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Abstract

We propose a method to aggregate heterogenous individual beliefs, given
a competitive equilibrium in complete asset markets, into a single “mar-
ket probability” such that it generates, if commonly shared by all investors,
the same marginal valuation of assets by the market (the same equilibrium
prices) as well as by each individual investor. As a result of the aggregation
process, the market portfolio may have to be scalarly adjusted, upward or
downward, a reflection of an “aggregation bias” due to the diversity of be-
liefs. From a “dual” viewpoint, the standard construction of an “expected
utility maximizing aggregate investor” designed to “represent” the economy
in equilibrium, is shown to be also valid in the case of heterogenous be-
liefs, modulo the above scalar adjustment of the market portfolio, thereby
generating an “Adjusted” version of the “Consumption based Capital Asset
Pricing Model” (ACCAPM). Heterogeneity of individual consumptions, or of
the allocation of aggregate risks to individuals, is then analyzed in relation
to deviations of individual beliefs from the aggregate “market probability”.
It is shown further that an upward ajustment of the market portfolio due
to the heterogeneity of beliefs, may contribute to explaining such challenges
as the so-called “equity premium puzzle” whenever aggregate relative risk
aversion is decreasing with aggregate income.
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Aggrégation de croyances hétérogènes et valuation d’actifs

dans les marchés financiers complets

Laurent CALVET, Jean-Michel GRANDMONT et Isabelle LEMAIRE
(University d’Harvard, CNRS-CREST, Paris et Université de Venise, et

INSEE, Paris)

Résumé

Nous proposons une méthode pour agréger des croyances individuelles
hétérogènes, étant donné un équilibre concurrentiel sur des marchés financiers
complets, en une seule “probabilité de marché” de telle sorte qu’elle engen-
dre, si elle est partagée par tous les agents, la même valuation à la marge des
actifs par le marché (les mêmes prix d’équilibre) ainsi que par chaque investis-
seur individuel. Cette procédure d’agrégation peut nécessiter un ajustement
scalaire, à la hausse ou à la baisse, du portefeuille de marché, qui reflète un
“biais d’agrégation” due à l’hétérogénéité des croyances. D’un point de vue
“dual”, on montre que la construction standard d’un agent aggrégé, doté
de préférences décrites par une espérance d’utilité, qui “représenterait’ l’é-
conomie en équilibre, peut s’étendre au cas des croyances hétérogènes, mod-
ulo l’ajustement scalaire ci-dessus du portefeuille de marché : on engendre
ainsi une version “Ajustée” du modèle de valorisation des actifs fondée sur
la consommation (ACCAPM). L’hétérogénéité des consommations individu-
elles, ou de l’allocation des risques agrégés aux individus, est alors analysée
en relation avec les déviations des croyances individuelles par rapport à la
“probabilité de marché” agrégée. On montre en outre qu’un ajustement
scalaire à la hausse du portefeuille de marché dû à l’hétérogénéité des croy-
ances, peut contribuer à expliquer certaines questions comme la “prime de
risque des actions”, lorsque l’aversion relative agrégée pour le risque décroît
avec le revenu agrégé.

Classification JEL : D50, D80, G11, G12
Mots-Clés : Valorisation d’actifs, partage des risques, hétérogénéité, croy-

ances, agrégation, agent représentatif, équilibre général, prime de risque.
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1 Introduction

The main purpose of the present paper is to attempt to fill a method-
ological gap in the existing literature on competitive equilibrium under un-
certainty and asset markets, by analyzing how one could extend, and modify,
the traditional “expected utility maximizing representative agent approach”
in order to cover the case, which appears to be empirically most relevant, of
heterogenous beliefs.

While modern general treatments of competitive equilibrium under uncer-
tainty do not require particular assumptions on the beliefs of economic agents
about the occurrence of “states of nature” (Arrow (1953), Debreu (1959)),
many applications do rest on the specification that agents are expected utility
maximizers, forecast correctly equilibrium contingent prices or asset returns,
and assign the same subjective probabilities to states of nature (homogenous
subjective probabilities). Under the assumption of complete markets, equi-
librium prices are then identical to those that would arise in the (no trade)
equilibrium of “a model economy” composed of a single, aggregate “represen-
tative agent” who would get the aggregate endowment and would maximize
an appropriately defined expected utility (Negishi (1960), Wilson (1968), M.
Rubinstein (1974), Breeden and Litzenberger (1978), Constantinides (1982).
This expected utility maximizing representative agent approach has been
since the basis for many developments in finance and so-called “consump-
tion based” capital asset pricing (Ingersoll (1987), Huang and Litzenberger
(1988), Duffie (1996)). It has also become a significant cornerstone of theo-
retical and applied macroeconomics (R.E. Lucas (1978)).1

This framework has been fruitful, owing in particular to its simplicity of
use, despite persistent doubts about the empirical relevance of some of its
key features, notably about expectation formation. It has been in particular
repeatedly argued that diversity of investors’ forecasts (due possibly but not
exclusively, to differences of information and/or of priors) is an important
part of any proper understanding of the workings of asset markets (Lintner
(1969), M. Rubinstein (1975, 1976), Gonedes (1976), E. Miller (1977), J.
Williams (1977), Jarrow (1980), Mayshar (1981, 1983), Cragg and Malkiel
(1982), Varian (1985, 1989), Detemple and Murthy (1994)). In the same
vein, it has been advocated that consideration of “noise traders” whose be-
liefs and stategies are not completely determined by fundamentals but in-
fluenced by gurus, imitation, fads, technical analysis and other “popular
models”, may help in understanding asset markets “excess volatility” or “ir-
rational exhuberance” (Shiller (1981, 1989, 2000), Black (1986), Shleifer and
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Summers (1990)).2 A related strand of research emphasizes similarly that
learning along sequences of temporary equilibria may be sluggish, never con-
verge and that “bounded rationality” may be an important fact of life (see,
e.g. Brock and Hommes (1997), Grandmont (1998), Kurz (1997), Sargent
(1993)). Analogous “evolutionist” arguments suggest that, while “boundedly
rational” agents would be presumably driven eventually out of the market
in the ideal case where capital markets are perfect (Araujo and Sandroni
(1999), Sandroni (2000)), they are likely to have a persistent and significant
influence in the real world situation where arbitrage is limited and risky due
to capital market imperfections (De Long, Shleifer, Summers and Waldman
(1989, 1990, 1991), Blume and Easley (1992)).

As a particular example that is relevant to the topics that will occupy
us specifically here, we note also that researchers working on some empir-
ical challenges such as the “equity premium puzzle” (Mehra and Prescott
(1985), Weil (1989)), have been increasingly led to amend the framework of
a complete markets, expected utility maximizing, fully rational representa-
tive agent, within which the “puzzle” was initially formulated. Beyond the
introduction of incomplete markets and uninsurable heterogenous individual
risks (Weil (1992), Constantinides and Duffie (1996), Angeletos and Calvet
(2001)), of habit persistence (Abel (1990), Constantinides (1990), Campbell
and Cochrane (1999)), researchers have in particular been led to introduce
“distorted” and/or “noisy” beliefs (subjective probabilities), either directly
postulated (Abel (1997), Cecchetti, Lam and Mark (2000)), or associated to
“cautious” nonexpected utility behavior (Epstein and Wang (1994), Chau-
veau and Nalpas (1998), Hansen, Sargent and Tallarini (1999)).

There seems accordingly to exist compelling, both empirical and theoret-
ical, reasons to incorporate in our representations of the economy, some sig-
nificant and persistent doses of “boundedly rational”, “noisy” expectations.
The issue of heterogeneity of beliefs is then unescapable : although “bounded
rationality” may involve some systematic patterns among economic agents, it
is most likely to be associated also with some dispersion of individual beliefs.
Our aim in the present paper is to analyze the consequences of facing the
issue of heterogenous individual subjective probabilities in an otherwise stan-
dard competitive, complete markets economy operating under uncertainty
(while keeping at this stage the assumption that traders do forecast cor-
rectly contingent equilibrium prices or asset returns). Among the issues we
investigate are : Is it possible to define a “market probability” that would
“aggregate” heterogenous individual subjective probabilities and could be
used to “explain” (mimic) equilibrium asset prices ? Is it still possible in
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such a context to define a version of an “expected utility maximizing aggre-
gate investor” that would “represent” an equilibrium of this economy, i.e.
generate the same equilibrium asset prices and mimic equilibrium pricing of
assets by individuals, although this approach, recalled at the beginning of
this introduction, fails flatly as soon as there is any degree of diversity of
individual beliefs ? Is it possible to trace part of the observed heterogeneity
of equilibrium individual portfolios, back to the dispersion of individual be-
liefs, together with the heterogeneity of other individual characteristics (risk
aversion, income) ? Under which circumstances and to which extent taking
into account heterogeneity of individual beliefs (”noisy” expectations) may
or may not contribute to a better understanding of such challenges as the
“equity premium puzzle” ?

We address these issues in the simplest framework, described in Section 2,
of a static exchange economy where individual investors trade today among
themselves portfolios of assets generating (positive) income for tomorrow
(with the hope that it may not be too difficult to extend progress made
in that simple framework to more sophisticated intertemporal setups). We
present in Section 3 a method to aggregate heterogenous individual subjective
probabilities into a single “market probability”, that relies on three criteria.
Given an observed equilibrium with heterogenous individual probabilities, we
propose to define an “equivalent equilibrium”, where all investors would share
the single “aggregate market probability”, by : 1) the equivalent equilibrium
generates the same valuation of assets by the market (the same equilibrium
asset prices), 2) every investor is indifferent at the margin between investing
one additional unit of income in the observed equilibrium (using his own
subjective probability) and in the equivalent equilibrium (using the “aggre-
gate probability”), i.e. every investor’s marginal expected utility valuations
of an asset remain the same in both equilibria, 3) the aggregate probability
is equal to the investors’ subjective probabilities when they happen to share
initially the same beliefs. We show in Section 3 that these three conditions
determine uniquely in the present framework an “aggregate market proba-
bility” corresponding to a given observed equilibrium. Part of the individual
heterogeneity displayed by equilibrium behaviours can then be traced back
to the diversity of beliefs by looking at the changes of individual equilibrium
portfolios (and incomes) occurring when going from the equivalent equilib-
rium (from the commonly held equivalent “aggregate probability”) to the
observed equilibrium (to the investor’s own subjective probability). It will
be shown that the above marginal indifference condition 2) implies that such
changes of individual equilibrium portfolios are monotone in the underlying
changes of individual probabilities (the two conditions being in fact essen-
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tially equivalent for practical purposes). Finally, an important feature of
the proposed aggregation procedure is that the aggregate market portfolio
(consumption) may have to be scalarly adjusted, upward or downward, in the
equivalent common probability equilibrium, a reflection of an “aggregation bi-
as” due to the diversity of beliefs. Such a scalar adjustment modifies the
apparent mean and variability of aggregate income (consumption). One of
the topics that occupies us in this paper is to assess the direction and size
of this scalar adjustment, and to evaluate its implications for “aggegate risk
aversion” and asset pricing.

The proposed aggregation procedure is formulated in Section 3 in terms
of invariance conditions on marginal asset pricing by the market and by every
individual investor, that borrow intentionally little from the assumption of
complete markets (in the hope to keep the door open to a possible extension
to the case of incomplete markets). We take in Section 4 a “dual” view-
point that exploits fully the complete markets structure. We show there
that the standard construction of an “expected utility maximizing aggregate
investor”, who is designed so as to generate the observed equilibrium asset
prices when endowed with the market portfolio, and to value then assets
at the margin as does every individual investor in equilibrium, does carry
over to the case of heterogenous subjective probabilities, provided that 1)
this aggregate investor is assigned the same aggegate “market probability”
as was found in the previous section, and that 2) the market portfolio (aggre-
gate consumption) is scalarly adjusted upwardly or downwardly as in section
3. The proposed aggregation procedure generates accordingly, in the case
of complete markets, an “Adjusted” version of the standard “Consumption
based Capital Asset Pricing Model” (ACCAPM).

