parameters and the non parametric curve, proving
consistency and normality for the parameters and the best estimator for the curve.
Finally section �ve is devoted to the empirical application, doing an analysis to
the trading duration process of Bankinter, a medium size Spanish bank traded in
Bolsa de Madrid.

2 Basic Econometric Model

In order to introduce the main contribution of our paper, we need to establish
a basic econometric framework. Following Engle and Rusell (1998) and Engle
(2000), let ti be the time at which the i-th trade occurs and let di = ti � ti�1 be
the duration between trades. Let us consider also that we have observed k marks
at the i-th event, yi. Then, we have available the following set of observations

f(di; yi)gi=1;���;n:

Furthermore, assume that the i-th observation has the joint density conditional on
the past �ltrations as

(di; yi)j Ii�1 � f
�
di; yij �di�1; �yi�1; Æ

�
;

where �zi = (zi; zi�1; � � � ; z1) is the present and past information of the z stochastic
process and Æ is a set of parameters in some possibly in�nite dimensional space.
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Within this statistical framework, our aim is to estimate this parameter vector Æ
(or any nonlinear combination of its components) by using maximum likelihood
techniques. To this end, we construct the following likelihood function

Ln (d; y; Æ) =
nX
i=1

log f
�
di; yij �di�1; �yi�1; Æ

�
: (1)

Following a reduction process we can considerably simplify the previous log-likelihood
expression. Without loss of generality we can write

log f
�
di; yij �di�1; �yi�1; Æ

�
= log p

�
dij �di�1; �yi�1; Æ1

�
+ log g

�
yij �di; �yi�1; Æ2

�
;

where Æ = (Æ1; Æ2). Moreover, if both the parameter vector Æ are variation free and
the marks, y, are de�ned as weakly exogenous for the parameters of interest Æ1,
then the maximization of (1) is equivalent to the maximization of the following
likelihood function

Ln (d; y; Æ1) =
nX
i=1

log p
�
dij �di�1; �yi�1; Æ1

�
: (2)

The exogeneity assumption is crucial and arguable. For example, if yi is the volatil-
ity of the tick-by-tick process, we are assuming that there exists an unidirecccional
causality, i.e. volatility causes the durations but not the contrary. This relation-
ship has been pointed out by Ghysels (2000), among others, and in terms of market
microstructure it seems that a joint analysis of (di; yi) is more adequate. However,
it is out of the scope of this paper and we let this issue for further research. Thus,
if the conditional density is correctly speci�ed, then standard maximum likelihood
techniques apply and the maximum likelihood estimator of Æ1 is consistent and
asymptotically normal. Alternatively, as pointed out in Engle and Rusell (1998)
and Engle (2000) it would be of interest to have available some estimation tech-
niques that do not require the knowledge of the conditional density function. Two
alternative approaches that allow for consistent estimation of the parameters of
interest without specifying the conditional density are Quasi Maximum likelihood
techniques, QML, (see Gouri�eroux, Monfort and Trognon, 1984) and Generalized
Linear Models, GLM, (see McCullagh and Nelder, 1989). In both approaches, it
is assumed that the duration variable d, conditonally on past values of d and y
depends on a scalar parameter � = h

�
�di�1; �yi�1; Æ1

�
, and its distribution forms a

one dimensional exponential family with conditional density

p
�
dij �di�1; �yi�1; �

�
= exp (di� � b(�) + c(di)) ;

where b(�) and c(�) are some known functions. The main di�erence between the
QML and the GLM approach is simply a di�erent parametrization of this exponen-
tial family. Here in this paper we will adopt for convenience the GLM approach.
Then it is straightforward to see that the Maximum Likelihood estimator of �
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solves the following �rst order conditions:
P
j fdj � b0(�)g = 0. Furthermore, since

by the properties of the exponential functions,

E
h
dij �di�1; �yi�1

i
= b0(�) = �

n
�di�1; �yi�1; Æ1

o
(3)

and
Var

h
dij �di�1; �yi�1

i
= b00(�) = �2V

n
�( �di�1; �yi�1; Æ1)

o
; (4)

then the M.L.E. estimator of � can also be obtained from the solution to the
following equation

nX
i=1

(di � � (�))�0 (�)

V (� (�))
= 0: (5)

As it can be clearly realized from equations (3), (4) and (5) the estimation of
the parameter of interest � (the so called canonical parameter) can be performed
without needing to specify the whole conditional distribution function. It is only
necessary to specify the functional form of the conditional mean, �(�), and the
conditional variance V (�), but not the whole distribution. Engle and Rusell (1998)
propose to specify the conditional mean function by using the ACD class of models
that consists on parametrizations such as

E
h
dij �di�1; �yi�1

i
= �

�
�di�1; �yi�1; Æ1

�
= '

0
@! +

JX
j=1

�jg(di�j) +
KX
k=1

�k�i�k

1
A ; (6)

where the parameters of interest would be Æ1 = (!; �1; � � � ; �J ; �1; � � � ; �K). The
functions '(�) and g(�) take the values '(s) = s and g(s) = s for the ACD model
and '(s) = exp(s) and g(s) = ln(s) for the Log-ACD model. The relationship
between the predictors in equation (6) and the canonical parameter is given by
the so called link function. This function is going to depend on the member of the
exponential family that we are going to use. For the exponential distribution the
link function is

� = � 1

'
�
! +

PJ
j=1 �jg(di�j) +

PK
k=1 �k�i�k

� : (7)

Noting that under this distribution �(�) = ���1 and V (� (�)) = �2, then (5) are
the �rst order conditions for the maximization of the log-likelihood function for
exponentially distributed data.

