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Abstract

Using data covering three successive generations of people from Mada-
gascar, we construct a new semi-parametric estimator of the effect of parental
income on the decision to send children to school. We propose new tests
for detecting the simultaneity and hereditary biases that affect the usual
estimates of this effect. We demonstrate the importance of the first type
of bias. Our results show that the existing literature underestimates the
real effect of family resources on decisions as to whether or not to send
children to school by not paying enough attention to the simultaneity of
income formation processes and schooling decisions.

1. Introduction

Despite being historically and culturally quite school-orientated, Madagascar’s
level of schooling is currently one of the lowest in the world. One Malagasy
child in five never goes to school'. The majority start school one to two years
later than the normal age. Many children then leave school early and rare are
those who attend secondary school. Madagascar is not an isolated case. The
same phenomenon can be seen in most of the sub-Saharan African and South
Asian countries?. Children in poor countries today generally still receive little

*We would like to thank Thierry Magnac, Sylvie Lambert and seminar participants at
CREST, Delta, DIAL-IRD and INSEE for valuable comments.

1See Cogneau et al. (2000).

2See, for example, Filmer and Pritchett (1999).



or no schooling with the result that one of the basic conditions for economic
development is left unfulfilled.

Obviously, it is very important to understand the underlying reasons for the
extremely low level of schooling among children in low-income countries. From
a strictly economic point of view, the reasons can be found in both the lack
of school infrastructures (insufficient supply) and the lack of family resources
(insufficient demand). When parents have no or virtually no means of borrowing
to finance their children’s studies, the lower the family income the lower the level
of the children’s schooling. This paper concentrates mainly on this second aspect
of the problem. To what extent does the lack of household resources explain
the extremely low level of schooling in low-income countries? How sensitive is a
family’s educational demand to its income? We have a wealth of Malagasy data at
our disposal to identify the real impact of parental income on schooling decisions.
These data show the rates of school attendance across three successive generations
(children, parents and grandparents). Based on these data, we make a two-part
contribution:

(a) In terms of method, we construct a new semi-parametric estimator of the
effect of parental income on the decision as to whether to send children to school.
We use the new estimator for qualitative response model with endogenous regres-
sors recently introduced by Lewbel (2000). We propose new tests of simultaneity
biases and hereditary biases affecting the usual estimates of this income effect.

(b) In terms of findings, we reveal the importance of the simultaneity biases
affecting usual estimates of the income effect on schooling decisions. We find that
the existing literature greatly underestimates the real effect of family resources
on schooling decisions by not paying enough attention to the simultaneity of the
income formation processes and schooling decisions. In the Malagasy case, our
analysis provides evidence that the low level of schooling is a direct consequence
of the poverty and inequalities that became rooted in the country with the eco-
nomic collapse of the early 1980s. Despite the country’s having a long-standing
tradition of schooling children and despite the large investments made to improve
and modernise school infrastructures in the pre-recession years, the lack of indi-
vidual resources has place school out of the reach of a considerable proportion of
Malagasy families.



1.1. Simultaneity biases and hereditary biases

A large body of research has already addressed the impact of income on school-
ing decisions in the developing countries. However, we believe that this question
has still not been perfectly answered. The main problem is that the correlations
observed by the surveys between parental income and the level of children’s school-
ing are merely an indirect and potentially biased reflection of the real impact of
income on schooling. There are at least two reasons for this.

The first reason is the simultaneity of schooling decisions and production de-
cisions in the family. Some factors simultaneously determine family income and
whether or not it is worth schooling the children®. In the presence of such factors,
the gross correlations between income and schooling are affected by a bias that
can be called a simultaneity bias.

A second kind of problem has to do with family resources and skills passed
on from generation to generation. Where these factors are received by the par-
ents, they determine the family’s productivity and current income. Where they
are passed on to the children, they affect schooling decisions either by raising the
anticipated return on schooling or by raising the anticipated return of training
the children up on the family trade. In the presence of such factors, the cor-
relations between income and schooling could be as much the manifestation of
unobserved resources transmitted from parents to children as the manifestation
of a real income effect on schooling.

In general, the existing literature essentially attemps to reduce biases due
to heredity, i.e. the biases caused by resources transmitted from generation to
generation and unmeasured by the surveys. One of the most frequently used
econometric strategies is to analyse schooling and school performance differences
between descendents of a same lineage!. Berhman and Wolfe (1987) use data col-
lected in Nicaragua to analyse the differences in the number of years of schooling
between pairs of cousins (whose mothers are sisters) as a function of observed dif-
ferences in income and education between their parents. They find no significant
relation between the observed schooling and resource differences. They conclude
from this that the generally observed correlations between parental income and

3Let us assume that the occupational skills acquired by parents over their life are at least
partially passed on to the children. When these skills are substitutes for educational skills, the
most skilled parents in their trade are both those with the highest incomes and those with the
least interest in sending their children to school.

4Pioneering studies in this area use American data: see Chamberlain and Griliches (1975)
and Corcoran, Jenks and Olneck (1976).



children’s schooling derive from unobserved abilities and resources passed on from
generation to generation.

Another method consists of simultaneously analysing the parents’ schooling
and their children’s schooling based on data covering a number of generations.
Lillard and Willis (1992) use Malaysian data covering four generations to simul-
taneously estimate a schooling transition model for parents and children without
excluding the possibility of a correlation between the unobserved determinants of
the parents’ transitions and the children’s transitions. Assuming normal residuals
and exogenous parental income, they conclude that the parents’ education influ-
ences the children’s education. Yet they do not identify any significant income
effect’.

This paper takes a new look at the impact of income on the level of schooling by
attempting to model the causes for simultaneity and how heredity affects decisions
and then to correct for the resulting biases. We simultaneously analyse the parents
and children’s education, but also the parents’ income based on data covering
three generations. We center our analysis on a single transition®, but develop
semi-parametric estimation techniques without any restrictive assumption about
the residuals.

The article is structured as follows. First, we explain the theoretical framework
in which our econometric work can be situated (Section 2). We then detail our
econometric specifications and the semi-parametric estimators used (Section 3).
Next, we describe the results of our estimates (Section 4). The datasets are
described in detail in Appendix.

2. The theoretical framework

Generally speaking, our theoretical framework is part of the family of models
with an imperfect credit market pioneered by Becker and Tomes (see, for exam-
ple, Becker and Tomes, 1984). We consider dynasties (indexed by ¢) that are each
made up of an infinite succession of generations (indexed by t). Each generation

5 As the authors themselves say, the effect of parental income is nevertheless hard to interpret
in the Lillard and Willis analysis (1992): a certain number of variables potentially linked to
income (such as the quality of the dwelling) are also used as control variables. For a description
of the problems posed by the joint estimation of the income effect and variables potentially
linked to income, see, for example, Blau (1999).

61n so doing, we avoid the basic problems of non-parametric identification of transition models
in the education system, as detailed by Cameron and Heckman (1998).



experiences two periods: in the first one, it lives with its parents’ generation and,
in the second one, with its children’s generation. In each period, the parents de-
termine the allocation of income between current consumption and educational
investment in order to maximise the discounted welfare of the succession of gen-
erations. A key point in this is the limited access to credit: the parents cannot
contract debts on behalf of their children”. Within this framework, if we denote
U(z) as the utility function, then the objective of dynasty i’s generation t is
written:

max E > U (Ciyyr) (2.1)
k=0

subject to: Cyqr + cSitk = Yirr and Yigyr = F(Sisp—1, Yirrh—1, Sitv),

where Y}; is the income of the parents of generation ¢, C}; their level of con-
sumption and S; a dummy variable that takes the value 1 if the parents send their
children to school. The random variable u;;_; measures the quality of non-school
resources passed on by generation ¢ — 1 to generation ¢ and e; measures genera-
tion ¢’s intrinsic productive capacity. Given that we can always redefine ¢;; as the
residual of its projection on u; 1, €4 can be assumed to be orthogonal to wu; ;.
Function F' is a production function. It describes how income is produced from
formal and informal human capital. Parameter ( is a discounting coefficient while
parameter ¢ measures the cost of sending one’s children to school. It corresponds
to the schooling costs (e.g. transport and clothing). It also corresponds to the loss
of earnings implied by the decrease in the children’s contribution to the family’s
work. 8.