We focus in Section 5 on the relative contribution to the observed het-
erogeneity of individual equilibrium portfolios, of the underlying diversity
of beliefs, in conjunction with heterogeneity of other individual characteris-
tics (risk aversion, incomes) and the presence of aggregate risk. We show
in particular that the scalar adjustment of the market portfolio required
to aggregate individual beliefs, has to be made upward (resp. downward)
whenever individual utilities are independent of the states of nature and ag-
gregate risk is small, provided that individual absolute risk tolerance does
not increases too fast (resp. increases fast enough) with income and that dis-
persion of beliefs is significant. The same result goes through, irrespectively
of the size of aggregate risk, in economies where a “two funds separation
property” (each investor holds a mixture of the risky market portfolio and of
the riskless asset) would be approximately valid in the “common probability
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equivalent equilibrium”. This two funds separation property is in particular
true (exactly) in the specific configuration, often considered in the finance
literature, where the coefficient of absolute risk tolerance of each investor a
is independent of the state and linear in his income ya, i.e. Ta (ya) = θa+ηya,
with a derivative (marginal risk tolerance) η that is common to all investors
(”Hyperbolic Absolute Risk Aversion” (HARA) family) : the adjustment
coefficient r◦ of the market portfolio required to aggregate diverse individ-
ual beliefs then exceeds 1 if and only if the common marginal risk tolerance
η is less than 1. In all cases, the relative size of the scalar adjustment of
the market portfolio | r◦ − 1 | /r◦ appears to increase, ceteris paribus, with
the dispersion of beliefs. Our analysis fits accordingly in some respects, and
generalizes, earlier studies of aggregation of diverse beliefs. In the specific
configuration where all investors have logarithmic utilities (with a marginal
risk tolerance η = 1 in the HARA family), our analysis implies that there is
no “aggregation bias” (r◦ = 1, no scalar adjustment of the market portfo-
lio) due to individual beliefs heterogeneity (and in fact no individual income
adjustment as well). Aggregation of diverse individual subjective probabili-
ties becomes in that case extremely simple and can be done exactly, which
was among the arguments put forward early by M. Rubinstein (1976) in fa-
vor of “the logarithmic utility model as the premier model of finance”. Our
study of the Constant Absolute Risk Aversion (CARA) configuration (with
η = 0 in the HARA family) generates in our case an upward adjustment co-
efficient r◦ > 1 of the market portfolio and an aggregate market probability
that is generated through a weighted harmonic mean of individual subjective
probabilities (similarly to an analogous calculation made in the CARA con-
figuration by Huang and Litzenberger (1988, section 5.26), without however
any scalar adjustment of the market portfolio). Also, the condition that the
derivative of individual absolute risk tolerance with respect to income (the
common marginal risk tolerance η in the HARA family) is less than 1, which
is instrumental in our analysis to get an upward scalar adjustment r◦ > 1
of the market portfolio to aggregate diverse individual beliefs, props up also
in Varian’s study (1985, 1989) of asset prices in a similar setup (see also the
exposition in Ingersoll (1987, chap. 9).3

One standard view of the competitive mechanism is that it generates an
allocation of aggregate risks (of variations accross states of aggregate income
or consumption). In the case of homogenous beliefs and state independent
utilities, the corresponding risk sharing rule displays the appealing property
to be monotone, i.e. individual consumption depends only on, and is an
increasing function of, aggregate consumption. We show also in section 5 how
our results can be reinterpreted as generalizing the standard approach to the
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case of heterogenous beliefs, by requiring in particular that the allocation of
“residual risks” due to heterogeneity of beliefs be alsomonotone in individual
beliefs deviations from the aggregate “market probability”.

Finally, section 6 is devoted to an evaluation of the consequences of be-
liefs diversity on “aggregate risk aversion” and asset pricing, in particular in
relation with the so-called “equity premium puzzle”. To fix ideas, we focus
attention on the case where individual subjective probabilities are the result
of some “noise” around an hypothetical “true” probability (set by convention
equal to the arithmetic mean, in the population, of individual beliefs). We
study when such “noisy” expectations may generate a positive “risk premium
aggregation bias” by lowering the evaluation of the risk premium associated
to the market portfolio (aggregate income or consumption) by the corre-
sponding “aggregate representative investor” using the “market probability”
arising from our aggregation procedure, by comparison to the evaluation of
that same risk premium by an outside observer using the “true” probability :
the observer would have then to assume “too much” risk aversion when trying
to fit a standard CCAPM as a consequence of his overestimation by compar-
ison to “the market”. We shall speak of a “negative bias” in the opposite
configuration where the representative investor’s risk premium evaluation is
larger than that of the observer. We shall find that there may be indeed
systematic “distorsions” in the distribution of individual beliefs around its
mean in the population that may contribute to a positive risk premium ag-
gregation bias (in the spirit of Abel (1997), Chauveau and Nalpas (1998),
Ceccheti, Lam and Mark (2000)). That will be the case, under the mild
condition that absolute risk aversion decreases with income, when investors
with lower absolute risk aversion and/or higher incomes tend to be more
“pessimistic”, i.e. assign larger subjective probabilities to “bad states” (with
low aggregate income or consumption) than other agents. Or, under the as-
sumption that the derivatives of individual absolute risk tolerances do not
increase too fast (are less than 1), when the dispersion of beliefs in the pop-
ulation (”doubt”) is more significant for “good states” with larger aggregate
consumption or income. More importantly, there is a mechanism contribut-
ing to a positive risk premium aggregation bias that will always operate even
though there may be no systematic association between distorted beliefs and
individual risk aversion or income as above, and that results from the fact
that the market portfolio assigned to the “representative investor” has to be
scalarly adjusted.

Specifically, when the adjustment coefficient r◦ exceeds 1, aggregate in-
comes (consumptions) assigned to the “representative investor” are larger,
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which should tend to lower his evaluation of the risk premium of the mar-
ket porfolio (if risk aversion goes down with income), but their variability
increases also, which should have the opposite effect. We show in section
6 that the net effect is indeed toward lowering the aggregate representative
investor’s evaluation of the risk premium associated to the market portfolio.
As a consequence, an upward adjustment of the market portfolio r◦ > 1 due to
heterogeneity of beliefs will contribute to a “positive risk premium aggregation
bias”, when utilities are independent of the state, if relative risk aversion of
the representative investor decreases with income. We also show the elemen-
tary but apparently little known property that whenever individual absolute
risk tolerances are increasing with income, microeconomic heterogeneity gen-
erates an aggregation bias toward decreasing aggregate relative risk aversion,
even though that property may be weak or even absent at the microeconomic
level.

In the particular case of individual investors with CARA utilities (η = 0
in the HARA family), the adjustment coefficient r◦ of the market portfolio
is larger than 1, but this contributes to a negative risk premium aggregation
bias (by increasing the representative investor’s evaluation) because individ-
ual and aggregate relative risk aversion goes up with income. By contrast, the
adjustment coefficient r◦ of the market portfolio exceeds 1 and contributes
to a positive risk premium aggregation bias when, for instance, investors
have Constant Relative Risk Aversion (CRRA) utilities with heterogenous
relative degrees of risk aversion ρ

a
> 1, because this implies an aggregate

representative investor who has decreasing relative risk aversion.

Concluding remarks and discussion of possible topics for future research
are gathered in section 7.

2 Equilibrium Portfolio Selection

We consider a collection of individual investors of different “types” indexed
by a. Each individual investor solves a standard one-period portfolio selection
problem : he has a current income ba � 0 that he wishes to invest in financial
assets (available on the market to all) indexed by j = 1, ...n. A unit of asset
j generates income dhj (in units of account or in kind) tomorrow in various
states of the world h. If xaj is the number of units of asset j purchased, and
pj the unit price of that asset, the investor’s current budget constraint is∑

j pjxaj = ba. A portfolio xa = (xaj) generates the income yah =
∑

j dhjxaj
in each state. We impose the constraint that income in each state h has
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to be nonnegative, i.e. yah � 0, and assume that the investor maximizes
his preferences among random income streams ya = (yah) � 0 represented
(up to an increasing affine transformation) by the expected utility function∑

h πahuah (yah) = Eπa[uah (yah)], where πah > 0 is the subjective probability
he attaches to state h, with

∑
h
πah = 1.Although we shall interpret primarily

the model in terms of a standard portfolio selection problem where utility is
usually supposed to be independent of the state, we allow for state dependent
utilities because the analysis can also be applied to insurance problems where
the realization of some events (e.g. disease) may affect directly individual
welfare. We assume throughout

(2.a) Each (possibly state dependent) von Neumann-Morgenstern utility
uah (yah) is defined and continuous for yah � 0, continuously differentiable
up to order 3 for yah > 0, with u′

ah
(yah) > 0, u′′

ah
(yah) < 0.

We shall also focus on the case of interior solutions where each individual
investor has a positive income in every state. In particular, we shall assume
when needed

(2.b) Marginal utilities of income go to +∞ as income goes to 0, and to 0
when income goes to +∞, i.e. limy→0u

′

ah
(y) = +∞ and limy→∞u

′

ah(y) = 0.

We suppose that all investors face the same price system (pj) for the
traded assets (markets are competitive) and that they all anticipate the same
payoff matrix D = (dhj) . We assume also complete markets, i.e. the payoff
matrixD = (dhj) is n×n and has full rank with n ≥ 2. In the absence of arbi-
trage opportunities (a condition that will have to be satisfied in equilibrium),
this means that all investors face the same (and unique) implicit system of
state prices q = (qh), with qh > 0, such that each asset j is valued according
to

∑
h qhdhj = pj. Then for any arbitrary income ba � 0, and any such price

system p (or equivalently q), the income yah =
∑

j dhjxaj � 0 generated in
each state by the choice of an optimal portfolio xa = (xaj) can be viewed
equivalently as a demand yah (q, ba, πa) for the corresponding Arrow-Debreu
security, which yields one unit of income in state h and none otherwise.
The choice of a portfolio is then equivalent to choosing a vector of demands
ya (q, ba, πa) = (yah (q, ba, πa)) for Arrow-Debreu securities so as to maximize
expected utility under the budget constraint q · ya =

∑
h
qhyah = ba. In what

follows, we shall always work directly with the markets for Arrow-Debreu
(AD) securities. With this convention, the income of an investor of type a
is seen as implicitly derived from an initial portforlio of AD assets, ωa � 0,
ωa �= 0, so that ba = q · ωa > 0.
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To simplify matters, we assume that the set of types is finite, and let
µ
a
> 0 be the proportion of investors who belong to type a , with

∑
a
µ
a
= 1

(the analysis extends without difficulty, modulo some technicalities, to a
continuum of types, e.g. when the set of types is a complete separable metric
space). In what follows, we shall freely use the notation Ea [za] =

∑
a
µ
a
za

to describe the average (or per capita, market or aggregate value) in the
population of a variable za, vara [za] to represent its variance and so on,
although there is no randomness, in our interpretation, in the allocation of
investors among types. We shall assume without any loss of generality

(2.c) The market portfolio of AD securities ω = Ea [ωa] , has all its com-
ponents positive, i.e. ωh > 0 for every state h = 1, ..., n.

With this notation, a competitive exchange equilibrium is a vector of
state prices q∗, with q∗

h
> 0 for every state h such that all markets clear,

Ea [ya (q
∗, q∗ · ωa, πa)] = ω. We shall focus exclusively on interior equilibria,

that satisfy y∗
ah

= yah (q
∗, q∗ · ωa, πa) > 0 for every investor and every state. It

is known that under assumptions (2.a), (2.b) and (2.c), there exists at least
one equilibrium, and that all equilibria are interior. An equilibrium price
vector q∗ is of course defined only up to a positive scalar factor (absence of
money illusion).