As it has been pointed out in many recent studies, the ACD speci�cation is
sometimes too simple since the expected duration can vary over time, or can be
subject to many di�erent time e�ects. One way to extend the previous model is
to decompose the conditional mean in di�erent e�ects. In the standard time series
literature any stochastic process can be decomposed in a combination (we adopt
a multiplicative decomposition being the additive straightforward) of cycle and
trend, seasonal pattern and noise, i.e. Xt = XCT

t � St � "t. This decomposition, of
long tradition in time series analysis, has been already used in volatility analysis
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(see for example Andersen and Bollerslev, 1998). In ultra high frequency data,
the ACD model has been usually estimated using a duration time series that was
already adjusted by seasonality by using averages over some period of time and
piecewise cubic splines to smooth these averages. More precisely, let us denote by
di the duration variable, let d

a
i be the "diurnally adjusted" duration and �nally let

�(ti�1) be the seasonal component. Then the duration is "diurnally adjusted" by

dai =
di

� (ti�1)
(8)

and the expected duration can be written as

E
h
dij �di�1; �yi�1

i
= � (ti�1)E

h
dai j �di�1; �yi�1

i
: (9)

See, among others, Engle and Russell (1997), and Bauwens and Giot (2000). Note
that for (8) and (9) to hold, the time e�ect must be deterministic. However, as it
was argued in the previous section, this assumption rules out possible impacts of
factors on seasonality such as macroeconomic announcements, market conditions
and other e�ects. In order to allow for these e�ects, then it is necessary to assume
that both trend-cycle and seasonal components are functions of random variables,
and therefore simultaneous estimation of both terms is required. Further, in this
paper we propose the following nonlinear structure for the conditional mean

E[dij �di�1; �yi�1] = '
�
 ( �di�1; �yi�1;#1); �( �di�1; �yi�1;#2)

�
: (10)

The function '(u; v) can nest a great variety of models. '(u; v) = (u� v) stands
for an ACD representation whereas '(u; v) = exp(u + v) represents a Log-ACD
representation. Then, following (10) the durations, volatility, trading intensity and
volume (in a high frequency framework) can be modelled as a possibly nonlinear
function of two components that represents the long-run,  (�;#1) and the short-
run, �(�;#2), respectively. The long-run component can be considered as the core
dynamics and on it the dynamics of the process are modelled. It can be done using
autoregressive models (like GARCH or ACD), latent factor models (like SV and
SCD) or any other alternative. The short-run component represents the seasonal
pattern, that can be intradaily and intraweekly. The next issue is how to specify
each of these components. Alternatively another component could be added to (10)
accounting for the news e�ect. Then this third component would be the short-run
component because since we are working with tick-by-tick data, short-run means
some hours and usually the e�ect of a news in the stock remains for no more than
a couple of hours, as documented by Payne (1996) and Almeida et al. (1996).

3 Speci�cation of the di�erent components

The following natural question is how to model each one of the components. As a
�rst guess, we should chose between a fully nonparametric approach, a semipara-
metric or a fully parametric. Since we have to specify two di�erent components it
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would be sensible to specify parametrically those functions where a lot of informa-
tion is available, whereas in the case of ignorance a fully nonparametric approach
is much more feasible. For the long-run component we adopt some previous pre-
speci�ed parametric form. The seasonal component is much less investigated, and
to our knowledge it does not exist a standard an accepted form for this type of
models. On these grounds, we choose to leave it unspeci�ed in the form of a
nonparametric function. Furthermore, the interest of the analyst is to predict the
process as a whole, that is predict the raw data and not the adjusted one. This is
an additional reason for modeling parametrically the component that conveys the
past information whilst the deterministic pattern is approached nonparametrically.

We �rst introduce the speci�cation for the long run component whereas the
speci�cation for the short run component will be introduced later in the section.

For the long-run Engle and Russell (1998) introduced the ACD model that
accounts for these features. Since this model, more re�nated versions has appear
in the literature. See Bauwens et al. (2000) for a survey about these kind of models.
A version of particular interest is the Log-ACD model of Bauwens and Giot (2000).
They model the expected duration exponentially, similarly to the EGARCH model
for volatility. This model is useful because it avoids the positivity restrictions of
the parameters of the dynamic equation.

A drawback of the ACD and the Log-ACD models, as well as all �nancial
duration models existing in the literature, is that they do not permit durations
equal to zero, since the "good" distributions used for durations are not de�ned
at zero.2 In the exchange markets this a quite common event when dealing with
transaction data, where several transaction occurs at the same time.3 As contrary
to other studies, we believe that they convey information since they are the result
of limit orders of retail traders posted for being executed at round prices. When
dealing with this particular type of durations we are willing of substituting the
durations equal to zero for some quantity. This quantity can be either estimated
or chosen ad hoc. In any case it should be between zero and one, since the time
measure in one second and it is the smallest possible observable duration. This
analysis does not only implicates to durations zero but also to the next positive
duration after several successive durations zero. That is in order to maintain that
the sum of all the durations remains equal to the total time spell considered and, if
durations zero are substituted by a certain positive value between zero and one, we
should modify the duration strictly positive that occurs after successive durations
zero. In terms of time deformation it means that durations zero are enlarged while

2The term "good" is because a distribution like the exponential is de�ned at zero but it is
"not good" for �nancial durations.

3This is not entirely true since if we consider time as continuous then by de�nition there
cannot be two events at the same time but, since the minimum time measure is the second, it
happens often.
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the next strictly positive duration is shrunk. More formally

d�i =

8><
>:
di if di > 0 and di�1 > 0
ci if di = 0
di �PJ

j=1 cj if di > 0 and di�j = 0, j = 1; : : : J;
(11)

where J is the number of immediately past successive durations zero. This trans-
formation is subject to the constraints 0 < ci � 1 and 0 <

PJ
j=1 cj � 1. There is

one especial case when di = 1 and di�1 = 0. Then di is also considered as a duration
zero but then if next duration, di+1, is strictly positive it is not transformed.

Thus, given this transformation, what is of primary interest is to set the values
ci. There exist several alternatives depending on the interest of the analysis.
The �rst approach consists in replacing ci by some constant ad hoc. The second
approach is to estimate them. Estimation can be done considering the model as a
left censored model where the censoring is that we do not observe values bellow one.
Another possibility would be consider that the duration zero generating process
di�ers from the generation process of the strictly positive durations. Then we can
use a similar technique to the hurdle models used in count data.