In each period, the optimal schooling choice S},_; depends on the formal (S;;—1)
and informal (u;—1) resources obtained from the previous generation and the cur-
rent productivity parameter £;;. We can therefore write S}, = S*(S;_1, ui_1,€it)-

For each period, we can also define the optimal level of consumption C}; as a
function of S;;_1,u;—1 and &;, where,

CZ = C*(Sit—huit—l; 5it) = F(Sz’t—huit—l; €z't) - CS*(Sit—luuit—lyeit)-

In this model, sending children to school involves a loss of current consumption
and hence a decrease in current welfare,

"This could be interpreted as the consequence of a social norm whereby it is not possible to
force an adult to reimburse a debt contracted by his or her parents.
8 Children at school contribute less to the family’s work. See Section 4.3 on this subject.



L(Ya) = U(Ya) = U(Yi — ) > 0 (2.2)

Assuming that U is concave, the lower current income Y} the greater the loss
L(Y;). The poorer the family, the more sensitive it is to the immediate cost of
schooling. The decision to school also entails a welfare gain for generation ¢ + 1,
whose discounted value is written,

G = BEU(C*(1, ug, €i41)) — U(C*(0,us, €i¢41)) > 0.

Insofar as the ;1 shock is independent of past history, the anticipated gain
G depends on the current period only via the intermediary of u; and can be
rewritten G(u;). Children are sent to school if the immediate losses do not exceed
the anticipated gains, i.e. L(Y;;) < G(us). Given that L decreases, this first-order
condition is rewritten,

Sit =1 = }/:it 2 Lil(G(Ult)) = Z(uzt) = Zt (23)

For any given wu;, condition (2.3) means that only the families with a high
enough current income will see a point in sending their children to school. In
this model, any exogenous increase in poor families’ current incomes reduces the
proportion of families under their schooling threshold z;;. The aim of this paper
is specifically to identify this income effect and test the extent to which redistrib-
ution aimed at the poorest families might increase the level of education of future
generations.

If u;; could be deemed orthogonal to u;;_1 and €;, then z; would be orthogonal
to Y; and there would be no real identification problem. The differences in the
schooling rates of families with different incomes would be representative of the
real impact of income on schooling”.

The difficulty with the identification problem is due to the fact that we cannot
a priori exclude the existence of correlations between u;;_; and u; or between e,
and u;;'°. When such correlations are present, incomes Yj; are correlated with

9For each level of income Y, the proportion of schooled children among families with income Y’
would directly give an estimator of F,(Y'), where F, is the distribution function of thresholds z;;.
Knowing the distribution of thresholds z;; in the population and knowing that this distribution
is independent of income, there would be no problem estimating the impact on schooling of any
change in the distribution of income.

0Variables w;—1 and wy potentially represent two successive forms of the same technical
and/or cultural assets. Insofar as the culture and techniques passed on from one generation to



thresholds z; and the income effect can no longer be identified from the observa-
tion of just S;; and Yj;. Once variables Y;; and z;; are intercorrelated, schooling
differences between different income groups reflect both the income effect and the
fact that different income groups have different schooling thresholds z;;. In such
circumstances, identifying the real effect of current income requires more than a
simple analysis of the observed correlations between income and schooling. Before
moving onto our proposed solution to this identification problem, we will develop
two possible extensions of our basic model to broaden the scope of empirical ap-
plications and possible interpretations of the effect of income on schooling.

2.1. Extensions

The model developed in the previous section simplifies the schooling question to
the extreme, since there are only two possible options: school the child or not. An
immediate extension is to assume not just 2, but K possible degrees of investment
in schooling. Variable S;; takes its values not in {0, 1}, but in {0, ..., K'}. Denoting
¢ as the cost of an investment S;; = k and setting down ¢y = 0, we can define for
all k> 1:

Li(Yar) = U(Yi — cxy) — U(Yie — ), (2.4)

the marginal loss of current utility associated with the decision S;; = k and:

Gikt = ﬂE(U(C*(kuuiheitJﬂ)) - U(C*(k’ — 1, ug, 5it+1))7 (2-5)

the marginal gain expected from this investment, where C*(k, u;, £;111) repre-
sents the optimal consumption in ¢ 4+ 1, conditional on an investment S;; = k in
t.

Assuming that U(x) is concave in z, ¢ is convex in k and Y} is concave in
Sit—1, we verify that the current marginal loss L increases with k& while the
anticipated marginal return Gy, decreases with the schooling investment. In this
context, each family chooses either not to invest in school (if G;1; — Ly < 0)
or the highest schooling investment among those whose net return Gy — L is

the next only change slowly over time, u;; 1 and u; have a good chance of being intercorrelated.
Variables e;; and u;; characterise the same adults (i.e. the parents of generation t). They are
determined in the same context and in the same period of time. There is also good reason to
think that these two variables are intercorrelated, for example, because parents with specific
informal skills (strong €;;) can pass their trade onto their children at home without sending
them to school (low ;).



positive. Denoting z; as the threshold corresponding to L;'(Gix), and setting
down by convention z;p; = 0 and z;x,1; = 00, we verify that the series of Z;,
increases and that the decision S;; = k is equivalent to (zixt < Yir < 2ig11¢). The
extent of investment in schooling can therefore be analysed very simply using a
multinomial model.

In the basic model, educational investment costs are completely exogenous.
Another possible extension of the basic model is to assume that schooling difficul-
ties can vary from one family to the next depending on exogenous characteristics
such as the child’s gender and his or her actual age when schooling becomes
compulsory (i.e. as an indicator of his or her maturity). Testing this type of
assumption is simply a question of testing whether the schooling threshold varies
from one family to the next in accordance with the gender and age of the children.

It is also possible to assume that the returns to education vary with the parents’
level of schooling S;; ;. The idea here is that the parents with basic education
might be in a better position to help their children benefit from school. Adopting
this type of assumption is tantamount to assuming that Y;; depends not only
on Si_1, uyz_1 and €5, but also on S;_5. In this context, we can easily check
that the anticipated gains and schooling thresholds vary both in line with the
resources u; transmitted from generation to generation and with the parents’
education S;; 1. In the econometric application, we propose a number of tests of
this assumption that the parents’ educational capital has a direct effect on the
probability of schooling the children. In general, we reject it and conclude that
the effect of the parents’ schooling on decisions to school the children is in itself
weak.