3 Equilibrium Aggregation of Heterogenous

Beliefs

Consider a fixed competitive equilibrium, defined by the system of asset prices
q∗. We wish to analyze to which extent part of the heterogeneity of the in-
dividual equilibrium portfolios y∗

a
= ya (q

∗, q∗ · ωa, πa) can be traced back to
the heterogeneity of individual beliefs πa. The approach we propose is to
define another “equivalent” equilibrium, in which all investors would share
the common probability π◦, that would “aggregate” accordingly heteroge-
nous individual subjective probalities πa into a single “market probability”
π◦. We shall then interpret deviations of individual portfolios y∗

a
in the ob-

served equilibrium, from the portfolios y◦
a
investors would have chosen in the

equivalent equilibrium had they shared the common probability π◦, in part
as the outcome of the diversity of individual beliefs, i.e. of the deviations
πa − π◦.

We define such a common probability equivalent equilibrium by three in-
variance requirements. First, the common probability equivalent equilibrium
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should generate the same equilibrium price system q∗ as in the observed equi-
librium with heterogenous beliefs, so that every asset gets the same valuation
by the market (the same price) in both equilibria. Second, every individual
investor should be actually indifferent, at the margin, between investing one
additional unit of income in the observed equilibrium (using his own subjec-
tive probability πa ) and in the equivalent equilibrium (using the common
probability π◦), so that every asset gets also the same marginal valuation by
each individual investor (in terms of his marginal expected utility) in both
equilibria. This second invariance requirement can be alternatively justified
from the use to which we wish to put the equivalent common probability
π◦. From that viewpoint, indeed, one would like it to display the following
“monotonicity” property : every investor’s demand y∗

a
for AD security h, in

the observed equilibrium with heterogenous probabilities, should exceed the
demand y◦

ah
he would have for that security in the equivalent equilibrium as-

sociated to the equivalent common probability π◦, if and only if he attaches
a higher probability to that state than the equivalent probability, i.e. if and
only if πah � π◦

h
. We shall see that these two formulations of our second

invariance requirement are, for all practical purposes, essentially equivalent,
at least in the most relevant case where πa and π◦ approximate probabilities
having positive continuous densities on a common interval. Our third and
final invariance requirement is that the aggregation procedure should be “un-
biased”, i.e. it should generate the investors’ common probability whenever
they happen to share the same beliefs initially : one should get π◦ = π if and
only if πa = π for all investors.

We show below that these three invariance requirements determine uniquely
the equivalent common probability π◦. An important feature of the outcome
will be that the market portfolio may have to be scalarly adjusted by a co-
efficient r◦ > 0, in the common probability equivalent equilibrium, which
leads to a modification of its mean and its variability accross states when
the adjustment coefficient r◦ is different from 1. We shall discuss later the
implications of that fact for asset pricing and aggregate risk aversion.

As stated above, the first invariance requirement we impose is that, given
an equilibrium vector q∗ of state prices, the “equivalent” probability π◦ is such
that q∗ is still an equilibrium when all investors share the common probability
π◦. The next fact states that this approach is indeed feasible even when one
fixes arbitrarily a “reference” market portfolio ω◦ (that may differ from the
actual market portfolio ω) and its distribution among investors.

Proposition 3.1. Suppose that every type statisfies (2.a) and (2.b),
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assume that the market portfolio ω satisfies (2.c), and consider an equilibrium
vector of state prices q∗.

Let ω◦ be an arbitrary reference market portfolio of AD securities, with
ω◦

h
> 0 for every state, and let b◦

a
> 0 be an arbitrary distribution of income

among investors, satisfying Ea [b
◦

a
] = q∗ ·ω◦. There is a unique probability π◦

such that q∗ is an equilibrium price vector relative to that reference market
portfolio and that income distribution when all investors share the common
probability π◦, i.e. such that Ea [ya (q

∗, b◦
a
, π◦)] = ω◦. The common probability

π◦ assigns a positive weight π◦

h
> 0 to every state.

Proof. Let ∆ be the set of probabilities π defined by πh � 0,
∑

h
πh = 1.

Under the assumption that all investors share such a probability π, the
vector of market excess demands for AD securities, corresponding to the
reference market portfolio ω◦ and the income distribution (b◦

a
) , is z (π) =

Ea [ya (q
∗, b◦

a
, π)]−ω◦, where ya (q

∗, b◦
a
, π) is the vector of demands for AD se-

curities resulting from the maximization of the expected utility Eπ [uah (yah)]
under the budget constraint q∗ · ya = b◦

a
. From the budget identity of each

investor, one gets q∗ ·z (π) = 0. Note that z (π) is well defined and continuous
even on the frontier of ∆. The common probability π◦ we are looking for is
caracterized by z (π◦) = 0.

The proof employs routine techniques from general equilibrium analysis
(Arrow and Debreu (1954), McKenzie (1954), Debreu (1959)), with the prob-
ability π playing here the role of prices there. For every π in ∆, let π′ in
∆ that minimizes π′ · z (π) (this mimics a “tâtonnement” process, where we
try to decrease an initially positive aggregate excess demand by lowering the
probability of the corresponding state). The correspondence so defined from
∆ into itself satisfies all conditions of the Kakutani’s fixed point theorem, so
it has a fixed point π◦, with π◦ · z◦ � π · z◦ for all π in ∆, where z◦ = z (π◦) .

Suppose for a moment that z◦ �= 0. Since q∗ · z◦ = 0, this means that
there are states h �= k such that z◦

h
< 0 < z◦

k
. But then π◦

k
= 0 (otherwise one

could decrease slightly π◦

k
and increase π◦

h
by the same amount, so as to stay

in ∆ and decrease π◦ · z◦, contradicting the fact that π◦ · z◦ minimizes π · z◦

on ∆). However, if π◦

k
= 0, then yak (q

∗, b◦
a
, π◦) = 0 for every type, hence

z◦
k
= −ω◦

k
< 0, a contradiction. So it must be that z◦ = 0. Moreover, one has

π◦

h
> 0 for every state since by the foregoing argument, π◦

h
= 0 would imply

z◦
h
< 0.

To prove unicity, we remark that the vector of market excess demands
z (π) is homogenous of degree 0 in the vector π when we relax the con-
straint

∑
h
πh = 1, and that it satisfies the gross complementarity property

13



∂zk�∂πh < 0 for h �= k. This can be easily seen by considering the first or-
der condition (FOC) characterizing the individual demands for AD securities
yah (q

∗, b◦
a
, π) , i.e. πhu

′

ah
(yah) /q

∗

h
= πku

′

ak
(yak) /q

∗

k
. If for some k �= h, yak

increased or stayed constant when the component πh(of the vector π) goes
up, that would be true for every j �= h, with the consequence that yah it-
self would increase. But that would contradict the fact that q∗ · ya = b◦

a

has to stay constant since incomes are fixed. Thus when h �= k, one has
∂yak�∂πh < 0 for all a, hence ∂zk�∂πh < 0. Unicity then follows from
the argument employed in general equilibrium analysis in the case of gross
substitutability (Arrow and Hahn (1971, Theorem 9.7.7)). In short, consider
a common probability equilibrium defined by π◦ such that z (π◦) = 0 and
consider another candidate probability π �= π◦. By using the homogeneity
of degreee 0 of z (π) , we may ignore the constraint

∑
h
πh = 1, say that π

is actually a vector (non colinear to π◦) and normalize it so as to ensure
π � π◦ and πk = π◦

k
for some k. Then one can go from the vector π◦ to the

vector π by decreasing sequentially the components h such that πh < π◦

h
.

From the gross complementarity property, one gets zk (π) > zk (π
◦) = 0. So

no probability π �= π◦ can generate a common probability equilibrium with
the price system q∗ and the income distribution b◦

a
.4 Q.E.D.

What precedes shows that the outcome of our aggregation procedure de-
pends on the arbitrary reference market portfolio ω◦, and on the income dis-
tribution (b◦

a
). We consider now our second invariance requirement, namely

that every asset should get the same marginal valuation by each investor in
the observed equilibrium and in the common probability equivalent equilib-
rium. Specifically, consider the FOC characterizing the interior individual
portfolios y∗

a
= ya (q

∗, q∗ · ωa, πa) in the observed equilibrium

(3.1) πah u′

ah
(y∗

ah
)�q∗

h
= λ∗

a
,

where λ∗
a
= λa (q

∗, q∗ · ωa, πa) is the corresponding marginal expected utility
of income. As is well known, the FOC means that the investor is indifferent,
at the margin, about which asset to use in order to invest a (virtual) addi-
tional piece of income. Indeed, the investor’s marginal expected utility of
any (virtual) marginal portfolio generating the return Rh in each state (thus
satisfying

∑
h
q∗
h
Rh = 1)

(3.2) λ∗

a
= Eπa [Rhu

′

ah
(y∗

ah
)] = Eπa [Rh]Eπa [u

′

ah
(y∗

ah
)]+covπa [Rh, u

′

ah
(y∗

ah
)]

is independent of that portfolio. The same marginal indifference holds of
course at the common probability equilibrium obtained in Proposition 3.1.

14



There the interior equilibrium portfolios y◦

a
= ya (q

∗, b◦
a
, π◦) are characterized

by

(3.3) π◦

h
u′

ah
(y◦

ah
)�q∗

h
= λ◦

a
,

where λ◦

a
= λa (q

∗, b◦
a
, π◦) is again the corresponding marginal expected utility

of income, and the investor values equally, at the margin, all assets

(3.4) λ◦

a
= Eπ◦ [Rhu

′

ah
(y◦

ah
)] = Eπ◦ [Rh]Eπ◦ [u

′

ah
(y◦

ah
)]+covπ◦ [Rh, u

′

ah
(y◦

ah
)] .

Our second invariance requirement is that each investor should be indifferent,
at the margin, not only between assets within each equilibrium as in (3.2)
and (3.4), but also between investing one additional unit of income in the
observed equilibrium (using his own subjective probability πa) and in the
equivalent equilibrium (using the common probability π◦) :

(3.5) For every marginal portfolio generating the returns Rh, with
∑

h
q∗
h
Rh=1

Eπa
[Rh u

′

ah
(y∗

ah
)] = Eπ◦ [Rh u

′

ah
(y◦

ah
)] .

The individual changes of incomes from q∗ ·ωa to b◦
a
are then precisely those

required to compensate the changes of individual probabilities from πa to π◦

in order to achieve the marginal indifference condition (3.5).

One potential usefulness of a common probability equivalent equilibrium
is that it provides us with a benchmark to analyze to which extent the het-
erogeneity of individual observed portfolios y∗

a
is related to the heterogeneity

of individual beliefs πa (in conjunction with heterogeneity of incomes and of
attitudes toward risk). In this respect, a desirable “monotonicity” property
would be that for every state h, an investor’s observed demand for the cor-
responding AD security is larger than, equal to or less than his demand of
that security in the equivalent equilibrium, if and only if he attaches a sub-
jective probability that is larger than, equal to or less than the corresponding
equivalent common probability, respectively.

(3.6) For every state h, y∗
ah

� y◦
ah

(resp. y∗
ah

� y◦
ah
) if πah � π◦

h
(resp.

πah � π◦

h
).

Clearly such a monotonicity property does obtain under the marginal indif-
ference condition (3.5) since one gets then in every state h

(3.7) πah u′

ah
(y∗

ah
) = π◦

h
u′

ah
(y◦

ah
) .