The principal drawback of these models is that we are dealing with dynamical
processes and hence either censoring or hurdle in these processes is not as easy as
in the static case since we have to integrate with respect to past censoring and
tractability is not assured (see, for example Wei, 1997, for a Bayesian approach to
dynamic Tobit models).

The �rst of the constraints, 0 < ci � 1, gives us a hint about a possible
speci�cation of the parameter ci. Since it can be time varying and it must be
between 0 and 1, one possible functional form is by means of a logistic function and
so its value may depend on extra variables such as the number of successive zeros,
past durations, prices, etc. Alternatively, any other function that ranges between
zero and one can be used. Any distribution function would be valid, specially the
cdf's used here, as the Burr or the generalized gamma. These approaches are with
no doubt cumbersome and they are themselves subject of a proper research.

Hence, in our framework, since we are mainly interesting in analyzing the
intradaily seasonality but without despise the information content in duration
zero, we substitute durations zero by cj = 1=J where J is the number of successive
durations zero. The drawback of this approach is that durations zero are considered
to be regularly spaced within the second in which they arrive. However, this
transformation carries out the above scheme and the constraints are ful�lled. We
adopt the easiest approach not expecting great results and letting this subject
open for future research.

Following, the speci�cation of the long-run component is done by means of the
conditional expectation of a Log-ACD model

log ( �di�1; �yi�1;#1) = ! + � ln di�1 + � i�1 (12)

With respect to the so called short-run component, �(�; #2), several alternative
approaches are available. When modelling seasonality, in this type of models, it
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is usually assumed that the seasonal term is somehow related to the time ti at
which the i-th transaction occurs through some smooth function on time. Clearly,
it is of great interest to specify this function �(�; #2). Several proposals have been
made in the literature. One might assume that this function belongs to a pre-
speci�ed family of parametric functions. This can be the case when using seasonal
dummy variables, or truncated trigonometric polynomials. However, in this paper
we do not want to specify such a function, and hence we will only assume some
smoothness conditions on it. We propose to estimate by using kernel methods
that are carefully explained in next section. There exist many reasons to do that:
First, they are computationally eÆcient, second, they allow for easy simultaneous
estimation of all parametric and nonparametric components, and �nally, we can
show the statistical properties of the resulting estimator.

Finally,consider an additional third component, �(�; %), for the news e�ect.
It could be expressed as �(�; %) = PJ

j=1

PK
k=1 Æj(1 � %)kDijk for 0 < % < 1 and

�2 = (Æ1; � � � ; ÆJ ; %). That is, at a moment i there is a news event that a�ects to
the market up to observation K arrives. The dependency of the variable of interest
in the news decreases geometrically since markets do not react instantaneously to
the news, but they take some time to dissipate the new information.

4 Simultaneous estimation procedure

Now, once the general model is speci�ed, it is necessary to provide an estimation
method that accounts for the unknown quantities that need to be estimated. From
equation (10) in Section 2 and the parametric model for the long-run, then we
propose the following expression for the mean of the conditional duration model

E
h
dij �di�1; �yi�1

i
= '

�
 ( �di�1; �yi�1;#1); �(ti)

�
;

where the function  (�; #1) is known and the other quantities, #1 and the function
�(�) evaluated at time points t1; � � � ; tn need to be estimated. This estimation prob-
lem is semiparametric since a nonparametric component, �, needs to be estimated
jointly with a parametric one #1. Under this setting standard (quasi-)maximum
likelihood techniques do not apply directly and some developments are needed.
This extension is based on the so called conditionally parametric approach intro-
duced in Severini and Wong (1992). The basic idea of this method is to estimate
the nonparametric function �(�) by maximizing a local likelihood function (see
Staniswalis, 1989) and simultaneously estimate the parameter vector #1 by max-
imizing the un-smoothed likelihood function. If we specify only the conditional
mean and the underlying density is assumed to belong to the family of expo-
nential densities, then maximum likelihood methods are available (Severini and
Staniswalis, 1994 ; Fan, Heckman and Wand, 1995). Unfortunately, the statisti-
cal results from these papers do not apply directly in our case since they assume
independent observations.
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The (quasi-)likelihood function takes the form

Qn (d; ') =
nX
i=1

Q
�
'
�
 ( �di�1; �yi�1;#1); �(ti)

�
; di
�
; (13)

where the quasi likelihood Q(�) is obtained by integrating (5), i.e.

Q (d; g) =
Z d

g

(s� d)

V (s)
ds:

For �xed values of #1, let us de�ne �̂#1(�) as the solution to the following
optimization problem

�̂#1(�) = argmax
�

1

nh

nX
i=1

K
�
� � ti
h

�
Q
�
'
�
 ( �di�1; �yi�1;#1); �

�
; di
�

for � 2 [a; b]. Then �̂#1(�) must ful�ll the following �rst order conditions

1

nh

nX
i=1

K
�
� � ti
h

�
@

@�
Q
�
'
�
 ( �di�1; �yi�1;#1); �

�
; di
�
= 0: (14)

The values of #1, #̂1n are obtained as the solution to the following (un-smoothed)
optimization problem

#̂1n = argmax
#1

nX
i=1

Q
�
'
�
 ( �di�1; �yi�1;#1); �̂#1(ti)

�
; di
�
;

and #̂1n must ful�ll the following

nX
i=1

@

@#1
Q
�
'
�
 ( �di�1; �yi�1;#1); �̂#1(ti)

�
; di
�
= 0: (15)

As an example, set ' (u; v) = (u� v), the ACD representation, and � = ���1
and V (�) = �2 (the exponential distribution). Then (13) corresponds to the
log-likelihood function from an exponential conditional distribution with an ACD
representation, i.e.