3. Econometric specifications

To specify our empirical models, we assume that production function F' combines
schooling capital (S;;) with the other forms of productive resources (uy) in line
with a technology with a constant elasticity of substitution. We also assume
that utility U is concave and homogenous (i.e. U(zx) = z* with o € [0,1] )
and that the costs of schooling remain low against income. In this framework,
the first-order approximation of L(Y;) is BpYy* exp(dus), while G approximates
BpY* exp(¢uy), where p represents the return to education and ¢ a constant whose
sign and value depend on the elasticity of substitution between the schooling
capital and the other forms of productive resources (see Appendix A). Based on
these assumptions, the schooling decision can be written,



Si = I(alnYy + bXy + puy), (3.1)

where I(z) is a dummy function that takes the value 1 whenever z is positive
and where we have assumed that the relative costs of schooling, i.e. ln(gf), vary
exogenously from one family to the next and can be written as a linear combination
of the variables X;; observed in the surveys. The problem is how to identify a,
given that we also have,

InYi = cSi—1 + vy + €a. (3.2)

3.1. The identification problem

Before describing the different estimators used, we will briefly outline our identi-
fication strategy and the procedures used to test the validity of this strategy. For
the sake of simplicity, we temporarily drop index ¢ and temporarily assume that
S; can be treated as a linear function of InY; and X;. In the following section, we
explain the conditions that make this assumption valid. Based on the above hy-
potheses, relations (3.1) and (3.2) give rise to a system of linear relations between
education and income,

S = aY,+bX, + duy,

Y, = cSici+u ey
Sio1 = aY 1 +bX 1+ pupq,
Yioi = cSia+uo+ei-..

where (to reduce the notations) Y; now represents the logarithm of income.
The problem posed is how to estimate parameter a. Given the dynamic structure
of the links between education and income, the "right” strategy for estimating
a clearly depends on the variance-covariance structure of residuals u; and ;. A
number of cases can a priori be envisaged.

(i) In the first case, u; is orthogonal to e; and u;_; and all their past realisations
(i.e. BE(uer k) = E(ugug 1 x) =0, for all £ > 0). This is the simplest case where
what is passed on from parents to children (u; 1) is correlated neither with what
is passed on from grandparents to parents (u; 5) nor with the parents’ intrinsic
productive capacities (¢;). Based on these assumptions, E(Y;u;) = 0 and there is
no particular identification problem. A simple regression can be used to estimate



the income effect. The correlations between Y; and S; give an accurate idea of the
real impact of Y; on S;.

(ii) In the second case, u; is orthogonal to u; ; and €; ; (and their past reali-
sations), but not to ;. In this case, there is a link between the parents’ intrinsic
productive ability (i.e. skills acquired during life) and what they pass onto their
children, in particular by contributing to their occupational training. In this case,
Y; is no longer necessarily orthogonal to u; and the correlation between Y; and S;
is a potentially biased estimator of the effect of income on schooling u; ;.

In this case, however, S; 1 (parents’ education) has the dual property of being
correlated with Y; without being correlated with u; (i.e. E(S;_1us) = E(ugui_q) =
0). The income effect can therefore be identified using S;_; as an instrumental
variable and all the lineage’s performances previous to S;_1, i.e. Y;_1, S;_s, etc.

(iii) If u; is orthogonal to u; o and £; 1 (and all their past realisations), but not
u;_1 or g, then S; 1 becomes potentially correlated with ut and is no longer an
instrumental variable usable to identify the impact of Y;. However, Y; ; (grand-
parents’ income) remains a valid instrument as do all the previous performances,
especially S;_,.

(iv) If u; is orthogonal to u; 2 and &, o (and all their past realisations), but
not u; ; or £, 1, then Y; ; is no longer a good instrumental variable, but S; »
(grandparents’ education) still is as are all the previous performances.

Our problem in choosing between the different estimators and instrumental
variables is obviously that we do not know the real variance-covariance structure
of the non-school determinants of income (i.e. u; and ¢;). The main asset we
have to help us solve this problem is our wealth of data. These data can be
used to measure the current educational investment (S;), the parents’ income and
education (S;_1 and Y;), and the grandparents’ education (S;_3). They can also
be used to measure the grandparents’ professional status (farmer, employee in the
formal sector or worker in the informal sector), which we can consider to form an
indirect measurement of the grandparents’ income level (Y; 1).

We can use the information on the education and income of three successive
generations to estimate the impact of Y; on S; in four different ways: without using
an instrumental variable procedure, using the parents’ education as an instrument,
using the grandparents’ income as an instrument, and using the grandparents’
education as an instrument.

If the structure of the residuals corresponds to case (i), then the four estimates
clearly have to give identical results. If the structure of the residuals corresponds
to case (ii), only the three instrumental regressions deliver identical results. The

10



overidentification tests should not reject the hypothesis of the consistency of in-
struments S;_1,Y;_1 and S;_». If the structure of the residuals corresponds to case
(iii), then only instruments Y; ; and S; 5 should be consistent, while in case (iv),
Y; 1 and S; 5 are no longer necessarily consistent. In other words, by comparing
the results obtained using the four different instruments available, we can test the
extent to which certain conditions necessary for the absence of a hereditary bias
or a simultaneity bias may or may not be satisfied.

In general, these conditions are necessary, but not sufficient. The structure
of the possible residuals need to be specified in more detail in order to express
sufficient conditions for the absence of simultaneity and hereditary biases. In
Appendix B, we detail the case in which the residuals are combined in line with
a composed error model u; = u; + 0g;. This specification is simple enough to
be used to construct tests and general enough for the different forms of bias to
be combined. In this framework, testing for the absence of a simultaneity bias
amounts to testing whether 6 = 0 and testing for the absence of a hereditary bias
comes down to testing whether 02 = 0, where o2 represents the variance of the
fixed dynasty effects. In Appendix B, we show that a necessary and sufficient
condition for the existence of a simultaneity bias and the absence of a hereditary
bias is that the estimates obtained using S; 1,Y; 1 and Sy o, and even (S; 1—S; )
as instrumental variables produce the same results and that these results are
different from those obtained by the ordinary least squares technique.

3.2. A semi-parametric estimator

In this paper, we look at the decision as to whether or not to school children. The
dependent variable is a dummy variable and the model considered is not a linear
model, but a binary choice model. In this framework, the problem of identifying
the income effect is more complicated than suggested by the previous discussion.

In the linear case, identification calls simply for an observation of an instru-
mental variable Z; in the usual sense such that E(Zu;) = 0 and E(Z;Y;) # 0.
These conditions are no longer sufficient in the case of the binary choice model.
A fair amount of literature has recently been developed to explore the different
complementary hypotheses whereby the identification of the effect of an endoge-
nous explanatory variable becomes possible again in a non-linear model (see the
Blundell and Powell survey, 2000). This paper draws on Lewbel’s recent contri-
bution, which we feel to be particularly well suited to our problem and the data
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at our disposalll. Lewbel (2000) quite generally shows how to identify the effect
of an endogenous explanatory variable Y; in a binary choice model of the form
Sy = I(aY; +bX; +u;), where X is a set of exogenous variables. The method used
requires to observe (a) an instrumental variable Z; (i.e. such as E(Zyu;) = 0 et
E(Z,Y;) # 0) and (b) an explanatory variable zo; in X; that is continuous'? and
such that the distribution of u; conditionally on Y; and X; is independent of ;.

In our case, the problem of identifying the effect of family income on the
decision to school is the same as an identification problem in a linear model when
an exogenous and continuous determinant of the decision to school children is
observed.

Lewbel (2000) moreover establishes that, in the case whereby an exogenous
and continuous z(; variable is observed, the effect of the endogenous variable is
identified by applying the usual instrumental variables method to the linearised
model LS; = aY; +bX; + ¢uy,where LS; corresponds to Sy — I(zg; > 0) divided by
the density of zq; conditionally on (X4, Z;), where Xy, corresponds to X; minus
Lot

In other words, once we can observe a continuous and exogenous determinant of
the decision to send children to school, the problems of identifying and estimating
parameter a are exactly the same as those analysed in the previous sub-section
by replacing S; with its linearisation L.S;.