15



Conversely, imposing directly the monotonicity property (3.6) on an equiva-
lent common probability equilibrium would imply, in view of the individual
FOC, i.e. of q∗

h
= (πah/λ

∗

a
) u′

ah
(y∗

ah
) = (π◦

h
/λ◦

ah
) u′

ah
(y◦

ah
) , that λ∗

a
= λ◦

a
if

there is a state h such that πah = π◦

h
, and furthermore that λ∗

a
/λ◦

a
< πah/π

◦

h

when πah > π◦

h
, and πah/π

◦

h
< λ∗

a
/λ◦

a
when πah < π◦

h
. Therefore

(3.8) The monotonicity property (3.6) is equivalent to la < λ∗
a
/λ◦

a
< La

when la < 1 < La, where la = Maxh {πah/π◦

h
| πah/π◦

h
� 1} and La =

Minh {πah/π◦

h
| πah/π◦

h
� 1} , and to λ∗

a
/λ◦

a
= 1 when la = 1 = La. The

monotonicity (3.6) property will be accordingly almost equivalent to the mar-
ginal indifference requirement (3.5) (i.e. λ∗

a
= λ◦

a
) in the empirically most

relevant case where there is a large number of states and where each investor’s
belief πa, as well as the common probability π◦, approximate probabilities with
positive continuous densities everywhere on a given common interval, since
in that case the distances La − la are bound to be small.

Intuitively, one should be able to obtain through the aggregation proce-
dure specified in Proposition 3.1, for a given reference market portfolio ω◦,
proportionality of all investors’ marginal valuations of assets in each equilib-
rium, i.e. of λ∗

a
= Eπa

[Rh u
′

ah
(y∗

ah
)] and λ◦

a
= Eπ◦ [Rh u

′

ah
(y◦

ah
)] , by playing

with the income distribution (b◦
a
) under the constraint Ea [b

◦

a
] = q∗ · ω◦. To

bring about equality, one needs generally one additional degree of freedom,
namely to fix the composition, but not the scale, of the reference portfolio.
The next result states that the outcome of our aggregation procedure is in-
deed uniquely determined by the requirement that each individual investor’s
marginal valuation of assets remains invariant when going from the observed
equilibrium to the common probability equivalent equilibrium, when one con-
siders reference market portfolios of the form r◦ω◦, where ω◦ is a fixed vector
of AD securities (satisfying for instance the normalization

∑
h
ω◦

h
=

∑
h
ωh),

but where the scalar coefficient r◦ is free to adjust.

The final requirement we impose is that the aggregation procedure should
be unbiased, i.e. generate the “correct” result when investors share ini-
tially the same beliefs. Specifically, we think of the reference vector ω◦ and
the actual market portfolio ω as fixed (where ω◦ satisfies the normalization∑

h
ω◦

h
=

∑
h
ωh), and consider the outcomes of the aggregation procedure

when the other characteristics of the economy, in particular the individual
subjective probabilities πa and the equilibrium price vector q∗, are free to
vary. The unbiasedness requirement is that when individual probabilities
happen to coincide, i.e. πa = π for every type, the aggregation procedure
should then generate the same probability π◦ = π. This final requirement
imposes, not too surprisingly, ω◦ = ω.
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Theorem 3.2. Suppose that every type satisfies (2.a) and (2.b), that the
market portfolio ω satisfies (2.c), and consider an equilibrium vector q∗ of
state prices.

Let ω◦ be an arbitrary reference market portfolio of AD securities, with
positive components, satisfying the normalization

∑
h
ω◦

h
=

∑
h
ωh. There

is a unique probability π◦ with positive components, a unique coefficient of
adjustment r◦ > 0 of the reference market portfolio, and a unique distribution
of income (b◦

a
) satisfying Ea [b

◦

a
] = q∗ · (r◦ω◦) , such that

1) q∗ is an equilibrium price system relatively to the common probability
π◦, the adjusted reference market portfolio r◦ω◦, and the income distribution
(b◦

a
) , i.e. Ea [ya (q

∗, b◦
a
, π◦)] = r◦ω◦,

2) Individual marginal valuations of assets remain the same before and
after the aggregation procedure, i.e. for every investor and every asset gen-
erating the returns Rh, with

∑
h
q∗
h
Rh = 1

Eπa
[Rh u

′

ah
(y∗

ah
)] = Eπ◦ [Rh u

′

ah
(y◦

ah
)] ,

where y∗
a
= ya (q

∗, q∗ · ωa, πa) and y◦
a
= ya (q

∗, b◦
a
, π◦) are the corresponding

equilibrium portfolios.

Let the actual market portfolio ω and the reference portfolio ω◦ be fixed,
and consider the outcome of the above aggregation procedure when the other
characteristics of the economy are free to vary. The procedure generates π◦ =
π when individual probabilities πa coincide with π, if and only if ω◦ = ω.

Proof. We fix an arbitrary reference market portfolio ω◦, with the normal-
ization

∑
h
ω◦

h
=

∑
h
ωh. The proof will be a variation of the fixed point

argument used for Proposition 3.1, appropriately modified to take into ac-
count that individual incomes are no longer fixed. Let ∆ be the set of
probabilities π � 0 such that

∑
h
πh = 1. For any π in ∆, let yah (π) be

given by (3.7), i.e. πah u′

ah
(y∗

ah
) = πh u′

ah
(yah) when πh > 0 and yah = 0

otherwise. By construction, the vector ya (π) stands for the demands of
AD securities ya (q

∗, ba (π) , π) where individual income has been adjusted
to keep invariant the investor’s marginal valuation of assets, i.e. to achieve
λ∗

a
= λa (q

∗, q∗ · ωa, πa) = λa (q
∗, ba (π) , π) . From the investors’ budget inden-

tities, all ba (π) = q∗ · ya (π) > 0 vary continuously with, and are positive for
every π in ∆. If one adjusts scalarly the reference market portfolio ω◦ by the
coefficient r (π) = Ea [ba (π)]�q∗ · ω◦ > 0 and defines accordingly the vector
of aggregate excess demands for AD assets as z (π) = Ea [ya (π)] − r (π)ω◦,
a common probability equilibrium satisfying (1) and (2) in Theorem 3.2 is
by construction given by a probability π◦ in ∆ such that z (π◦) = 0. The
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corresponding coefficient of adjustment and distribution of incomes are then
r◦ = r (π◦) and b◦

a
= ba (π

◦) .

Existence of such a probability π◦, and the fact that it involves only posi-
tive components π◦

h
> 0, is proved by exactly the same fixed point argument

as in the proof of Proposition 3.1. To prove unicity, fix such a probability π◦,
thus generating the equilibrium portfolios y◦

a
= ya (π

◦) , and consider another
probability π �= π◦ in ∆. By construction, for every state h, π◦

h
u′

ah
(y◦

ah
) = πh

u′

ah
(yah (π)) , so that πh > π◦

h
implies yah (π) > y◦

ah
for all investors, thus

Ea [yah (π)] > r◦ω◦

h
, while πk < π◦

k
implies Ea [yak (π)] < r◦ω◦

k
by the same

argument. Therefore π �= π◦ cannot give rise to a common probability equi-
librium satisfying (1) and (2), or z (π) = Ea [ya (π)]−r (π)ω◦ = 0, since there
the ratios Ea [yah (π)]�ω◦

h
would have to be equal to the same number r (π)

for all states h.5

To prove the last part of the Theorem, let us fix ω and ω◦ satisfying the
normalization

∑
h
ωh =

∑
h
ω◦

h
, and assume that πa = π for all a. Then it is

clear that the unique common probability equivalent equilibrium generates
π◦ = π if and only if y◦

a
= y∗

a
for all a. A necessary and sufficient condition

for that is clearly that ω = Ea [y
∗

a
] = ω◦ (implying r◦ = 1). Q.E.D.

The three invariance requirements (invariance of the equilibrium price
vector, invariance of individual marginal valuations of assets, unbiasedness)
pin down accordingly the outcome of the aggregation procedure. We shall call
an equilibrium defining a common probability π◦ by conditions 1) and 2) in
Theorem 3.2 with an arbitrary reference portfolio ω◦, the common probability
equivalent equilibrium corresponding to the reference portfolio ω◦.When ω◦ =
ω and if there is no risk of confusion, we shall drop any mention of the
reference portfolio and speak simply of “the” common probability equivalent
equilibrium.

4 The Adjusted Consumption Based Capital

Asset Pricing Model (ACCAPM)

The aggregation procedure presented in the preceding section was delib-
erately couched in terms of invariance conditions on marginal asset pricing
by the market and by every individual investor, that borrowed little from the
assumption of complete markets (with the hope that the construction might
be transposed to incomplete markets as well). We adopt now a “dual” view-
point that exploits fully the complete markets structure, by looking at the
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standard construction of an equilibrium “representative” investor, which is
valid in the case of homogenous subjective probabilities, and analyze how the
associated Consumption based Capital Asset Pricing Model (CCAPM) must
be modified to account for heterogenous individual probabilities, modulo a
possible scalar “adjustment” of the market portfolio. Our analysis will lead to
another justification of the notion of a common probability equivalent equi-
librium introduced in the previous section, through an equivalent, ”dual”,
marginal asset valuation invariance condition, involving this time the equi-
librium “representative” aggregate investor.

Consider an equilibrium with heterogenous beliefs πa defined by the sys-
tem of state prices q∗ and let y∗

a
= ya (q

∗, q∗ · ωa, πa) be the corresponding
individual optimum portfolios. It is convenient to introduce the following
normalization of individual von Neumann Morgensten (VNM) utilities

(4.1) vah (yah) = uah (yah)�Eπa [u
′

ah
(y∗

ah
)] .

The normalization (4.1) generates a unique (up to the addition of arbi-
trary constants) representation of the underlying preferences by the condition
Eπa [v

′

ah
(y∗

ah
)] = 1, or equivalently by the property that every individual in-

vestor’s marginal valuation, in the observed equilibrium, of an asset with
returns Rh satisfying

∑
h
q∗
h
Rh = 1, is not only independent of that asset,

but is actually equal to the equilibrium gross rate of return of the riskless
asset giving one unit of income in every state, i.e. to R∗

o
= 1�

∑
h
q∗
h

(4.2) Eπa
[Rhv

′

ah
(y∗

ah
)] = Eπa

[Rh] + covπa [Rh, v
′

ah
(y∗

ah
)] = R∗

o
.

We recall first the construction of an equilibrium “representative” aggre-
gate investor involved in the standard CCAPMwhen all individual subjective
probabilities happen to coincide, i.e. πa = π for all a.6 In that construc-
tion, the preferences of the equilibrium “representative” aggregate investor
are described by the VNM utilities, for every state h

(4.3) Uh (yh) = MaxEa [vah (yah)] subject to Ea [yah] = yh.

Under the hypothesis that the above leads to an interior solution yah > 0
for all a (this will be guaranted for every yh > 0 under assumption (2.b)), it
will be characterized by U ′

h
(yh) = v

′

ah
(yah) for all a. The fact that this pro-

cedure defines an equilibrium “representative” investor when πa = π for
every a, comes then from the property that the solutions to (4.3) when
yh = ωh > 0, generate an allocation ya = (yah) that coincides with the
observed equilibrium individual portfolios y∗

ah
(for both v′

ah
(yah) = U ′

h
(ωh)
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and v′
ah
(y∗

ah
) = q∗

h
R∗

o
�πh are then independent of a for every state h. Since

marginal utilities v′

ah
are decreasing, the equalities yah = y∗

ah
for all a, h,

follow from the common equilibrium conditions Ea [yah] = ωh = Ea [y
∗

ah
]).