�
nX
i=1

"
log

n
 ( �di�1; �yi�1;#1)� �(ti)

o
+

di
 ( �di�1; �yi�1;#1)� �(ti)

#
(16)

and the �rst order condition (14), takes the explicit form

�̂#1(�) =

PN
i=1K

�
��ti
h

�
di

 ( �di�1;�yi�1;#1)PN
i=1K

�
��ti
h

� : (17)

Since a closed expression for the parametric part is not available, an iterative
algorithm must be used. Now, instead assume that '(u; v) = exp(u+v), then (13)
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corresponds to the log-likelihood function from an exponential distribution with
a Log-ACD representation and then and the �rst order condition (14), takes the
explicit form

�̂#1(�) = log

8><
>:
PN
i=1K

�
��ti
h

�
di

expf ( �di�1;�yi�1;#1)gPN
i=1K

�
��ti
h

�
9>=
>; : (18)

In some situations, it might be also of interest to use a density function that
does not belong to the family of exponential functions. This could be the case
when we are interested more than in the values of the estimated parameters in
density forecasts. In this case, it is possible to perform estimation under these
distributions through the use of standard maximum likelihood techniques. Of
course it is straightforward to show that under correct speci�cation of the density
the results we show further hold.

Therefore for the generalized gamma with parameters (1; ; �) by maximiz-
ing the corresponding (smoothed) log-likelihood function we obtain the following
nonparametric estimator for the seasonal component in the Log-ACD setting

�̂#1(�) =
1


log

8>><
>>:
PN
i=1K

�
��ti
h

� �
di

expf ( �di�1;�yi�1;#1)g
�

PN
i=1K

�
��ti
h

�
�

9>>=
>>; : (19)

Note that we attain the nonparametric seasonal estimator using the Weibull
distribution when � = 1 and it coincides with the estimator in the Burr case.
Finally, the previous expressions have been obtained by assuming an intradaily
seasonal component. However, it is also possible to extend it to several seasonal
e�ects. For example, if we consider intraweekly seasonal e�ects, then we might
identify �ve di�erent seasonal patterns corresponding to each day of the week. In
this case, for s = 1; � � � ; 5, we have in the exponential and the Log-ACD represen-
tation

�̂#1(�) = log

8><
>:
PN
i=1K

�
��ti
h

�
di

expf ( �di�1;�yi�1;#1)gI (ti 2 �s)PN
i=1K

�
��ti
h

�
I (ti 2 �s)

9>=
>; (20)

where �s is a subset in [a; b] that contains � . Hence that for any distribution we
consider, the non parametric seasonal curve is estimated by nothing else that a
transformation of the Nadaraya-Watson estimator of the non parametric regression
on the duration adjusted by the long-run component over the curve. The following
results are needed to make correct inference for the unknown parameters of the
Log-ACD model. In the sequel, we assume that the regularity conditions that are
assumed in the Appendix take e�ect. Then the following results are shown in the
Appendix:

Theorem 1 Under the conditions stated in the Appendix, and if h! 0 and nh!
1 then,

sup
�
sup
�
j�̂#1(�)� �(�)j = op

�
n�1=4

�
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as n tends to in�nity.

Theorem 2 Under the conditions stated in Theorem 1 then,

p
n
�
#̂1n � #1

�
!d N

�
0;��1

#1

�
;

where

�#1 = E

 
@2

@#1@#T1
Q
�
'
�
 ( �d; �y;#1); �(t)

�
; d
�!

;

as n tends to in�nity

5 Application to the trade duration process of a

stock in an order driven market

5.1 Data and transformations

In this section we apply the model proposed to a trade duration process. Data
are trades during january-march 1998 of Bankinter, a medium size spanish bank
traded at Bolsa de Madrid. This stock exchange market is an order driven market
and thus it works as some of the most important stock markets in continental
Europe like Paris, Brussels or Milan. In a purely order driven market, there is not
market maker and all the orders are entered in the order book. When and buying
and a selling order match the order is executed. These orders can be either limit
orders or market orders.

Our database is a trade database and thus we are not able to examine wether an
order comes from a bid or and ask, or a limit or a market order. As we will see later
on, the di�erence between limit and market orders is crucial when explaining why
there occur several trades in the same moment, that is, why there are durations
equal to zero.

From the original data base two transformations are required. The �rst has to
do with the opening e�ect while the second one is the already explained way to
deal with durations zero.

When a trading day begins, before opening there is an auction in order to �x
the opening trading price. Once the price is �xed, all the remaining orders in
the auction stay, not being possible to introduce new orders or cancel the existing
ones. When the market opens all the orders from the auction are executed in the
�rst minutes. Therefore these trades are not informative about the dynamic of
the process and they can be eliminated. Recent studies have eliminated the �rst
half hour of the day for avoiding the e�ects of the auction in the trading day.
Since the moment of time in which the auction orders are traded varies every day,
we believe that adopting this approach we lose informative durations. Thus we
adopt the "second price" strategy, i.e. consider that the trading day begins from
the second price since all the orders traded with the �rst price correspond to the
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orders of the preopening auction. This data transformation has an important e�ect
on the durations equal to zero. Figure 1 reects this e�ect. It is the number of
durations equal to zero every ten minutes from the opening to the closing including
the �rst trading day price (left plot) and excluding it (right plot). In the case that
we include the �rst price trades it is clear that we will increase arti�cially the
number of trades as well as the number zeros in the sample. Moreover the amount
of �rst price trades is important. In our sample it represents 9:32% of all the
trades.

With respect to trades that occur at the same moment of time and are not
due to preopening auction, previous studies have assume that they come from a
trader that wants to buy or sell a big volume and hence trader splits the order in
small blocks that are send it to the order book producing quick trades of some or
all of the split orders. Under this assumption, these studies eliminate these trades
and thus no durations zero remains in the sample. This trading phenomena can
be true in some cases but not in all. Indeed another feasible, and certainly logic,
explanation is that these durations zero occur because retail traders post small
limit orders being the limit price a round price. In order to verify this conjecture
we take a look to �gure 2. It represents the number of durations equal to zero (y
axe) for all observed prices (x axe). It seems that as a round price happens, for
example 1000 pesetas (6.04 euros), the number of trades increases and thus the
number of durations zero also increases. This increasing of durations zero does not
only happens around the "very round" prices. All the small pikes that can be seen
in the �gure correspond to prices which are multiples of 50 pesetas (0.3 euros),
two times the tick. This con�rms the hypothesis that almost all the durations zero
occur in round prices and thus they are caused by retail traders that post limit
orders at these particular prices. Therefore the durations equal to zero that are not
caused by the �rst trading day price are not deleted but substituted by 1=J , where
J is the total number of successive durations, and the strictly positive duration
that follows the durations zero is replaced by its value minus one, as explained in
previous section.