In our specific case, there are at least two possible candidates for xy;. The first
is the child’s date of birth in the year. This variable can reasonably be assumed
to be exogenous. It determines the child’s level of maturity on the date on which
he or she can start school. For a given age group (in the school institution sense),
the later in the year the child is born, the younger he or she is and the smaller
his or her chances of being schooled. Of the children aged 6 to 8 when the survey
was taken, 41% of those born in the first half of the year started school when they
were supposed to as opposed to only 32% of those born in the second half of the
year (Table 1). Obviously, the older the children considered, the less noticeable
the effect of the date of birth on schooling. Of the teenagers aged 15 to 17 when
the survey was taken, 21% of those born in the first half of the year had never
been to school as opposed to 18% of those born in the second half of the year.
Given the size of the sample, the deviation is significant, but small.

H'Maurin (1999) applies Lewbel’s estimator to the analysis of repeating years of primary
school based on French data covering several generations with a structure close to ours.

12The interval of variation of xq; also has to be broad and (even if it means redefining the
variable) contain 0.
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In other words, the date of birth in the year provides a definitely pertinent
yardstick for the semi-parametric analysis of the effect of income on the age at
which children start school. However, it is less suited to providing a gauge of
the effect of income on the total length or total absence of schooling. A second
candidate for z(,; is the quality and density of school infrastructures in the region
in which the child lives. Our survey can be used to reconstitute the number of
primary schools per child aged 6 to 15 in the child’s commune (”fokontany”).
This variable is continuous and a priori represents a schooling factor'®. The
problem is that parents may decide to move to another region to be closer to
school infrastructures. In other words, it is not certain that the infrastructure
density available to the children is completely exogenous to the schooling process
studied. However, the survey we use contains the data needed to determine the
region in which parents have lived before their migration'*. We hence construct
an indicator (D P;) that measures the density of primary schools for the place in
which the parents spent their childhood (if they have not moved) or before any
migration (if they have moved). This variable is determined before the schooling
process and the formation of current income. It can therefore be considered to
be an exogenous measurement of the way in which the school supply quantity
has influenced the schooling of the Malagasy children studied. Over 30% of the
children aged 15 to 16 in families with a D P;; below the median have never been
schooled. Only 9% of the 15 to 17 year old children of families with a D P, above
the median have never been schooled (Table 1).

3.3. The results and their interpretation

In this section, we present an econometric analysis of the impact of income on the
decision to school children, applying the identification and estimation strategies
described in sub-sections 3.1 and 3.2. The construction of the samples and vari-
ables used for this analysis are detailed in Appendix C. We have estimated four
series of models, each corresponding to a particular choice for variable S; or for
auxiliary variable xg; required for the construction of the semi-parametric estima-
tor. The first series of models concentrates on the schooling of children aged 6 to
8 at the time of the survey. Variable S; takes the value 1 if these children started

13The effects of school infrastructures have often been underscored, especially by Lavy (1996)
and Glewwe and Jacoby (1994).

4 Appendix C details the construction of this variable and the other variables used in the
analysis.
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school at 6 years old and 0 if not*®. In 1993, over 60% of Malagasy children aged
6 to 8 did not start school when they became old enough to do so (Table 1). The
second series of models analyses the schooling of teenagers aged 15 to 17 when
the survey was taken. Variable S; takes the value 1 if they attend school or have
already been schooled, and 0 if not. This variable identifies those who will never
go to school or, in any case, never under normal circumstances. Approximately
20% of the children had never been schooled even though they were old enough to
be at secondary school. They will therefore never really be schooled. The third
series of models studied analyses these same teenagers aged 15 to 17. This time,
however, the models are trichotomic. Variable S; takes three values: 0 if they
have never been schooled, 1 if they were schooled for 1 to 4 years (i.e. shortened
primary schooling) and 2 if they have already been schooled for more than 4 years.

In the first three series of estimates, the only explanatory variables consid-
ered are the child’s gender, parental income (in logarithm form) measured by
the household’s consumption expenditures'®, and the child’s date of birth. This
last variable is used as a reference auxiliary variable for the construction of the
semi-parametric estimator'”. In the fourth series of regressions, we take the mea-
surement of the density of the school infrastructure (of the region in which the
father grew up) as a reference auxiliary variable and compare the results obtained
with this reference to those obtained using the date of birth (Table 5).'®

For each of the four different types of model, we provide (a) an ordinary least
squares (OLS) estimate of the income effect, (b) a generalized method of moments’
estimate (GMM) using the father’s schooling as an instrument, (c) a GMM esti-
mate using both the father and grandfather’s schooling as instruments and testing

15 A great deal of recent work has more specifically focused on analysing not exactly the total
number of years spent at school, but the moment at which the decision is made to start school
and then the moment at which the decision is made to attend school less and less regularly.
Glewwe and Jacoby (1995) study the role of malnutrition in decisions to delay starting school.
Jacoby (1994) studies the importance of indebtedness constraints on the timing of starting and
gradually leaving school. More recently, DeVreyer et al (1999) and Bommier and Lambert (1999)
have emphasised the role of informal skills that can be acquired in the family before starting
school.

16The models have also all been estimated taking the income reported when the survey was
taken as a measure of family income, i.e. a more direct measurement of family income, but also
less well measured and more approximate than spending. The findings (not reported) obtained
from this measurement are very similar to those obtained using spending.

1"The estimated effects should be considered relative to the effect of the date of birth.

18Here, the estimated effects should be appreciated relative to the effect of this infrastructure
density measurement.
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the extent of these two instruments’ consistency using Hausman and Sargan tests,
(d) a GMM estimate using the difference between the father and grandfather’s
schooling as instrument. We also provide the results of the regressions (using
the least squares technique and the instrumental variables technique) introduc-
ing the amount of the father’s schooling as an additional regressor and using the
grandfather’s occupational status (taken as an indicator of his income level) as an
additional instrumental variable.

3.3.1. Parental income and delayed schooling

Model (1) in Table 2 corresponds to the ordinary least squares estimate of the
effect of income on the probability of being schooled at 6 years old. This es-
timate confirms what the statistics suggest: there is a significant link between
parental income and the probability of starting school on time. This OLS estima-
tor is only valid to the extent that both hereditary and simultaneity biases can
be disregarded. Model (2) corresponds to the instrumental variables technique
(GMM) re-estimation of parameter a using the father’s extent of schooling as an
instrumental variable. This estimator remains exposed to the hereditary bias, but
escapes the simultaneity biases. The effect of parental income re-estimated in this
way is three times higher (a;,; = 0.62) than the effect estimated by the ordinary
least squares technique. In addition, the difference between the two estimators
is significantly different to zero'. This finding suggests that the usual estima-
tors obtained by the OLS technique are affected by relatively large simultaneity
biases and tend to underestimate the income effect. Some unmeasured variables
positively affect income and negatively affect the probability of being schooled.
To evaluate the magnitude of the hereditary biases, we have re-estimated the
income effect by introducing the grandfather’s length of schooling as an instru-
ment in addition to the father’s schooling (Model 3). We have also instrumented
income using the difference between these two variables (Model 4). Each of these
two estimators provides significantly higher results than the initial OLS estima-
tor. Moreover, the results are neither significantly different from one another nor
significantly different from the estimator obtained by taking the father’s length
of schooling as the only instrument. Furthermore, overidentification tests do not

19This estimate shows that a 50% parental income difference is equivalent to an age difference
of 0.6 x 0.5 = 0.3 years at the time when schooling becomes compulsory. Given that the
deviation in schooling probabilities between the youngest and oldest children in their age group
is 25 points, a 50% increase in parental income implies a 7.5 point increase in the probability of
the children being schooled at the normal age.
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reject the hypothesis of the consistency of the two father and grandfather’s edu-
cation instruments.