Therefore the aggregate investor defined in (4.3) does “represent” the ob-
served market equilibrium when πa = π for all a, not only in the usual sense
that the market portfolio ω maximizes his preferences, or his expected utility
Eπ [Uh (yh)] under the market budget constraint q∗ ·y = q∗ ·ω, but actually in
the stronger sense that the aggregate investor’s and all individual investors’
(normalized through (4.1)) marginal valuations of an arbitrary asset in the
observed equilibrium, are identical.

(4.4) (The standard CCAPM for homogenous beliefs) When πa = π for
all a, under the individual normalizations (4.1) and the specification (4.3) of
the aggregate VNM utilities, for every asset generating the returns Rh with∑

h
q∗
h
Rh = 1

Eπ [RhU
′

h
(ωh)] = Eπa [Rhv

′

ah
(y∗

ah
)] = R∗

o
.

Therefore, the specification (4.3) involves in the case of homogenous beliefs,
the normalization Eπ [U

′

h
(ωh)] = 1 or equivalently, the equilibrium marginal

asset valuation Eπ [RhU
′

h
(ωh)] = R∗

o
that is identical to the individual nor-

malizations (4.1). It defines accordingly a normalized representation of the
aggregate investor’s underlying preferences that is not only independent of
the particular choices of the individual VNM utilities (uah) , but is in fact
(again similarly to the individual normalized utilities (vah) defined in (4.1))
unique up to the addition of arbitrary constants.

We show now that the same CCAPM construction does apply to the case
of heterogenous beliefs πa, modulo a possible scalar “adjustment” of the ag-
gregate portfolio.

Let us go back to an observed market equilibrium with heterogenous be-
liefs πa, described by the system of state prices q∗ and the corresponding
individual optimum portfolios y∗

a
= ya(q

∗, q∗ · ωa, πa). We keep the indi-
vidual normalizations (4.1) and still define by (4.3) the VNM utilities of a
(potentially) “representative” equilibrium investor. Given an arbitrary ref-
erence market portfolio ω◦ satisfying the normalization

∑
h
ω◦

h
=

∑
h
ωh as

in Theorem 3.2, a natural extension of the above CCAPM construction is
to say that the aggregate investor does indeed “represent” at the margin
all individual investors, when endowed with the probability π◦ and with the
possibly scalarly adjusted reference market portfolio r◦ω◦, not only in the
sense that the adjusted portfolio r◦ω◦ maximizes his preferences under the
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market budget constraint q∗ · y = q∗ · (r◦ω◦) , but under the stronger sense
that the aggregate investor, under the specification (4.3), does give then the
same marginal evaluation of every arbitrary asset as each normalized indi-
vidual investor in the observed equilibrium (exactly as in (4.4) above, but
with π replaced by π◦ and ω by r◦ω◦)

(4.5) For every asset generating the returns Rh with
∑

h
q∗
h
Rh = 1,

Eπ◦ [RhU
′

h
(r◦ω◦

h
)] = Eπa [Rhv

′

ah
(y∗

ah
)] = R∗

o
.

Here again, (4.5) involves the equilibrium normalization Eπ◦ [U
′

h
(r◦ω◦

h
)] = 1.

The specification (4.3) defines accordingly also here in the case of heteroge-
nous beliefs, a normalized representation of the aggregate investor’s under-
lying preferences that is unique up to the addition of arbitrary constants.

It is easily seen that this extension of the standard CCAPM construction
to the case of heterogenous beliefs does coincide with the notion of a common
probability equilibrium relative to a reference market portfolio ω◦ described
in the preceding section (Theorem 3.2). Let indeed y◦

a
= (y◦

ah
) be the port-

folios determined by the solutions of (4.3) when yh = r◦ω◦

h
> 0. Under the

maintained hypothesis of interior solutions, these portfolios are characterized
by U ′

h
(r◦ω◦

h
) = v′

ah
(y◦

ah
) . Rewriting (4.5) by using that fact, in terms of the

original individual utilities uah so as to facilitate a direct comparison with
the analysis of the previous section, generates the characterization

(4.6) For any asset with returns Rh satisfying
∑

h
q∗
h
Rh = 1,

Eπ◦ [Rhu
′

ah
(y◦

ah
)] = Eπa [Rhu

′

ah
(y∗

ah
)] = R∗

◦
Eπa [u

′

ah
(y∗

ah
)] ,

together with Ea [y
◦

ah
] = r◦ω◦

h
. This is equivalent to the facts that (1) the

price system q∗ is an equilibrium relative to the adjusted reference mar-
ket portfolio r◦ω◦ and the income distribution b◦

a
= q∗ · y◦

a
when all in-

vestors share the common probability π◦, for we have y◦
a
= ya (q

∗, b◦
a
, π◦) and

Ea [ya (q
∗, b◦

a
, π◦)] = r◦ω◦, and that (2) individual marginal valuations of as-

sets are the same in both equilibria. That is, the proposed construction of a
representative equilibrium investor generates exactly the common probabil-
ity equivalent equilibrium relative to the reference portfolio ω◦, as specified
in (1), (2) of Theorem 3.2.

This analysis also provides us with an alternative marginal asset evalua-
tion invariance requirement, involving the aggregate representative investor,
to characterize the common probability equivalent equilibrium introduced in
Theorem 3.2. We know that the standard CCAPM construction applies to
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a common probability equilibrium since there all investors share the proba-
bility π◦. The normalized VNM utilities of the corresponding representative
investor are thus defined (up to the addition of arbitrary constants) by

(4.7) U ◦

h
(yh) = MaxEa [uah (yah)�Eπ◦ [u

′

ah
(y◦

ah
)]] subject to Ea [yah] = yh,

where y◦

a
= ya (q

∗, b◦
a
, π◦) are the corresponding equilibrium portfolios. Then

the fact that (π◦, r◦) determines a common probability equivalent equilibrium
relatively to the reference market portfolio ω◦, in the sense of Theorem 3.2,
is equivalent to the property that the representative investor’s normalized
VNM utilities obtained through (4.7) are identical (again, up to the addition
of arbitrary constants) to those obtained by the application of the same
construction, through (4.3), to the observed equilibrium.

The next Proposition summarizes the above discussion.

Proposition 4.1 (The Adjusted CCAPM). Suppose that every type satis-
fies (2.a), that the market portfolio ω satisfies (2.c), and consider an equilib-
rium vector of state prices q∗, with the corresponding y∗

a
= ya (q

∗, q∗ · ωa, πa)
individual optimum portfolios.

Let ω◦ be an arbitrary reference portfolio of AD securities, with positive
components, satisfying the normalization

∑
h
ω◦

h
=

∑
h
ωh. Under the hy-

pothesis that all portfolios under consideration are interior, the following
statements are equivalent :

A) π◦ and r◦ are the equivalent common probability and the adjustment
coefficient of the reference portfolio, defined by the invariance requirements
1) and 2) of Theorem 3.2, with y◦

a
= ya (q

∗, b◦
a
, π◦) being the corresponding

individual equilibrium portfolios.

B) The aggregate investor defined by (up to the addition of arbitrary con-
stants) the normalized VNM utilities

(4.8) Uh(yh) = Max Ea [vah (yah)] subject to Ea [yah] = yh,

where the individual VNM utilities vah (yah) = uah (yah)�Eπa [u
′

ah
(y∗

ah
)] have

been normalized, is an equilibrium representative investor, when endowed
with the common probability π◦ and the adjusted portfolio r◦ω◦, in the sense
that the portfolio r◦ω◦ maximizes his expected utility Eπ◦ [Uh (yh)] under the
market budget constraint q∗ ·y = q∗ ·(r◦ω◦) , and that he evaluates every asset,
at the margin, as does every individual investor in the observed equilibrium

(4.9) For every asset generating the returns Rh with
∑

h
q∗
h
Rh = 1,
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Eπo [RhU
′

h
(r◦ω◦

h
)] = Eπa [Rhv

′

ah
(y∗

ah
)] = R∗

o
,

where R∗

o
= 1/

∑
h
q∗
h
is the gross rate of return of the riskless asset giving

one unit of income in every state. The equilibrium portfolios y◦
a
are then the

solutions of (4.8) for yh = r◦ω◦

h
.

C) The representative investor’s normalized VNM utilities obtained by
application of the standard CCAPM to the equivalent common probability
equilibrium

(4.10) U ◦

h
(yh) = MaxEa [uah (yah)�Eπ◦ [u

′

ah
(y◦

ah
)]] subject to Ea [yah] = yh,

coincide (up to the addition of arbitrary constants) with those obtained, through
(4.8), by application of the same construction to the observed equilibrium.7

The Adjusted CCAPM obtains when one adds the unbiasedness require-
ment, i.e. πa = π for all a implies π◦ = π, that is when the reference portfolio
is equal to the market portfolio ω◦ = ω.

The analysis of this section leads also to an alternative simple “dual” ar-
gument to demonstrate the existence, and unicity, of a common probability
equivalent equilibrium relative to a given reference market portfolio ω◦ that
was stated in Theorem 3.2. We outline it now, as it is instructive on its own
right. From B) of the foregoing Proposition, we know that the correspond-
ing probability π◦ and adjustment coefficient r◦ are characterized by (4.9)
which, when applied to AD securities, yields the FOC : π◦

h
U ′

h
(r◦ω◦

h
) /q∗

h
= R∗

o
.

This suggests the following constructive argument. Fix an arbitrary ad-
justment coefficient r > 0, and compute a corresponding probability π◦ (r)
from π◦

h
(r) = λ◦ (r) q∗

h
/U ′

h
(rω◦

h
), where λ◦ (r) = 1/

∑
k
(q∗

k
/U ′

k
(rω◦

k
)) . If we

consider the portfolios ya (r) = (yah (r)) (assumed to be interior, e.g. be-
cause of assumption (2.b)), solutions of (4.8) for yh = rω◦

h
, hence satisfying

U ′

h
(rω◦

h
) = v′

ah
(y◦

ah
(r)) , we have by construction that for every asset gener-

ating the returns Rh with
∑

h
q∗
h
Rh = 1

Eπ◦(r) [RhU
′

h
(rω◦

h
)] = Eπ◦(r) [Rhv

′

ah
(y◦

ah
(r))] = λ◦ (r) .

This means that the portfolios y◦
ah
(r) are equilibrium portfolios relative to

the price system q∗, the aggregate portfolio rω◦ and the income distribu-
tion b◦

a
(r) = q∗· y◦

a
(r) , when all investors share the common probability

π◦ (r) , i.e. y◦
a
(r) = ya (q

∗, b◦
a
(r) , π◦ (r)) and Ea [y

◦

a
(r)] = rω◦. Moreover,

in that equilibrium, individual marginal valuations of assets are given by
(in terms of the original VNM utilities uah (yah)) Eπ◦(r) [Rhu

′

ah
(y◦

ah
(r))] =
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λ◦ (r)Eπa [u
′

ah
(y∗

ah
)] , and are thus proportional but not generally equal to

those associated to the observed equilibrium, i.e. to λ∗
a
= Eπa

[Rhu
′

ah
(y∗

ah
)] =

R∗

o
Eπa [u

′

ah
(y∗

ah
)] . The equilibrium adjustment coefficient r◦ we are looking

for achieves by definition equality of these marginal valuations, and therefore
solves λ◦ (r) = 1�

∑
k
(q∗

k
�U ′

k
(rω◦

k
)) = R∗

o
. The corresponding equivalent

common probability is π◦ = π◦ (r◦) .