5.2 Descriptive analysis

Figures 3 and 4 are the observed durations, the autocorrelogram and a kernel
estimate of the density. In �gure 3 there is also a piecewise constant curve (the
dashed line) indicating the day and the week. The lowest piecewise corresponds to
monday and it is increasing up to friday and then it decreases again corresponding
to monday of next week. Obviously if one day is holiday there is not piecewise line
for that day. In order to see clearly the intradaily seasonal pattern we just show
the �rst month, january 1998. From this �gure we can see that everytime that a
new day begin there is a decreasing of durations while it increases during the day,
indicating the intradaily seasonality. Left plot of �gure 4 con�rms this feature.
It is the autocorrelogram. Even if we should use this plot only for illustrative

13



Figure 1: Intradaily seasonality of durations zero. Left including �rst trading day
price. Right excluding it.

purposes,4 one sees that there is a clear seasonal pattern. Finally right plot of
�gure 4 shows a kernel estimate of the density. It seems that the density has an
asymptote at zero. It implies that, in principle, the exponential distribution should
not give good results and the Burr distribution can be redundant in the sense that
the second parameter should not be signi�cative and therefore a priori the correct
distributions could be either Weibull either generalized gamma.

In table one there is a brief descriptive analysis of some basic measures. Num-
bers in parenthesis are the same statistics but eliminating durations zero. The
basic insights that can be extracted from this table are: durations (with and with-
out zeros) are overdispersed and highly autocorrelated as it was expected given
that they are �nancial processes. The number of durations equal to zero is very
signi�cative, 26.5% percent of the total. Eliminating them implies that the dy-
namical properties of the process change. For example the Q-statistics are higher
when only considering strictly positive durations.

Since the aim of the paper is about (intradaily) seasonality, it is worthwhile
compute the diurnally component (i.e. the function �(�) used to seasonally adjust
data). Up to now this function has been speci�ed by means of cubic splines

�̂(�) =
JX
j=1

1[�j��<�j+1]

h
aj + bj (� ��j) + cj(� ��j)

2 + dj(� ��j)
3
i
;

where �j are the knots and 1[�j��<�j+1] is an indicator function for the j + 1th
segment. We introduce a second estimator which is a standard Nadaraya-Watson

4The use of autocorrelograms when dealing with point processes has not an exact meaning.
That is, autocorrelation of order 100 implies that the relation between one observation and 100
before is always the same, but one of the main characteristics of tick-by-tick data is that for a given
time interval (for example one hour) the number of observations di�ers and so the seasonality
found in the autocorrelogram is just illustrative. A possible alternative to the autocorrelogram
is the variogram extensively used in geostatistics and introduced in the analysis of tick-by-tick
data by Hillman and Salmon (2001).
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Figure 2: Number of durations zero for every price

estimator

�̂(�) =

PN
i=1K

�
��ti
h

�
diPN

i=1K
�
��ti
h

� :

With respect to the later estimator, the time variable is the number of cumu-
lative seconds from midnight every day. The kernel chosen is the quartic and the
bandwidth is 2:78�N�1=5 where � is the standard deviation of the data and N
the number of observations. With respect to the former estimator, the nodes are
set every hour and the smoothing parameter is 0.01, as used in previous studies.
Figure 5 represents the two diurnally estimators for the mean day and for the �ve
days of the week and adjusting data excluding durations zero.

From this �gure it seems that the variation of the daily seasonal pattern is
not signi�cative across days. Also the Nadaraya-Watson estimator seems to be
smoother than the piecewise cubic spline but the later varies more within a day
since it ranges from zero to approximately 90 while the Nadaraya-Watson ranges
from approximately 30 to approx 90. 5

5The same exercise has been done including durations zero and results are very similar. This
detail is important since as it will be showed later there are remarkable di�erences between the
estimated curves when including and excluding the durations zero

15



Solid line are observed durations. Dashed line represents the days of the week. Each piecewise

is day and it is increasing from monday up to friday. The scheme is repeated every week. Only

January has been plotted because representation purposes

Figure 3: Observed duration and day of the week

5.3 Estimation

We now proceed on estimation. Using the estimation method proposed in the
former section, we estimate the parameters of a Log-ACD model and the seasonal
component under three alternative speci�cations for the distribution of the con-
ditional durations: exponential (QMLE), Weibull and generalized gamma. We
proceed as well, for comparative purposes, with estimation on raw data, adjusted
for seasonality and with and without durations zero.

Results are in tables two and three. The �rst column is the estimation result
when we do not consider seasonality. In the next two columns the intradaily and
the intraweekly nonparametric estimators respectively are included. Last column is
the result when we previously adjust durations by the Nadaraya-Watson estimator.

The mean equation parameter values, (!), � and � are the expected according
to the properties of a �nancial duration process. The model is stationary and in
all cases models capture the long memory property. Notice that ! is not present
in the estimation with seasonal component since the nonparametric curve plays
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Density estimated non parametrically with a Gamma Kernel. See Chen (2000). The bandwidth

is (0:9�N�0:2)2 where � is the standard deviation of the data and N the number of

observations.