In general, these findings are consistent with the assumption that the heredi-
tary biases can be disregarded. If we accept that residuals u;; can be represented
as the combination of a fixed effect (dynastic u;) and a purely generational ef-
fect, we can unambiguously conclude that there are no hereditary biases (see the
analysis developed in Appendix B). The only potentially large source of biases
therefore looks to be the simultaneity of schooling decisions and income forma-
tion processes.

In addition to the diagnosis on the relative importance of the different forms of
endogeneity biases, these preliminary estimates also show that the father’s length
of schooling (like the grandfather’s) can be considered to be exogenous to the
process of schooling the children. To complete this first series of models, we have
therefore re-estimated our models by introducing the father’s length of schooling
as an additional regressor so that its effect can be compared with that of parental
income. The ordinary least squares analysis suggests that the difference in the
probability of schooling between children whose father went to secondary school
and the other children (i.e. 0.35) is significantly greater than the difference in the
probability of schooling caused by a doubling of income (i.e. 0.13). Remembering
that parental income is endogenous and potentially negatively correlated with
residual wu;, this least squares estimator of the effect of the father’s schooling
is therefore potentially biased. The bias a priori takes an opposite sign to that
affecting the estimator of the parental income effect?.

The instrumental variables technique analysis (i.e. using the grandfather’s
length of schooling and the grandfather’s industry as instruments of the effect of
parental income) provides quite a different finding to the least squares analysis.
It confirms that the real effect of parental income is significantly higher than
suggested by the naive OLS analysis, but also confirms that the effect of the
father’s length of schooling is overestimated by the OLS estimator. Once the
question of simultaneity is taken into account, the father’s length of schooling has

20Tf ¢ represents the direct effect of S; on S;1; in Model (5) and %mco its OLS estimate, we
verify that:

— (A _ _(®S)Ru) '

Bs = E(uneo = ) = rsiy~tmsor = BRI
where Bp is the bias affecting the OLS estimator of the parental income effect and v, is the
OLS estimator of the return on education. The B; bias affecting the OLS estimator of the
effect of the father’s schooling hence definitely takes an opposite sign to that affecting parental

income.
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no significant effect as such on the children’s length of schooling. Note that this
finding is in keeping with the theoretical framework developed in the previous
sections, but is at odds with the literature that posits that children’s schooling is
first and foremost a cultural problem.

3.4. Parental income and non-schooling

The second series of models (Table 3) analyses the probability of never having been
to school by the age of 15. The third series (Table 4) corresponds to trichotomic
models analysing the breakdown of children aged 15 to 17 between those who
have never been to school, those who have not attended school enough to attain
normal primary schooling, and those who have spent more than four years at
school. These two series of models hence more explicitly address the evaluation
of the effect of income on the process of non-schooling. They provide generally
similar results consistent with those obtained regarding delayed entry into school:

- The ordinary least squares regressions find a significant statistical link be-
tween the children’s length of schooling and parental income;

- The instrumental variables technique regressions provide mutually consistent
estimates that are higher again than the estimates obtained using ordinary least
squares. They reject the hereditary bias hypothesis, but suggest that simultaneity
biases may exist biasing the naive estimates towards zero;

- The addition of the father’s length of schooling as an extra regressor does
not change the finding regarding the effect of parental income on the children’s
schooling. In general, the effect of a doubling in parental income (i.e. Aln(R) ~ 1)
is significantly higher than the advantage of having a father who went to secondary
school, since this advantage is not significantly different from zero (see models (12)
and (18)).

The fourth series of regressions draws on a new auxiliary variable: the density
of primary schools in the district of origin (see Section 3.2 above for the exact
definition). This variable captures the way in which the quantity and distribution
of school infrastructures across the territory may have influenced the schooling
processes. Table 4bis presents the findings of the semi-parametric estimates using
the density of primary schools instead of the date of birth as the auxiliary variable.
This series of regressions provides qualitatively similar findings to the previous
series?!. The effect of parental income appears to be wholly significant in both

2In terms of point estimations, the findings suggest that a 50% increase in an average house-
hold’s income would raise the probability of schooling by an equivalent amount to that which
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the least squares regressions and the instrumental variables technique regressions.
The hereditary biases again appear negligible. Even if the estimates are not as
accurate, the simultaneity biases still seem to prevail.

To wind up, we re-estimated the models presented in tables 4 and 4bis based
on the assumption of residual normality (Table 5). In this parametric framework,
our model has a Tobit model structure. A first equation describes parental in-
come as a function of the instrumental variables used (typically, the grandfather’s
schooling). A second equation describes the schooling process as a function of
parental income and the residuals of these two equations are assumed to comply
with a bivariate normal law. The estimators correspond to maximum likelihood.
In general, this parametric approach provides results consistent with those previ-
ously obtained using semi-parametric estimators. Compared to the coefficients of
the other variables, especially the auxiliary variables, the parental income effect
more than doubles when the father and grandfather’s schooling are used as in-
struments®?. This finding still holds when the father’s schooling is included as an
additional regressor and when the grandfather’s schooling and industry are used
as sole instruments?®. The correlation coefficient p estimated for the bivariate nor-
mal distribution takes a negative sign, confirming the nature of the simultaneity
biases affecting the naive estimation of the income effect.

3.5. Extension: the effect of child labour

The model developed in Section 2 does not explicitly introduce child labour as a
possible alternative to schooling. In fact, including child labour changes nothing in
the theoretical analysis except that (a) the schooling costs are taken to include the
losses of current earnings due to sending the children to school rather than to work,
(b) parental income (i.e. variable Y;) is taken to be the parents’ income excluding
the children’s contribution. Based on the assumption that child labour is not a
marginal phenomenon and given that we only observe total income in the surveys,
our main explanatory variable is potentially affected by a measurement error.
Rather than using Y; as a regressor, we actually use Y; + h;, where h; represents
the children’s contribution. In this framework, the ordinary least squares estimate

might be prompted by an increase in the school supply of 0.25 x 0.5 = 0.125 primary schools
per child, i.e. approximately 15 points.

22In this non-linear framework, using the grandfather’s education as the instrument means
using the grandfather’s education as an explanatory variable in the equation explaining parental
income, without using it in the equation explaining schooling.

23 As in model 6 and tables 4 and 6.
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of the effect of income on schooling potentially suffers from a measurement error
bias, whose effects are similar to a simultaneity bias tending towards zero. In other
words, the simultaneity biases shown by our previous analyses are potentially
interpreted as measurement error biases. To test this interpretation, we have
used the information available on child labour in our survey by introducing, as
an additional regressor, a dummy variable taking the value 1 if the child works
and zero if not. In 1993, 15% of children aged 7 to 8 had worked in Madagascar
over the year. In general, the ordinary least squares regressions confirm that child
labour is negatively correlated with a child’s length of schooling, even though the
effect is poorly estimated and not significantly different from zero (Table 6, models
30 and 33). Its effect disappears totally when this variable is instrumented along
with parental income. However, the re-estimation of the parental income effect
does not change.

4. Conclusion

In this paper, we develop a fairly general detection and rectification methodology
for the bias that could affect the estimation of the effect of parental income on
the decision to send children to school. Our estimates show that the main source
of bias comes from the simultaneity of the decision to school children and the
parental income formation process. Certain factors not measured by the surveys
increase the parents’ productivity and income and simultaneously undermine the
sense of sending children to school. These factors are typically the skills that
can be informally passed from one generation to the next without the need for
schooling. The greater these skills, the more productive the parents and the less
point they will see in investing in formal education for their children. Given
the existence of these factors, the gross correlation between family income and
the probability of schooling children tends to underestimate the causal effect of
income on schooling. Neutralising the effect of these factors means that we have
to considerably re-estimate up the income effect.