Now each utility Uh (yh) defined in (4.8) is concave, so that λ◦ (r) is a
decreasing function. In fact, the solution to (4.8) is determined by the FOC :
U ′

h
(yh) = u′

ah
(yah)�Eπa [u

′

ah
(y∗

ah
)] , together with the material balance con-

dition Ea [yah] = yh, so one gets immediately by differenciation

(4.11) Th (yh) = Ea [Tah (yah)] ,

where Tah (yah) = −u′

ah
(yah)�u′′

ah
(yah) is the coefficient of absolute risk tol-

erance of the individual VNM utility uah (yah) , Th (yh) = −U ′

h
(yh) /U

′′

h
(yh)

is similarly the coefficient of absolute risk tolerance of the aggregate VNM
utility Uh (yh), while all Tah (yah) are evaluated at the solution of (4.8). Fur-
thermore, it is easy to see from the FOC : U ′

h
(yh) = u′

ah
(yah) /Eπa [u

′

ah
(y∗

ah
)],

that Uh (yh) satisfies also assumption (2.b) whenever all individual utilities
uah do (if yh tends to 0, all yah tend to 0, while if yh goes to +∞, all yah
must go to +∞). Therefore, under assumption (2.b), λ◦ (r) decreases from
+∞ to 0 when r increases from 0 to +∞, and there is a unique r◦ such that
λ◦ (r◦) = R∗

o
, which completes the proof.

Corollary 4.2. Given an equilibrium with heterogenous beliefs and a ref-
erence market portfolio ω◦, to determine the corresponding equivalent com-
mon probability π◦ and the adjustment coefficient r◦ of Proposition 4.1, one
can first solve for r◦ the scalar equation R∗

o

∑
k
q∗
k
�U ′

k
(r◦ω◦

k
) = 1, where the

normalized VNM utilities of the representative investor Uh (yh) are specified
by (4.8). The common probability π◦ is then given by

π◦

h
= (q∗

h
�U ′

h
(r◦ω◦

h
))�

∑
k

(q∗
k
�U ′

k
(r◦ω◦

k
)) = R∗

o
q∗
h
�U ′

h
(r◦ω◦

h
) .

To conclude, we know from Theorem 3.2 that adding the unbiasedness
requirement (πa = π for all a leads to π◦ = π) imposes the equality of the
reference market portfolio and the actual one. Then part B of Proposition 4.1
with ω◦ = ω states that it is possible to find uniquely a probability π◦ such
that the standard CCAPM (4.9) applies to the case of heterogenous individ-
ual probabilities πa, provided that the actual market portfolio ω is scalarly
adjusted by an appropriately chosen and uniquely defined adjustment coeffi-
cient r◦. Alternatively, one may choose to leave unchanged the actual market
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portfolio ω, and adjust scalarly instead the aggregate investor’s normalized
VNM utilities.

Corollary 4.3. (Alternative formulation of the Adjusted CCAPM). Let
the reference market portfolio be equal to the actual market portfolio, ω◦ = ω.
Let (π◦, r◦) be the common probability and adjustment coefficient correspond-
ing to a given observed equilibrium with heterogenous beliefs (q∗, (y∗

a
)) , as in

Proposition 4.1. Consider the normalized VNM utilities of an “adjusted” ag-
gregate investor defined by Vh (yh) = Uh (r

◦yh)�r◦, where (Uh (yh)) are the
VNM utilities specified in (4.8), so that V ′

h
(yh) = U ′

h
(r◦yh) . Then, when

endowed with the common probability π◦ and the actual market portfolio ω,
the “adjusted” aggregate investor represents all individual investors at the
observed equilibrium, in the sense that the market portfolio ω maximizes his
expected utility Eπ◦ [Vh (yh)] under the market budget constraint q∗ ·y = q∗ ·ω,
and that he evaluates there, at the margin, every asset as does every individ-
ual investor in the observed equilibrium

(4.12) For every asset with returns Rh satisfying
∑

h
q∗
h
Rh = 1,

Eπ◦ [RhV
′

h
(ωh)] = Eπa [Rhv

′

ah
(y∗

ah
)] = R∗

o
.

Example 4.4. The Hyperbolic Absolute Risk Aversion (HARA) family.

We apply now the foregoing “dual” argument (essentially Corollary 4.2) to
the HARA family, that is to the special case where utilities are state indepen-
dent and display linear absolute risk tolerance, i.e. Tah (y) = −u′

ah
(y)�u′′

ah
(y)

= θa+ ηy > 0, where the marginal risk tolerance T ′

ah
(y) = η is constant and

commonly shared by all investors. This configuration, often considered in
the finance literature because it generates a neat aggregation of individual
behaviors when all investors share the same beliefs, leads also here to impor-
tant simplifications. We note in passing that when η �= 0,marginal utilities of
income are of the form u′

a
(y) = (θa + ηy)−1/η , while they are u′a (y) = e−y/θa

in the case of Constant Absolute Risk Aversion (CARA), i.e. when η = 0.
The case usually considered empirically most relevant in the literature corre-
sponds to an absolute risk tolerance that is increasing with income (η > 0) ,
and to coefficients of relative risk aversion ρ

a
(y) = −yu′′

a
(y)�u′

a
(y) that

decrease with income (θa < 0) . The case of Constant Relative Risk Aversion
(CRRA) corresponds to θa = 0, in which case ρ

a
(y) = 1/η.
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A first remark is that the aggregate probability π◦ defined in Proposition
3.1 depends in that case on the reference market portfolio ω◦, but not on the
distribution of incomes b◦

a
among investors. The proof of that remark, and

its implications for the determination of the equivalent common probability
π◦ and the adjustment coefficient r◦, are derived in the following fact.

Corollary 4.5. Assume that individual VNM utilities are state indepen-
dent and belong to the HARA family, with Tah (y) = −u′

ah
(y)�u′′

ah
(y) =

θa + ηy > 0. Assume interior solutions throughout.

1) Let ω◦ be an arbitrary reference market portfolio. The representa-
tive investor who supports the equilibrium with the common probability π◦ in
Proposition 3.1 belongs to the same HARA family, with Th (y) = −U ′

h
(y)�U ′′

h
(y)

= θ+ηy, and θ = Ea [θa] . The corresponding common probability π◦ is given
by

π◦

h = q∗h
(
θ + ηω◦

h

)1/η
�

∑
k

q∗k
(
θ + ηω◦

k

)1/η
when η �= 0, and by π◦

h
= q∗

h
eω

◦

h
/θ�

∑
k q

∗

k eω
◦

k
/θ in the CARA configuration

η = 0. It depends upon the reference market portfolio ω◦, but not on the
income distribution b◦

a
.

2) Let the reference portfolio be equal to the actual market portfolio,
ω◦ = ω. Let (π◦, r◦) be the common probability and adjustment coefficient
associated to a given equilibrium with heterogenous beliefs (q∗, (y∗

a
)) as in

Proposition 4.1.

When η �= 0, the normalized VNM marginal utilities of the aggregate
investor (4.8) are

(4.13) U ′

h
(yh) = R

∗

o

((
θ + ηyh

)
�ν∗

)
−1/η

,

with ν∗ = Ea [ν
∗

a] and

(4.14) ν∗a =
θa + ηy∗ah
(πah/q∗h)

η =
q∗o θa + ηq∗ · ωa∑

k q
∗

k (πak/q
∗

k)
η ,

where q∗o =
∑

h q
∗

h = 1/R∗

o is the price of the riskless asset. The adjustment
coefficient r◦ is then determined as in Corollary 4.2 by

(4.15)
∑

k
q∗
k

((
θ + ηr◦ωk

)
�ν∗

)1/η
= 1.

In the CARA configuration η = 0, the normalized VNM marginal utilities
of the aggregate investor (4.8) are
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(4.16) U ′

h (yh) = R
∗

o e−(yh−ν∗)/θ ,

with ν∗ = Ea [ν
∗

a] and

(4.17) ν∗
a
= y∗

ah
−θa Log (πah/q∗h) = R

∗

o
[q∗ · ωa − θa

∑
k q

∗

k
Log (πak/q

∗

k
)] .

In particular,

(4.18) U ′

h
(yh) = R

∗

o
q∗
h
e−(yh−ωh)/θ�eEa[(θa/θ) Log πah] ,

so that the adjustment coefficient r◦, determined as in Corollary 4.2, is ob-
tained directly from the fondamentals through

(4.19)
∑

k
e(r

◦
−1)ωk/θ eEa[(θa/θ) Log πak] = 1.

Given the adjustment coefficient r◦, the common probability π◦ is in all
cases obtained as in Corollary 4.2, with ω◦ replaced by ω. In the CARA case
η = 0, one gets 8

π◦

h
= e(r

◦
−1)ωh/θ eEa[(θa/θ) Log πah] .

Proof. 1) The aggregate investor who supports the common probability equi-
librium in Proposition 3.1 has VNM utilities defined through the standard
CCAPM as in (4.10), with r◦ω◦ replaced by ω◦ since there is no adjustment
of the reference portfolio in that case. The fact that it belongs to the same
HARA family is a direct consequence of (4.11), which is also valid here.
Indeed

Th (yh) = Ea [Tah (yah)] = Ea [θa + ηyah] = θ + ηyh.

so the marginal utilities U ′

h
(yh) of that aggregate investor are proportional

(up to a common multiplicative normalizing factor) to
(
θ + ηyh

)
−1/η

when

η �= 0 and to e−yh/θ in the CARA case η = 0. The expressions of the common
probability in 1) are obtained by remarking that, as in Corollary 4.2, one has
the FOC : π◦

h
U ′

h
(ω◦

h
) = R∗

o
q∗
h
, so that π◦

h
= (q∗

h
�U ′

h
(ω◦

h
))� (

∑
k
q∗
k
�U ′

k
(ω◦

k
)) .

2) Consider the case ω◦ = ω. When η �= 0, it is easily seen from the in-
dividual FOC that normalized individual marginal VNM utilities v′

ah
(yah) =

u′

ah
(yah)�Eπa

[u′

ah
(y∗

ah
)] in the observed equilibrium, are given by v′

ah
(yah) =

R∗

o
((θa + ηyah)�ν

∗

a
)−1/η , where ν∗a is determined by (4.14) (λ∗a = (ν∗a)

−1/η

is in fact the marginal expected utility of income λ∗a = λa (q∗, q∗ · ωa, πa)

corresponding to the specification u′
ah
(yah) = (θa + ηyah)

−1/η). The normal-
ized VNM utilities of the aggregate investor defined in (4.8) satisfy then
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U ′

h (yh) = v′

ah (yah) , hence ν
∗

a (U
′

h (yh)�R
∗

o)
−η = θa+ ηyah (where the yah are

solutions of (4.8)), which gives (4.13) by aggregation over all types a. The
adjustment coefficient is obtained by solving R∗

o

∑
k
(q∗

k
�U ′

k
(r◦ωk)) = 1 as

in Corollary 4.2, which gives (4.15).

When η = 0, the same procedure shows that normalized individual VNM
utilities are given by v′ah (yah) = R

∗

o e−yah/θa�e−ν
∗

a
/θa where ν∗a is determined

by (4.17) (λ∗
a
= e−ν

∗

a
/θa is the marginal expected utility of income λ∗a =

λa (q
∗, q∗ · ωa, πa) corresponding to the specification u′ah (yah) = e−yah/θa),

and one gets by aggregation over investors the general expression (4.16) of
U ′

h (yh) . The specific expression (4.18) is obtained by using the first equal-
ity for ν∗

a in (4.17). Then it is immediate from (4.18) that the equation∑
k
(R∗

o
q∗
k
�U ′

k
(r◦ωk)) = 1 to determine r◦, as in Corollary 4.2, is (4.19).

It is also clear that given r◦, π◦ is obtained in all cases from the FOC :
π◦

h
= q∗

h
R∗

o
�U ′

h
(r◦ωh) , as in Corollary 4.2. Q.E.D.