Figure 4: Autocorrelogram and Marginal Density

Table 1: Information on Duration Data

No. Days No. Obs No. Durations=0 % Durations=0
61 (61) 27298 (20067) 7231 (0) 26.5 (0)
Mean S.d Q(1) Q(10)

55.82 (75.94) 102.28 (112.711) 364.57 (457.58) 2413.3 (2881.8)
Descriptive statistics for the trade durations of Bankinter during January -
March 1998. Durations are measured in seconds. Q(k) is the Ljung-Box statis-
tic for autocorrelation of order k.

the role of a time-varying parameter.
With respect to the parameters related with the distribution, when the sea-

sonal component is considered the parameters  and � for the generalized gamma
increases and decreases respectively. This change can be explained in terms of
hazard functions since it is the most important function when dealing with dura-
tions. Left plot of �gure six shows the hazard functions for the generalized gamma
distributions when considering the seasonal component (dashed line) and when
ignoring it (solid). Although small, in this plot we can see the e�ect of considering
or not the seasonal term. The hazard function is shifted down (from the solid
to the dashed line) when considering the seasonal component. This is due to the
following: when getting rid of the seasonal component in the long-run term we are
excluding a part of the high activity in the opening and the closing, related with
the shorter durations. Equivalently for the lunch time: it is expected that a part
of the low trading activity is captured by the seasonal component, related with
the longest durations. Therefore the seasonal term will capture a proportion of
the lowest and the highest trading activities implying that the hazard function, or
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NW stands for Nadaraya-Watson and CS for Cubic Splines

Figure 5: Diurnally component

the instantaneous probability, will decrease and, because the construction of the
hazard functions, they also decrease for medium durations. This is why the hazard
function shifts down when including the seasonal curve.

Right plot can be used for looking at the di�erences between distributions.
Solid line represents the Weibull hazard function while dashed line is the gener-
alized gamma. We estimate without zeros (the inserted window is a zoom of the
area close to the origin). The hazard function of the generalized gamma is above
the hazard function of the Weibull. It means that the generalized gamma distribu-
tion increases the instantaneous probability of a trade. Finally, remark that as the
distribution function becomes more exible, the changes in the hazard function
when estimating with and without seasonal component increases. For example,
for the exponential the hazard function is equal through any speci�cation (since it
is constant and equal to one), for the Weibull case it varies but very slightly while
for the generalized gamma changes are relevant as already explained.

With respect to the seasonal curve, �gure 7 shows the intradaily and in-
traweekly seasonal patterns when using a Weibull distribution for the estimation
with and without zeros (bottom and top plots respectively). The �rst thing that
draws the attention is the di�erent shape of the estimated curves by including
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Table 2: Estimation Results excluding durations zero

No Seaso Intraday Intraweek NW

Exp ! 0.0809 0.0056 0.0196 0.0014

� 0.0391 0.0016 0.0248 0.0017 0.0235 0.0018 0.0209 0.0015

� 0.9506 0.0024 0.9703 0.0024 0.9724 0.0024 0.9749 0.0021

Weibull ! 0.0915 0.0088 0.0234 0.0023

� 0.0439 0.0025 0.0285 0.0027 0.0268 0.0027 0.0249 0.0025

� 0.9443 0.0037 0.9655 0.0038 0.9680 0.0039 0.9694 0.0035

 0.7357 0.0047 0.7410 0.0048 0.7421 0.0048 0.7406 0.0048

GG ! 0.1002 0.0101 0.0261 0.0027

� 0.0472 0.0024 0.0308 0.0030 0.0288 0.0031 0.0276 0.0029

� 0.9398 0.0043 0.9622 0.0044 0.9651 0.0044 0.9658 0.0042

 0.5937 0.0213 0.6181 0.0222 0.6252 0.0225 0.6202 0.0222

� 1.4313 0.0861 1.3517 0.0804 1.3286 0.0790 1.3429 0.0796

Estimation results ignoring the seasonal behaviour (termed No Seaso), with the non-
parametric estimator proposed accounting for the intradaily and the intraweekly pat-
tern (termed Intraday and Intraweek respectively) and using a pre-seasonal adjust-
ment by means of Nadaraya-Watson (NW). Exp, Weibull and GG stand for exponen-
tial, Weibull and Generalized Gamma distributions respectively. Numbers in regular
character are the estimated parameters and in tiny are heterokedastic-consistent stan-
dard deviations.

Table 3: Estimation Results including durations zero

No Seaso Intraday Intraweek NW

Exp ! 0.4209 0.0187 0.1149 0.0041

� 0.0696 0.0023 0.0731 0.0025 0.0751 0.0025 0.0734 0.0025

� 0.8528 0.0060 0.8204 0.0074 0.8129 0.0075 0.8137 0.0077

Weibull ! 0.5766 0.0338 0.2069 0.0096

� 0.1259 0.0053 0.1279 0.0055 0.1292 0.0055 0.1276 0.0055

� 0.7812 0.0112 0.7353 0.0129 0.7434 0.0133 0.7515 0.0129

 0.5117 0.0028 0.5158 0.0028 0.5168 0.0028 0.5152 0.0028

GG ! -0.354 0.3160 -0.489 0.8623

� 0.2096 0.0066 0.1537 0.0034 0.1496 0.0032 0.2060 0.0066

� 0.6678 0.0130 0.7023 0.0023 0.7004 0.0023 0.6495 0.0138

 0.0382 0.0002 0.7253 0.0203 0.7309 0.0204 0.0383 0.0002

� 146.24 0.1948 1.1235 0.1259 1.1137 0.1262 146.08 0.4274

For explanation see previous table
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Left plot is the estimated hazard functions for the estimation without durations zero and with

and without intradaily seasonal component (dashed and solid lines respectively) for the

generalized gamma distribution. Right plot is the estimated hazard functions for the Weibull

and the generalized gamma distributions (solid and dashed lines respectively) without

durations zero. The inserted window shows a zoom of the graph close to the origin.

Figure 6: Estimated hazard functions

and excluding durations zero. Although they have the same inverted U shape,
di�erences come from the intensity of the seasonality at di�erent periods of the
day. It is particularly remarkable at the beginning of the day. In the bottom plots
the deterministic seasonality increases sharply at the beginning of the day while it
is not the case of the top estimated curve. It means that at the beginning of the
day there exists a certain dynamics that is captured by the parametric part in the
semiparametric estimation only when excluding durations zero. A comparison can
be done whith �gure 5. The ad hoc seasonal patterns (including and excluding
durations zero) are very similar to the estimated curve when including durations
zero. It means that when including durations zero the ones produced in the �rst
half of the day are not informative and hence they are captured by the seasonal
curve while it is just the contrary for the durations zero observed at the end of day
since the second half day seasonal pattern in similar in any plot. This permit us
to conjecture that the exogenous information occurred during the period in which
the market is closed is not informative of the stochastic part of the process while
the ow of information, either exogenous or endogenous, that arrives to the market
when it is open matters.