In the Malagasy case, the "real” effect of income seems to be quite considerable
overall. A 50% drop in parental income results in an approximately 20-point
decrease in the probability of sending children to school. A good deal of the
drop in primary schooling in Madagascar since the early 1980s can therefore be
explained not so much by the dilapidation or lack of school infrastructures, but
more by the degeneration in household incomes and the spread of poverty due to
the economic slump in the early 1980s.
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In the planet’s poorest countries, especially in sub-Saharan Africa, universal
primary schooling for children is still a remote goal at the end of a long, hard road.
In many countries, the schooling situation is now stagnating and sometimes even
deteriorating. At first glance, the children in these countries are more excluded
from the education system when they come from poor families. Our study’s find-
ings suggest that this problem could be partially solved by a reasonable increase
in the redistribution effort to help the poorest families and a reduction in the
most extreme forms of inequality. The question nonetheless remains open as to
how exactly this redistribution effort could be put into practice. There are many
potential ways in which income affects the decision to school children. More in-
come means better nutrition, better housing, better health and the ability to get
around more easily. It is the extent to which these fundamental problems are
better solved that dictates whether the family can envisage investing more in the
formal education of their children.Future research should help identify which of
the basic goods are politically most likely to be redistributed and economically
most efficient to redistribute in order to promote a long-term development of
education and standards of living.
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Appendix A: The schooling condition

In this appendix, we analyze the schooling condition when the income produc-
tion function is with constant elasticity of substitution.

Let H; = exp pS;_ 1 be the measurement of the human capital generated by
the schooling decision S;_; (where p represents the return to education) and let
U; = expu; be the measurement of non-school productive resources. We assume
that income can be written Y; = (1 4 &141)@(Hy, Ur), where ¢ corresponds to a
technology with a constant elasticity of substitution o = ﬁ, 0 € [-1,00]. We
note Yy = (1, U;) the average income in the absence of schooling. With these
notations, the expected effect of a decision to school is,

Gy = ﬁE(U((leetH)go(exp P, Ut)_CS*(la Ust,s Ez‘t+1))—U((1+€t+1)YOt—CS*(O> Ut 5it+1))

Assuming that p and ¢ are small compared with Y{,, the first-order approxi-
mation of Gy is,
Iy

G ~ 5pU’(Y0t)a—H(1, U,)) = Bpa(l 4+ M0 + a)uy)

The immediate loss associated with a decision to school can be written,
L(Yie) = U(Ya) = U(Yie — ) m U (Yar) = ¥ !
and the schooling condition can be written,

(1—a)ln(Y,) > ln(ﬂ—/c)a) + A0 + o)uyy,

which corresponds to the type of schooling condition studied in the article.
Interestingly, the sign of ¢ = A(6 + «) (and hence the sign of the correlation
between the residuals of the schooling and income equations) depends on (a)
the elasticity of substitution between the two forms of productive resources and
(b) the elasticity of welfare with respect to consumption. If the two productive
factors are sufficient substitutes (0 close to -1 and (0 + «) negative), a strong non-
school capital tends to reduce the probability of schooling. In general, the more
complementary the income production factors (i.e. the higher #), the more the
households rich in non-school capital also tend to send their children to school.
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Appendix B: Tests for the existence of simultaneity and
hereditary biases

In this appendix, we show how the comparison of the different income effect
estimators can be used to test for the existence of hereditary and simultaneity
biases. Let the system of equations be,

Sit = aYiy + Pu, (4.1)

Yii = cSu—1 + uy—1 + i (4.2)

with w;; = u; + 0e;,, where the e; are randoms verifying F(eyepp) = ag if

i =1 and t =t and E(gyeqp) = 0 if not, whilst the u; verify that E(uuy) = o2
if i =4 and E(uwuy) = 0 if not.
It can be rewritten,

Sit = acSy_1 + Quy + alug_1 + €i), (4.3)
Yie=acYy 1+ (14 chd)uy 1+ €4, (4.4)
which implies,
Syt = ¢ uz—i- Z ac)*(abey_1 + (06 + a)ey), (4.5)
Y, = ! + C(b u;+ i (ac)*(0(1 + co)ei—1 + €ir). (4.6)

These equations clearly show that the lagged values of income (Y &, £ > 0)
and schooling (Sj g,k > 0) are correlated with current income Yj;, even in the
absence of simultaneity (6 = 0) and heredity (02 = 0). These lagged values are
hence potential instruments for identifying the current income effect. Regarding
their correlation with residual u;;, we verify that,

1+¢ +a
E(Y;t—luit) 1_ agi 2 E(Sit—luit) = E(Sit—Quit) = 1¢_ acag“ (4-7)
while,
14+¢
E(Yyuy) = - aqzai + 002, (4.8)
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When 02 # 0 and 02 # 0, the ordinary least squares estimator is exposed to
both simultaneity and hereditary biases, while the estimators using the income
or schooling lags as instrumental variables are exposed essentially to hereditary
biases. The estimations using the father’s or grandfather’s education as instru-
ments are potentially affected by a hereditary bias, but the education differential
between father and grandfather (S;_1 — Si_2) makes it possible to construct an
unbiased instrumental variable estimator. Testing for the absence of a hereditary
bias (i.e., 02 = 0) is therefore simply a question of testing whether the estimator
of a obtained using (S; 1 — Siz_2) as an instrument is different to that obtained
using S;;_o. Based on the assumptions adopted concerning the residuals, equality
between the two estimators is a necessary and sufficient condition for the ab-
sence of any hereditary bias. Another possible test is to compare the estimate
of a obtained with S;; ; as an instrument with that obtained using S; 5. The
father’s education is indeed better correlated with income than the grandfather’s
education: 0 < E(YySi_2) < E(YiSi_2). Since elsewhere,

¢+a 2

E(Sit-1ui) = E(Sigui) = 1 —ac’w (4.9)
we hence have,
E(Sit—Quit) E(Sit—luit) 2
= o, =0. 4.10
E(YiSi—2)  E(YaSi-1) b (4.10)

The absence of any significant difference between the estimate obtained using
the father’s schooling as an instrument and the estimate obtained using the grand-
father’s schooling is therefore another necessary and sufficient condition for the
absence of any hereditary bias. Lastly, conditionally on the absence of any hered-
itary bias, a necessary and sufficient condition for the absence of any simultaneity
bias (i.e., # = 0) is that there is no difference between the estimators obtained
by the ordinary least squares technique and those obtained by the instrumental
variables method.
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Appendix C: Presentation of the data and construction

of the variables

From April 1993 to April 1994, the EPM93 survey was taken of a sample of
4,508 Malagasy households stratified by six major "regions” (faritany) and three
categories of "residence” (large urban centres/small towns/rural area). Sampling
was by area: 320 ”districts” (fokontany) were drawn from each stratum and some
fifteen whole households (all household members) were interviewed in each selected
fokontany. The urban households (approximately 20% of the population) were
over-represented. Alongside the household survey, a ”community” questionnaire
was put to a local contact for the 220 fokontany drawn from outside the major
urban centres. This contact supplied, in particular, information on the state
of the available school infrastructures such as the number of primary schools.
The household survey covered a very wide range of fields: education and health,
employment, income and production conditions, migrations, consumption, etc. It
was used from the educational point of view to reconstitute each respondent’s
schooling path: number of years spent at school, number of times kept back a
year and the level reached. The respondents also reported on their parents’ level
of education. Where children lived with their parents, information was obtained
on both the details of their own and their parents’ schooling as well as their
grandparents’ level of education.