5 Individual Heterogeneity and Risk Sharing

Consider an observed equilibrium price system q∗ corresponding to the
heterogenous beliefs πa. We take in this section the actual market portfolio
as the reference portfolio, i.e. ω◦ = ω, and use the associated common
probability equivalent equilibrium, as defined by the common probability π◦

and the adjustment coefficient r◦, as a benchmark to study how heterogeneity
of individual beliefs may explain observed individual portfolio diversity in
conjunction which heterogeneity of incomes and of attitudes toward risk.
Our strategy is to evaluate deviations y∗

a
− y◦

a
of the observed equilibrium

portfolios y∗
a
from the portfolios y◦

a
that investors would hold at the common

probability equivalent equilibrium (assumed both to be interior), as functions
of the deviations πa − π◦ of individual beliefs from the equivalent common
probability. In the particular case where individual VNM utilities are state
independent and when there is no aggregate risk (ωh = ωk) , for instance,
the approach allows to quantify departures of observed portfolios from full
insurance (which should prevail then in the common probability equivalent
equilibrium) as a result of the diversity of individual beliefs. Similarly, in
the specific configuration of the HARA family (Example 4.4), the approach
permits an evaluation of failures of individual observed portfolios to satisfy
the socalled “two funds separation theorem” (i.e. to be combinations of the
market portfolio and of the riskless asset), in relation to the heterogeneity of
individual beliefs.
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In the same vein, we analyze in this section under which conditions diver-
sity of beliefs generates in the aggregate an adjustment coefficient r◦ that is
greater or less, than one. We shall discuss in the next section some implica-
tions of such a scalar adjustment, that modifies the mean of aggregate wealth
(consumption) as well as its variability accross states of nature, for aggregate
risk aversion and asset pricing. We also reinterpret individual heterogeneity
at the end of the present section in terms of monotone risk sharing rules.

Our starting point is the FOC conditions

(5.1) πahu
′

ah
(y∗

ah
) = π◦

h
u′

ah
(y◦

ah
) = λ∗

a
q∗
h

where λ∗

a
= λa (q

∗, q∗ · ωa, πa) is the marginal expected utility of income of
investor a in the observed equilibrium (as well as in the common probability
equivalent equilibrium, i.e. λ∗a = λ◦a = λa (q

∗, b◦a, π
◦)). These conditions deter-

mine indeed the variations y∗a − y◦a of the equilibrium portfolios as functions
of the deviations of the individual probabilities πa − π◦, through

(5.2) y∗ah − y◦ah = gah (πah)− gah (π
◦

h) , where

gah (πah)
def
≡ (u′ah)

−1

(
π◦

h

πah
u′

ah
(y◦

ah
)

)
.

It is clear that gah (πah) is an increasing function : an individual investor’s
investment in an AD security will be larger in the observed equilibrium,
i.e. y∗

ah
� y◦

ah
, if and only if the investor believes the corresponding state

to be more probable than specified in the common equivalent probability,
i.e. if and only if πah � π◦

h
. We already observed (see (3.6) and (3.7))

that this simple monotonicity property was a direct consequence of, and for
all practical purposes, actually almost equivalent to our requirement that
marginal individual valuations of assets remain invariant when constructing
a common probability equivalent equilibrium.

We wish to gain further insight into the way in which deviations of individ-
ual beliefs from the common probability affect individual equilibrium portfo-
lios, by considering exact 2nd order Taylor expansions of gah (πah)−gah (π

◦

h
) ,

where the πah are considered as “free” variables while π◦ and y◦
a
are “fixed”.

We know indeed that there exist π̂ah in the intervals [π◦

h
, πah] such that

(5.3) y∗

ah
− y◦

ah
= (πah − π◦

h
) g′

ah
(π◦

h
) +

1

2
(πah − π◦

h
)2 g′′

ah
(π̂ah ) .

One verifies by direct inspection that g′

ah
(πah) = Tah(gah (πh))�πh, where

Tah (y) = −u′

ah
(y)�u′′

ah
(y) is the individual coefficient of absolute risk tol-

erance, so that g′

ah
(π◦

h
) = T ◦

ah
�π◦

h
, with T ◦

ah
= Tah (y

◦

ah
) . The first (linear)
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term in the right hand side of (5.3) is therefore positive when πah exceeds
π◦

h
and negative otherwise. By contrast, the second (nonlinear) term has the

sign of g′′

ah
(π̂ah ) = Tah (gah (π̂ah )) (T

′

ah
(gah (π̂ah ))− 1)�π̂2

ah
. It contributes

therefore to a negative portfolio deviation y∗
ah

− y◦
ah

for any individual belief
πah �= π◦

h
whenever individual absolute risk tolerance increases with income

(the empirically plausible case), but not too fast, that is when T ′

ah
(y) < 1,

so that gah (πh) is a concave function, i.e. g′′

ah
(πh) < 0. On the other hand

this second nonlinear term will contribute to a positive portfolio deviation
in the opposite configuration where absolute risk tolerance increases fast
enough, T ′

ah
(y) > 1, i.e. when gah (πh) is convex. Even though the two

terms in the right hand side of (5.3) may have different signs, the first linear
term is bound to dominate since, by construction of the common probability
equivalent equilibrium, the function gah (πh) is increasing : an upward indi-
vidual belief deviation πah − π◦

h
� 0 does result in an upward portfolio shift

y∗
ah

− y◦
ah

� 0 and conversely.

The same approach gives a way to evaluate the impact of individual
belief deviations on the income compensating changes q∗ ·ωa− b◦

a
= q∗ · y∗

a
−

q∗ · y◦
a
needed to keep individual marginal asset valuations invariant when

constructing the equivalent common probability equilibrium. Summing over
states the expressions (5.3) multiplied by q∗

h
gives

(5.4) q∗ ·ωa− b◦
a
=

∑
h
(πah − π◦

h
) q∗

h
g′

ah
(π◦

h
)+

1

2

∑
h
(πah − π◦

h
)2 q∗

h
g′′
ah
(π̂ah) .

Since both probabilities πah and π◦

h
sum to 1, the linear part in the right

hand size of (5.4) involves positive and negative terms and therefore does
not necessarily dominates the nonlinear terms here. In fact this linear part,
being equal to 9

(5.5) Eπa

[
q∗
h

T ◦

ah

π◦

h

]
− Eπ◦

[
q∗
h

T ◦

ah

π◦

h

]
= covπ◦

[
πah
π◦

h

, q∗
h

T ◦

ah

π◦

h

]
,

has an ambiguous sign : we are going to see that it vanishes in particular
when all individual utilities are state independent and if there is no aggregate
risk. Indeed in that case the equivalent common probability π◦ coincides with
the socalled “risk adjusted probability” π∗

h
= q∗

h
R∗

◦
(for then aggregate VNM

utilities defined by (4.8) are also state independent, so that U ′

h
(r◦ωh) is inde-

pendent of h when ωh = ωk. Corollary 4.2 implies then that π◦

h
is proportional

to q∗
h
, hence the result). All individual investors are then fully insured in the

equivalent common probability equilibrium, i.e. y◦
ah

= y◦
ak
, and the covari-

ance in (5.5) vanishes since the expressions q∗
h
T ◦

ah
�π◦

h
are independent of the

30



state h. Compensating income changes in (5.4) will be therefore dominated
by the corresponding squared deviations terms in that case. In particular,
individual observed income will have to be adjusted upward when construct-
ing the equivalent common probability equilibrium, i.e. q∗ · ωa − b◦

a
< 0, if

absolute risk tolerance does not increase too fast, T ′

ah
(y) < 1, so as to en-

sure that gah (πh) is concave. By continuity, this picture is unaltered when
aggregate risk and/or dependence of VNM utilities on states is “small”. To
sum up,

Proposition 5.1. Suppose that every type satisfies (2.a) and that the
market portfolio satisfies (2.c). Consider an interior equilibrium vector q∗

of state prices and the corresponding interior common probability equivalent
equilibrium defined by (π◦, r◦) , with the reference portfolio equal to the market
porfolio, ω◦ = ω, and where y∗

a
= ya(q

∗, q∗ · ωa, πa) and y◦

a
= ya (q

∗, b◦
a
, π◦)

are the associated equilibrium individual portfolios. For each investor, let
T ◦

ah
= Tah (y

◦

ah
) , where Tah (y) = −u′

ah
(y)�u′′

ah
(y) are the degrees of absolute

risk tolerance.

There exist π̂ah in the intervals [π◦

h
, πah] such that individual equilibrium

portfolio adjustments y∗
a
− y◦

a
are linked to deviations of individual beliefs

πa − π◦ through

(5.6) y∗
ah

− y◦
ah

=
πah − π◦

h

π◦

h

T ◦

ah
+

1

2

(
πah − π◦

h

π̂ah

)2

T̂ah
(
T̂ ′

ah − 1
)
,

where the degrees of absolute risk tolerance T̂ah = Tah (ŷah) and their deriva-

tives T̂ ′

ah = T ′

ah
(ŷah) are evaluated at the portfolios defined by π̂ahu

′

ah
(ŷah) =

π◦

h
u′

ah
(y◦

ah
) . Income shifts needed to maintain individual marginal asset val-

uations when constructing the equivalent common probability equilibrium are
in turn given by

(5.7) q∗ ·ωa−b◦
a
= covπ◦

[
πah
π◦

h

, q∗
h

T ◦

ah

π◦

h

]
+
1

2

∑
h

(
πah − π◦

h

π̂ah

)2

q∗
h
T̂ah

(
T̂ ′

ah
− 1

)
.

The covariance term vanishes in the case of no aggregate risk, ωh = ωk,
and when all individual VNM utilities are state independent, for then π◦

coincides with the risk adjusted probability π∗
h
= R∗

◦
q∗
h
, while investors are

fully insured at the equivalent common probability equilibrium, i.e. y◦
ah

= y◦
ak
,

hence T ◦

ah
= T ◦

ak
. In that case, when πa �= π◦, individual income has to

be shifted upward, i.e. q∗ · ωa − b◦a < 0 if absolute risk tolerance does not

increase too fast with income, i.e. T̂ ′

ah
< 1. Income is shifted downward, i.e.

q∗ ·ωa− b◦
a
> 0, if absolute risk tolerance increases fast enough, i.e. T̂ ′

ah
> 1.
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These configurations are qualitatively preserved when aggregate risk and/or
state dependence of VNM utilities is not too large. For instance, assume that
individual absolute risk tolerance is bounded away from 0, i.e. 0 < θam � T̂ah
and does not increase too fast, i.e. T̂ ′

ah
� ηa < 1. Then

(5.8) q∗ · ωa − b◦
a
� covπ◦

[
πah
π◦

h

, q∗
h

T ◦

ah

π◦

h

]
+

1

2
θam (ηa − 1)

∑
h
(πah − π◦

h
)2 q∗

h

is negative if the covariance is not too great while η
a
< 1 is small and the

individual belief πa differs significantly from the common probability π◦.

As noted earlier, an important issue to ascertain is whether the adjust-
ment coefficient r◦ is greater or less than 1 : modifying the mean and
variability of aggregate wealth has consequences on aggregate risk aver-
sion and asset pricing. The approach taken here should generate some
insights into the matter since aggregation of individual portfolios in (5.6)
yields (1− r◦) ωh = Ea [y

∗

ah
− y◦

ah
] , while working with incomes in (5.7) gives

(1− r◦) q∗ ·ω = Ea [q
∗ · ωa − b◦

a
] . From the above analysis, one should expect

accordingly this coefficient r◦ to be greater than 1 if, for instance, aggregate
risk and state dependence of VNM utilities are not too large, every investor’s
absolute risk tolerance does not increase too fast with income and when there
is a significant dispersion of beliefs in the population.

Aggregation of individual portfolios in (5.6) or (5.3) gives

(5.9) (1− r◦)ωh = Ea

[
πah − π◦

h

π◦

h

T ◦

ah

]
+

1

2
Ea

[
(πah − π◦

h
)2 g′′

ah
(π̂ah)

]
.