After 13:00 there are not remarkable di�erences. Up this time traders go for
lunch and just before they take positions, increasing again the trading intensity.
Traders lunch and the market remains relatively constant up to a bit before 15:30
when NYSE and NASDAQ preopen and then the market becomes very quickly
very active an the trading activity increases and this increase does not stop up the
closing at 17:00.

Additionaly, there is not a signi�cative intraweekly pattern since the intradaily
seasonality between days of the week are very similar. Finally, although it is not
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Top plots are the estimated seasonal intradaily and intraweekly components when excluding

durations zero. Bottom plots are the equivalent but including them. Weibull distribution is

used

Figure 7: Estimated seasonal curves

showed the seasonal curve is almost identical for any of the three distributions,
meaning that it is "robust" to the distribution of the parametric part of the model.

5.4 Diagnosis

For testing the accuracy of the model we use density forecast. This technique is
based on the calculation of the probability integral transform and then test wether
it is i:i:d and uniformly distributed using histograms and autocorrelograms. It
were introduced by Diebold et al. (1998) in the context of GARCH models and
it has extensively used by Bauwens et al. (2000) for comparing di�erent �nancial
duration models. This technique is specially useful for evaluating the forecasting
performance of di�erent non nested models although it can be used as well for
nested models.

Basically it works as follows: ffi(di j Hi)gmi=1 a sequence of one-step-ahead
density forecasts produced by the model and by fpi(di j Hi)gmi=1 the sequence
of densities de�ning the data generating process governing the duration series
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di. It can be showed that the correct density will be preferred by all forecast
users regardless of their loss functions and hence it makes sense to test wether
ffi(di j Hi)gmi=1 = fpi(di j Hi)gmi=1.

This test is done using the probability integral transform

zi =
Z di

�1
fi(u)du;

that must be i:i:d: and uniformly distributed under the correct density. Hence
when assuming some mean equation and some distribution both independence and
uniformity of the estimated density can be checked.

In order to test uniformity, it can be done easily using a histogram based on
an empirical z sequence. If the density is correctly speci�ed the histogram should
be statistically at. For the independence checking, autocorrelation functions of
various centered moments can reveal some dependency. For further details see the
two above references.

Figures 8 and 9 show the histograms of z and autocorrelograms of (zi� �z). Fig-
ure 8 are, from top to bottom, the density forecast results when estimating without
durations zero and the three distributions. Last row when considering durations
zero and the generalized gamma distribution. All estimations with the intradaily
component and looking at the out-of-sample performance. On the contrary �gure
9 are the estimations with the generalized gamma, the Nadaraya-Watson estima-
tor and with and without durations zero. We do not show the autocorrelograms
for other centered moments and using the intraweekly component since results are
similar in all cases.

From these �gures some comments arise: First in general the mean equation
captures correctly the dynamic in any case since most of the autocorrelations
remain in the 90% co�ndence bands. This result is also found in Bauwens et
al. (2000) where they shown that the mean equation choice in not crucial for
determining the accuracy of the model. There is some residual autocorrelation
when durations zero are included and when the seasonal curve is not estimated
jointly. Secondly there is in general a huge di�erence between the estimation with
and without the durations zero. This is caused probably by the way in which
durations zero are dealt. As explained in previous section we did not expect good
results and thus we let the improvement on the treatment of these data for future
research. Nevertheless it is worthwhile explain why this shape. Indeed a similar
shape (to the one of the last row of �gure 8) has been found in Bauwens et al.
(2000) when dealing with price durations and previously adjusting data by means
of a cubic spline. The considered distributions are not able to account for durations
smaller than one which is probably due to its high percentage with respect to the
whole sample. This is represented in the histogram with a very small frequency
for 0 < z < 0:05 and hence this lack of values at this range provokes an over
representation on the following bins.

With respect to the distributional assumption, as expected the exponential
distribution does not make a good job while there other two behaves much better,
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specially the generalized gamma. Even when the durations are preadjusted, the
histogram, although signi�cantly worse than in the joint estimation, does not look
like very bad but it is far from uniformity since large and small durations are under
represented.

Related with the inclusion of the seasonal component di�erences are clear.
When it is included in the estimation, forecasting results are much better and z
is uniformly distributed (in the case of no durations zero) and hence we assert
that only when including in the estimation the seasonal component the forecasted
probability integral transform is i:i:d: and uniformly distributed.

6 Conclusions

When dealing with tick-by-tick data, there exists seasonal patterns. One of the
most signi�cative is the intradaily seasonality, that is, the deterministic pattern
that all the tick-by-tick variables shown through the day. Since data are irregularly
spaced, that is they are a point process, the analysis of the seasonality cannot be
done using standard tools. On the other hand if the point process can be decom-
posed in components, such as long-run (accounting for the dynamics)and short-run
(for the seasonality) , estimation of the components in steps is not e�ccient since
they are not orthogonal. In this paper we have proposed a semiparametric mod-
eling strategy. The dynamics of the process are modeled parametrically while the
seasonality is a nonparametric curve. This semiparametric approach is justi�ed
since we are interested in the analysis of the dynamics of the process but accounting
for the existence of a very strong seasonal component.

Simultaneous estimation of the parameters of the dynamic component and the
seasonal curve is performed by a modi�cation of the method suggested in Severini
and staniswalis (1994). An explicit from the estimator of the seasonal curve is
obtained and it depends on the underlying distribution that is assumed. Moreover
we show that the nonparametric estimator is consistent and that the estimated
parameters, given the estimated curve, are asymptotically consistent, eÆcient and
normally distributed.