The survey provided information on the household’s standard of living in the
form of expenditure and the households’ production for own consumption. This
information was used to reconstitute a ”current annual consumption” variable
including for own food and non-food consumption valued at market prices, but
excluding expenditure on durables. The survey was also used to reconstitute an
”annual income” variable covering income from agricultural and non-agricultural
family production (including for own consumption production), wages received
and transfer income. Last but not least, the data were used to class the par-
ents and grandparents into three major types of employment: agricultural/non-
agricultural self-employed /wage earners.

Two sub-samples were constituted corresponding to two different analyses of
primary school conditions.

The sample of children aged 6 to 8 years

The first sub-sample covers all children aged six to eight living in their parents’
household or with their grandparents or uncle (these last two cases form a very
small minority). The size of this sample is N = 1511. The variable analysed
for this sample is a dummy variable taking the value 1 if the child has attended
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school since the age of six. The survey directly provided the information as to
whether six year olds were at school or not. For the seven and eight year olds,
information on the class currently attended and the number of times the child
had been kept back a year was used to reconstitute whether they were already at
school at the age of six. The quality of this reconstitution can been appreciated
from the fact that the estimated rate of starting school at six years old is the same
(approximately 37%) for the children aged seven and eight when the survey was
taken as for the children aged six when the survey was taken. The survey also
provided the exact date of birth of each child, i.e. the day and month of the year
in which they were born. It also detailed whether the children aged 7 and 8 when
the survey was taken had been put to work during the survey’s reference year.

The sample of adolescents aged 15 to 17

The second sample covers all adolescents aged 15 to 17 living in their parents’
households or with their grandparents or uncle (both last cases form a very small
minority). The size of this sample is N = 1063. The first variable analysed for this
sample is a dummy variable taking the value 1 if the child has already attended
school and 0 if not. A child who has not attended primary school by the age of 15
no longer has any chance of doing so. A full 20% of the children aged 15 to 17 were
in this situation. The remaining 80% had either left primary school or, in the case
of a minority, were still at school. We reconstituted the number of years these
adolescents spent at primary school. We counted one to four years of attendance
as ”incomplete schooling”, found for 27% of the population. We counted more
than five years’ attendance at primary school as ”complete schooling” (i.e. the
normal complete length of time without being kept back a year). Some 53% of
the population aged 15 to 17 were found to have ”complete schooling”. This
classification gave us a second, this time trichotomic, analytic variable taking
the value O if the child had never been to school, 1 if he or she had incomplete
primary schooling and 2 otherwise. Given the wealth of data, we were able to
construct a similar variable (trichotomic) for the parents and grandparents of
these adolescents. This variable identified the parents (or grandparents) who had
never or virtually never attended primary school, those who had reached a level
of primary education, and those who had attended secondary school and even
university.

School density

The ” community” questionnaire put at district (fokontany) level and the house-
hold survey’s "migration” section were used together to create two variables de-
scribing the densities of school infrastructures liable to influence the schooling
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process.

The number of primary schools in each district was available for most of the
fokontany. When compared with the fokontany’s population of 6 to 15 year olds,
this indicator forms a measurement of the density of the primary school supply
in the place where the children live. This variable is available for 220 fokontany
out of the 320 surveyed. The majority of the fokontany for which the variable is
unknown are located in the major urban centres. We ascribed them the maximum
number of primary schools recorded in the other fokontany, i.e. three schools. To
the other fokontany whose number of primary schools was unknown and which
are located outside of an urban centre, we allocated the average school density
variable corresponding to their survey stratum.

We then had a first school density variable for the place in which the children
were currently living, after any migration by their parents. To correct the effect
of parental migration, we constructed a second school density variable based on
the first in the following manner. We firstly divided the households into two
categories: those whose head had never left the current fokontany and the others.
The second households account for 40% of the sample for the 15-17 year olds. The
survey’s ”migration section” provided the head of household’s previous residential
stratum. We then attributed the average school density for this stratum to the
40% of households that had migrated. The second variable constructed in this
way corresponds to the school density before parental migration.
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Table 1: The extent of schooling of Malagasy children and adolescents in 1993:
some descriptive statistics.

6-8 years old (a) 15-17 years old
Schooling at 6 years old Number of years in primary school
0 1-4 5 and over
Parental income(b)
< median 25.8 29.4 36.0 34.6
> median 47.9 9.6 17.7 2.7
Density of school supply
< median 30.7 29.8 32.1 38.1
> median 43.1 9.1 21.5 69.4
Semester of birth
First 41.2 17.7 27.1 55.2
Second 32.0 21.3 26.5 52.2
Total 36.9 19.5 26.8 53.7
N 1511 1063

Source: EPM 1993 survey.

(a) The statistics are very similar for the sub-sample of 7-8 year olds, covering 985
individuals, used in Table 6.

(b) Parental income is measured here by the total volume of household expenditure.
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Table 2: Effect of parental income on the probability of starting school at six
years old.

1 2 3 4 5 6

Independent variable OLS FE FE&GFE  FE-GFE OLS GFE&GEFS
Boy +0.002  -0.074 +0.008 -0.028 +0.003 -0.008
(0.041)  (0.051) (0.047) (0.052)  (0.050) (0.050)
Income [In] +0.221  40.617 +0.721 +0.663  40.129 +0.469
(0.036)  (0.091) (0.109) (0.152)  (0.040) (0.314)
Father>secondary +0.348 -+0.100
(0.064) (0.227)
Hausman stat. 0.247 1.629
Test level 0.970 0.804
Sargan stat. 0.244 1.609
Test level 0.621 0.447

Source: EPM 1993 survey. Field: All children aged six to eight years. Reading: The
dependent variable is a dummy taking the value 1 if the child started school at six
years old and 0 if not. It is linearised using the Lewbel technique (2000) by taking
the day of birth in the year as an auxiliary variable. Models 1 and 5 are estimated
by the ordinary least squares technique. Models 2, 3, 4 and 6 are estimated by the
generalised method of moments (GMM). In Model 2, parental income is instrumented
by the father’s education (i.e. by FE, dummy variable taking the value 1 if the father
went to secondary school). In Model 3 (resp. 4), parental income is instrumented by
the father’s education and the grandfather’s education (resp. by the difference between
the father’s education and the grandfather’s education). In Model 6, parental income
is instrumented by the grandfather’s education and activity sector (i.e. a set of three
dummy variables indicating whether the grandfather was a farmer, a non-agricultural
self-employed worker or other). The coefficient’s standard deviation is given in brackets.
Parental income is measured by the household’s total expenditure.
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Table 3: Effect of parental income on the probability of never being schooled.

7 8 9 10 11 12

Independent variable OLS FE FE&GFE  FE-GFE OLS GFE&GEFS
Boy +0.027  +0.041 +0.009 -0.009 +0.029 +0.066
(0.053)  (0.054) (0.055) (0.062) (0.053) (0.061)
Income [In] +0.150  +0.385 +0.368 +0.439  +0.101 +0.689
(0.036)  (0.087) (0.077) (0.200)  (0.040) (0.236)
Father>secondary +0.193 -0.244
(0.069) (0.184)
Hausman stat. 0.046 5.661
Test level 0.997 0.226
Sargan stat. 0.046 5.655
Test level 0.831 0.059

Source: EPM 1993 survey. Field: All adolescents aged 15 to 17 years. Reading: The
dependent variable is a dummy taking the value 1 if the adolescent has already attended
school and 0 if not. It is linearised using the Lewbel technique (2000) by taking the
day of birth in the year as an auxiliary variable. Models 7 and 11 are estimated by
the ordinary least squares technique. Models 8, 9, 10 and 12 are estimated by the
generalised method of moments. In Model 8, parental income is instrumented by the
father’s education (i.e. by FE, dummy variable taking the value 1 if the father went
to secondary school). In Model 9 (resp. 10), parental income is instrumented by the
father’s education and the grandfather’s education (resp. by the difference between
the father’s education and the grandfather’s education). In Model 12, parental income
is instrumented by the grandfather’s education and activity sector (i.e. a set of three
dummy variables indicating whether the grandfather was a farmer, a non-agricultural
self-employed worker or other). The coefficient’s standard deviation is given in brackets.
Parental income is measured by the household’s total expenditure.
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Table 4: Effect of parental income on the extent of schooling of adolescents aged
15 to 17: a semi-parametric estimate (auxiliary variable: day of the year in which
the child is born).