Some discussion is introduced about how to deal with durations zero since they
are often observed. Finally we apply the above proposed methodology to the trade
process of a Spanish bank traded in Bolsa de Madrid. This stock market is a purely
order book market as many of the continental Europe stock exchanges. Results
show that the seasonality is very strong having di�erent behaviour in the opening
and the closing times as well in east-coast USA stock markets' opening.

Some extensions are possible. The most important is a better way to deal with
durations zero. Using the approach proposed here does give nice results. Going
further in dynamical hurdle models or censoring is future research. On the other
hand this analysis can be useless since due to technologies improvements the time
measure will be smaller and hence there will be a moment in which there will not
be durations zero. Actually some stock exchange markets sell tick-by-tick data in
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centesimal seconds.
Some other extension is the analysis of any other tick-by-tick variable using

this semiparametric approach. For example volatility. In general once the dynamic
component is speci�ed as well as the distribution, the semiparametric approach
proposed here can be used giving as result consistent and eÆcient parameters.

Appendix

De�nitions and assumptions

In order to prove the results claimed in Theorems 1 and 2 we need to establish
some de�nitions and assumptions. The proofs follow the same lines as in Severini
and Staniwallis (1994).

(A.1) The random variable t takes values in a compact set T � R. The marks y
take values in a compact set Y � Rp.

(A.2) The observations f(di; yi; ti)gi=1;��� are a sequence of stationary and ergodic
random vectors.

(A.3) #10 takes the values in the interior of �, a compact subset in Rp and �
takes the values in the interior of �, a compact subset of R.

� =
n
f 2 C2[a; b] : f(t) 2 int (�) for 8t 2 [a; b]

o
:

(A.4) Let � be a compact subset of R such that '
�
 ( �d; �y;#1); �(t)

�
2 � for all

t 2 T, y 2 T, #1 2 � and � 2 �.

(A.5) The matrix

�#1 = E

 
@2

@#1@#T1
Q
�
'
�
 ( �d; �y;#1); �(t)

�
; d
�!

is positive de�nite.

(B.1) The kernel function K(�) is of order k > 3=2 with support [�1; 1] and it
has bounded k + 2 derivatives.

(B.2) For r = 1; � � � ; 10+k the functions @r'(m)=@mr and @rV (�)=@�r exist and
they are bounded in their respective supports.

(B.3) d is a strong mixing process where the mixing coeÆcients must satisfy for
some p > 2 and r being a positive integer

1X
i=1

ir�1�(i)1�2=p <1:
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Furthermore, for some even integer q satisfying (k+2)(3+2k)
(2k�3)

� q � 2r

E jdjq < �;

where � is a constant not depending on t.

(B.4) The conditional density of t, given the information set Ii�1, f(t), and the
conditional density of d given t and Ii�1 has k + 2 bounded derivatives uni-
formly in t 2 T, y 2 Y and d 2D.

(B.5) Let

M (�;#1; t) = E

(
@

@�
Q
�
'
�
 ( �d; �y;#1); �

�
; d
� ����y; �d

)
:

For each �xed #1 and t, let �#1(t) the unique solution to M (�;#1; t) = 0.
Then for any � > 0 there exists a Æ > 0 such that

sup
#12�

sup
t2T

j�#1(t)� �(t)j < �

whenever
sup
#12�

sup
t2T

jM (�(t);#1; t)j < Æ:

(B.6) The sequence of bandwidths must satisfy h = O(n��) where

1

4k
< � <

1

4

q � (2 + p)

q + (2 + p)
:

Proof of Theorem 1

The proof of this theorem follows the same steps as in the proof of Lemma 5 from
Severini and Wong (1992), p. 1784. The bias term must be treated in the same
way as they do. With respect to the variance term an additional result must be
included to account for the dependence. Consider the following expression

1

nh

nX
i=1

�
K
�
� � ti
h

�
'
�
 ( �d; �y;#1); �

�
� E

�
K
�
� � t

h

�
'
�
 ( �d; �y;#1); �

���

and de�ne

Wi =
1

h
K
�
� � ti
h

�
'
�
 ( �d; �y;#1); �

�
� E

�
K
�
� � t

h

�
'
�
 ( �d; �y;#1); �

��

Then, under assumptions (A.2) and (B.3) the process W1; � � � ;Wn is strong mix-
ing and therefore theorem 1 from Cox and Kim (1995) applies and the following
sequence of inequalities hold. For � > 0

P
����� 1n

X
Wj

���� > �
�
� E [(

P
Wi)

q]

nq�q
�
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1

nq�q
C

8<
:nq=2

1X
i=P

iq=2�1�(i)1�2=p +
q=2X
j=1

njP q�j�j

9=
;

for any integers n and P with 0 < P < n. Then using assumptions (B.1) to (B.6)
and proceeding as Severini and Wong (1992) in the proof of Lemma 8, the proof
is closed.

Proof of Theorem 2

The proof of this theorem relies consists in verifying conditions I (Identi�cation),
S (Smoothness) and NP (Nuissance Parameter) fromm Severini and Wong (1992).
Condition NP(a) is the result already shown in Theorem 1. Condition NP(b) (least
favorable curve) is inmediate from Lemma 6 of Severini and Wong (1992). This
is due to the fact that we assume that the conditional density function belongs
to the exponential family. By assuming (A.1) to (A.4) the smoothness condition
holds. Finally, assumption (A.5) implies I. Then, using both a Uniform Weak Law
of Large Numbers and a Central limit theorem for a stationary and ergodic process
(see for example Wooldridge, 1994) propositions 1 and 2 from Severini and Wong
(1992) apply and the proof is done.
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Histograms and autocorrelograms for z. Intradaily component used. Top three without

durations zero. Bottom one with durations zero. Speci�cations from up to down: generalized

gamma, Weibull, exponential and generalized gamma.

Figure 8: Density forecast evaluation for raw durations
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Histograms and autocorrelograms for z. Adjusted for seasonality using the Nadaraya-Watson

estimator and the generalized gamma distribution. Top without durations zero. Bottom with.

Figure 9: Density forecast evaluation for seasonally adjusted durations
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