13 14 15 16 17 18
Independent variable OLS FE FE&GFE  FE-GFE OLS GFE&GES
Boy +0.033  -0.008 +0.057 +0.099  40.036 +0.067
(0.051)  (0.050) (0.052) (0.056)  (0.050) (0.053)
Income [In] +0.204  4+0.499 +0.556 +0.605  +0.118 +0.506
(0.034)  (0.072) (0.075) (0.161)  (0.038) (0.174)
Father primary ed. +0.239 +0.153
(0.061) (0.076)
Father>secondary +0.419 +0.065
(0.079) (0.174)
Hausman stat. 2.457 6.865 1.754 3.130
Test level 0.467 0.076 0.625 0.680
Sargan stat. 2.557 6.820 1.744 3.099
Test level 0.110 0.078 0.187 0.377

Source: EPM 1993 survey. Field: All adolescents aged 15 to 17 years. Reading: The
dependent variable takes the value 1 if the child has never been to school, 1 if he or she
has only had incomplete primary schooling and 2 otherwise. It is linearised using the
Lewbel technique (2000) by taking the day of birth in the year as an auxiliary variable.
Models 13 and 17 are estimated by the ordinary least squares technique. Models 14, 15,
16 and 18 are estimated by the generalised method of moments. In Model 14, parental
income is instrumented by the father’s education (i.e. FE, two dummy variables, the
first taking the value 1 if the father only had primary schooling and the second taking
the value 1 if the father reached secondary school). In Model 15 (resp. 16), parental
income is instrumented by the father’s education and the grandfather’s education (resp.
by the difference between the father’s education and the grandfather’s education). In
Model 18, parental income is instrumented by the grandfather’s education and activity
sector (i.e. a set of three dummy variables indicating whether the grandfather was a
farmer, a non-agricultural self-employed worker or other). The coefficient’s standard
deviation is given in brackets. Parental income is measured by the household’s total
expenditure.
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Table 4b: Effect of parental income on the extent of schooling of adolescents aged
15 to 17 years: a semi-parametric estimate (auxiliary variable: primary school
density).

19 20 21 22 23 24
Independent variable OLS FE FE&GFE  FE-GFE OLS GFE&GES
Boy -0.021 +0.078 +0.060 +0.071 -0.018 -0.005
(0.034)  (0.051) (0.048) (0.044)  (0.034) (0.035)
Revenu [In] +0.078  +0.265 +0.338 +0.231  40.014 +0.184
(0.023)  (0.074) (0.086) (0.147)  (0.026) (0.118)
Father primary ed. +0.051 -+0.009
(0.041) (0.041)
Father>secondary +0.266 +0.094
(0.058) (0.106)
Hausman stat. 1.114 0.457 2.392 0.534
Test level 0.774 0.928 0.495 0.991
Sargan stat. 1.113 0.458 2.452 0.564
Test level 0.291 0.928 0.117 0.905

Source: EPM 1993 survey. Field: All adolescents aged 15 to 17 years. Reading: The de-
pendent variable takes the value 1 if the child has never been to school, 1 if he or she has
only had incomplete primary schooling and 2 otherwise. It is linearised using the Lew-
bel technique (2000) by taking the density of primary schools as an auxiliary variable.
Models 19 and 23 are estimated by the ordinary least squares technique. Models 20, 21,
22 and 24 are estimated by the generalised method of moments. In Model 20, parental
income is instrumented by the father’s education (i.e. FE, two dummy variables, the
first taking the value 1 if the father only had primary schooling and the second taking
the value 1 if the father reached secondary school). In Model 21 (resp. 22), parental
income is instrumented by the father’s education and the grandfather’s education (resp.
by the difference between the father’s education and the grandfather’s education). In
Model 24, parental income is instrumented by the grandfather’s education and activity
sector (i.e. a set of three dummy variables indicating whether the grandfather was a
farmer, a non-agricultural self-employed worker or other). The coefficient’s standard
deviation is given in brackets. Parental income is measured by the household’s total
expenditure.
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Table 5: Effect of parental income on the extent of schooling of adolescents aged
15 to 17 years: a parametric estimate (ordered Tobit).

25 26 27 28

Independent variable - FE&GFE - GFE&GEFS
p 0 -0.697 0 -0.348
- (0.039) - (0.102)
Boy -0.050 -0.027 -0.046 -0.035
(0.076) (0.056) (0.078) (0.074)
Date of birth -0.075 -0.055 -0.078 -0.073
(0.133) (0.097) (0.135) (0.127)
Income [In] +0.685  +1.447  +0.514 +0.974
(0.060) (0.057) (0.062) (0.137)
School density +4.157 +2.185 +3.206 +2.774
(0.315) (0.302) (0.369) (0.399)
Father primary ed. +0.539 +0.455
(0.087) (0.089)
Father>secondary +1.481 +1.259

(0.136)  (0.154)

Source: EPM 1993 survey. Field: All adolescents aged 15 to 17 years. Reading: The
dependent variable takes the value 1 if the child has never been to school, 1 if he or she
has only had incomplete primary schooling and 2 otherwise. The models are estimated
by the maximum likelihood technique. Models 25 and 27 are ordered probits. Models 26
and 28 are ordered tobits. In models 26 and 28, the parental income equation, estimated
together with the schooling equation, is not presented. In Model 26, parental income
is explained by the father’s education and the grandfather’s education. In Model 28,
parental income is explained by the grandfather’s education and activity sector (i.e.
a set of three dummy variables indicating whether the grandfather was a farmer, a
non-agricultural self-employed worker or other). The coefficient’s standard deviation is
given in brackets. Parental income is measured by the household’s total expenditure.

34



Table 6: The link between child labour and schooling.

29 30 31 32 33 34
Independent variable OLS OLS V3 OLS OLS V3
Boy +0.059  +0.061  40.009  +0.081 +40.083  +0.076
(0.041)  (0.069)  (0.070)  (0.069)  (0.069)  (0.081)
Income 1 [In] +0.217  +0.211  40.791
(0.049)  (0.050)  (0.161)
Income 2 [In] +0.129  +0.126  +0.693
(0.034)  (0.034)  (0.153)
Work [1=yes] -0.090 +0.500 -0.116 +1.200
(0.100)  (0.605) (0.100)  (0.744)
Hausman stat. 0.233 0.950
Test level 0.994 0.917
Sargan stat. 0.229 0.938
Test level 0.892 0.626

Source: EPM 1993 survey. Coverage: All adolescents aged 7 to 8 years. Reading: The
dependent variable is a dummy taking the value 1 if the child started school at six years
old and 0 if not. It is linearised using the Lewbel technique (2000) by taking the day of
birth in the year as an auxiliary variable. Models 29, 30, 32 and 33 are estimated by the
ordinary least squares technique. Models 31 and 34 are estimated by the generalised
method of moments, taking the father’s education, the grandfather’s education and the
grandfather’s socio-economic status as instruments. The coefficient’s standard deviation
is given in brackets. Parental income is measured by the household’s total expenditure
(income 1) or by the household’s stated income (income 2).
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