We know that the contribution of the second order nonlinear terms is nega-
tive, and thus tends to make r◦ > 1 if the functions gah are concave, i.e. if
absolute risk tolerance does not increase too fast with income (T ′

ah
< 1) . On

the other hand, the contributions of the first order linear terms are ambigu-
ous since they may be positive for some states and negative for others. A
convenient, symmetric way to proceed is to aggregate over states the expres-
sions (5.9), premultiplied by π◦

h
�T ◦

h
, where T ◦

h
= Ea [T

◦

ah
] are the degrees

of absolute risk tolerance Th (y) = −U ′

h
(y)�U ′′

h
(y) of the representative

equilibrium investor defined in (4.8) of Proposition 4.1, evaluated at the ad-
justed market portfolio, i.e. T ◦

h
= T ◦

h
(r◦ωh) . If the representative investor’s

degrees of relative risk aversion are noted ρ
h
(y) = −yU ′′

h
(y)�U ′

h
(y), with

ρ◦

h
= ρh (r

◦ωh) = r◦ωh�T ◦

h
, one gets in this way

(5.10)
1− r◦

r◦
Eπ◦ [ρ

◦

h
] = Ea

[
Eπa

[
T ◦

ah

T ◦

h

]
− Eπ◦

[
T ◦

ah

T ◦

h

]]
+
1

2
Ea,π◦

[
(πah − π◦

h)
2 g

′′

ah
(π̂ah)

T ◦

h

]
.
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The aggregate first order linear term can be thus written (we use here again
the change of probability formula of footnote 9)

Ea

[
covπ◦

[
πah
π◦

h

,
T ◦

ah

T ◦

h

]]
,

and measures the average contribution, in the population, of the covariance
of the relative deviations of individual beliefs from the equivalent common
probability, i.e. (πah − π◦

h
)�π◦

h
, with the relative deviations of individual

absolute risk tolerance from the average degree of absolute risk tolerance in
the market, evaluated at the equivalent common probability equilibrium, i.e.
(T ◦

ah
− Ea [T

◦

ah
])�Ea [T

◦

ah
] . The sign of this term is ambiguous, but it will

vanish, for instance, if the ratios T ◦

ah
�T ◦

h
are, for every investor, independent

of the state. We know already that this will be the case if there is no aggre-
gate risk and if all investor’s VNM utilities are state independent, since then
T ◦

ah
and T ◦

h
are actually independent of the state h (individual investors and

the representative investor are fully insured in the common probability equi-
librium). We shall see shortly that this configuration occurs also in another
important special case, namely when VNM utilities are state independent
and display linear absolute risk tolerance as in the HARA family considered
in Example 4.4. This will be a simple restatement of the socalled “two funds
separation theorem”. In all these cases, i.e. when the first order linear term
in (5.10) vanishes, the sign of (1− r◦) is entirely determined by the second
order terms, i.e. by the convexity or concavity of the functions gah. For in-
stance, one gets in such a case that r◦ > 1 if there is some dispersion of
beliefs, when every investor’s absolute risk tolerance does not increase too
fast with income, i.e. when T ′

ah
< 1 for all a, h. If the first order covariance

term is not too large, one should expect this picture to be unchanged : for
example one should still get r◦ > 1 if T ′

ah
� η < 1 for all a, h, with η small

and if the variance of beliefs in the population is significant. The following
result sums up and make precise these intuitions.

Corollary 5.2. Under the assumptions and notations of Proposition 5.1,
let the degrees of absolute risk tolerance of the representative equilibrium in-
vestor defined in (4.8) of Proposition 4.1, be given by Th (y) = −U ′

h
(y)�U ′′

h
(y) ,

with T ◦

h
= Th (r

◦ωh) = Ea [T
◦

ah
] . Let also the representative investor’s de-

grees of relative risk aversion be noted ρ
h
(y) = −yU ′′

h
(y)�U ′

h
(y) , with

ρ◦

h
= ρh (r

◦ωh) .

The adjustment coefficient r◦ of the market portfolio is given by

(5.11)
1− r◦

r◦
Eπ

◦ [ρ◦
h
] = Ea

[
covπ◦

[
πah
π◦

h

,
T ◦

ah

T ◦

h

]]
+1

2
Eπ◦,a

[(
πah − π◦

h

π̂ah

)2
T̂ah

T ◦

h

(
T̂ ′

ah − 1
)]
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The covariance term vanishes when the ratios T ◦

ah
�T ◦

h
are independent of

the states for every investor. This happens in particular when all investors
have state independent VNM utilities and when there is no aggregate risk.
Then r◦ > 1 when T̂ ′

ah
< 1 for all a, h, whereas r◦ < 1 when T̂ ′

ah
> 1 for all

a, h, if there is some dispersion of beliefs.

Assume that individual absolute risk tolerance is bounded above and away
from 0, i.e. 0 < θm � T̂ ′

ah
� θM for all states and investors.

A) If absolute risk tolerance does not increase fast with income, i.e. T̂ ′

ah
�

η < 1 for all a, h

(5.12)
1− r◦

r◦
Eπ◦ [ρ

◦

h
] � Ea

[
covπ◦

[
πah
π◦

h

,
T ◦

ah

T ◦

h

]]
−
(1− η)θm

2θM
Eπ◦ [vara [πah]] ,

so that r◦ > 1 if the first order covariance term is not too great whereas η
is significantly less than 1 and if there is a significant dispersion of beliefs in
the population (vara [πah] is significant).

B) If absolute risk tolerance increases fast enough with income, i.e. T̂ ′

ah
�

η > 1 for all a, h

(5.13)
1− r◦

r◦
Eπ◦ [ρ

◦

h
] � Ea

[
covπ◦

[
πah
π◦

h

,
T ◦

ah

T ◦

h

]]
+
(η − 1)θm

2θM
Eπ◦ [vara [πah]] ,

so that r◦ < 1 if the first order covariance term is not too great while η is large
and if there is a significant dispersion of beliefs in the population(vara [πah]
is significant).

Proof. (5.11) is nothing else than (5.10) in the text. Then (5.12) and
(5.13) follow directly by bounding the right hand side of (5.11), using π̂ah � 1
and the fact that Ea

[
(πah − π◦

h
)2
]
� vara [πah] . Q.E.D.

The above analysis relies upon an exact 2nd order Taylor expansion of
y∗
ah
−y◦

ah
around π◦

h
, that is then aggregated over investors and accross states.

One may note, incidentally, that if one is willing to neglect 3rd order terms
involving (πah − π◦

h
)3 , e.g. in practical applications, one can obtain approx-

imate evaluations of individual portfolio deviations in (5.6), of individual
income shifts in (5.7), or of the aggregate portfolio adjustment coefficient r◦

in (5.11), by substituting π◦

h
to π̂ah in these expressions.

Example 5.3. The HARA family

34



We focus again on the specific case considered in example 4.4, where indi-
vidual VNM utilities are state independent and display linear risk tolerance,
i.e. Tah (y) = θa + ηy > 0 and where all investors share the same marginal
risk tolerance T ′

ah
(y) = η. This case involves a well known simplification

when beliefs are homogenous, called “two funds separation” : every investor
holds in equilibrium a portfolio that is a combination of the market portfolio
and of the riskless asset. This property holds by construction in the equiv-
alent common probability equilibrium since there all investors are supposed
to share the same belief π◦ : it is actualy expressed, as we shall see shortly,
by the fact that the ratios T ◦

ah
�T ◦

h
are, for each investor, independent of

the state. The approach presented here then generates an evaluation of in-
dividual departures from this two funds separation property, in the observed
equilibrium, as a function of the deviations of individual heterogenous beliefs
πa from π◦. Also the fact that the ratios T ◦

ah
�T ◦

h
are independent of the state

implies that the covariance term in (5.11) of Corollary 5.2 vanishes, with the
consequence that the adjustment coefficient r◦ is greater than 1 if and only
if the common marginal risk tolerance T ′

ah
(y) = η is less than 1.

Our point of departure is here again the FOC conditions (the equivalent of
(5.1) above) that characterize an observed equilibrium and the corresponding
equivalent common probability equilibrium, assumed both to be interior.
When η �= 0, these FOC are obtained by applying (4.14) in Corollary 4.5 to
both equilibrium portfolios y∗a and y◦a :

(5.14)

ν∗a =
θa + ηy∗ah
(πah/q∗h)

η =
q∗
◦
θa + ηq∗ · ωa∑
k q

∗

k (πak/q
∗

k)
η

=
θa + ηy◦ah
(π◦

h/q
∗

h)
η =

q∗
◦
θa + ηb◦a∑

k q
∗

k (π
◦

k/q
∗

k)
η

.

In the same way, in the CARA configuration (η = 0) one gets from (4.17) in
Corollary 4.5,

(5.15)
ν∗a = y∗ah − θaLog (πah/q

∗

h
) = R∗

◦
[q∗ · ωa − θa

∑
k
q∗
k
(πak/q

∗

k
)]

= y◦
ah

− θaLog (π◦h/q
∗

h
) = R∗

◦
[b◦
a
− θa

∑
k
q∗
k
(π◦

k
/q∗

k
)] .

Then a straithtforward manipulation of these FOC conditions generates the
following facts.

Corollary 5.4. Consider the HARA family as in Corollary 4.5. Let an
observed equilibrium and the corresponding equivalent common probability
equilibrium, assumed both to be interior, with the reference portfolio equal to
the market portfolio. Then
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A) (Two funds separation) In the equivalent common probability equilib-
rium, investors hold a portfolio y◦

a
that is a (possibly investor dependent)

combination of the market portfolio ω and of the riskless asset that gives one
unit of income in every state. When η �= 0, this is expressed by the fact that
the ratios

(5.16)
T ◦

ah

T ◦

h

=
θa + ηy◦

ah

θ + ηr◦ωh

=
q∗
◦
θa + b◦

a

q∗
◦
θ + ηr◦q∗ · ω

=
ν∗
a

ν∗
,

where T ◦

h
= Ea [T

◦

ah
] and ν∗ = Ea [ν

∗

a
] , are independent of the state. In the

CARA configuration η = 0

(5.17)
y◦
ah

θa
−
r◦ωh

θ
= R∗

◦

[
b◦
a

θa
− r◦

q∗ · ω

θ

]
=
ν∗
a

θa
−
ν∗

θ
.

Departures of individual portfolios y∗
a
in the observed equilibrium from this

two funds separation property are measured by

(5.18)
θa + ηy∗

ah

θa + ηy◦
ah

=

(
πah
π◦

h

)η

when η �= 0 and by

(5.19) y∗
ah

− y◦
ah

= θa (Logπah − Logπ◦

h
)

in the CARA configuration η = 0.

B) (Compensating income shifts) Income variations needed to keep in-
variant individual marginal asset valuations in both equilibria are given by

(5.20)
q∗
◦
θa + η q∗ · ωa

q∗
◦
θa + η b◦a

=

∑
k q

∗

k (πak/q
∗

k)
η∑

k q
∗

k (π
◦

k/q
∗

k)
η

when η �= 0 and by

(5.21) q∗ · ωa − b◦
a
= θa

∑
k
q∗
k
(Logπak − Logπ◦

k
)

in the CARA configuration.

Proof. The two funds separation property (5.16) or (5.17) is obtained by
aggregating over all investors the FOC condition in (5.14) or (5.15) that is
relative to the equivalent common probability equilibrium, and by taking into
account Ea [y

◦

a
] = r◦ω and Ea [b

◦

a
] = r◦q∗ ·ω. Then individual deviations from

the two funds separation (5.18) or (5.19), as well as the income compensations
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(5.20) or (5.21), are obtained by division in (5.14) (substraction in (5.15)) of
the FOC relative to one equilibrium by the FOC corresponding to the other.

Q.E.D.

A simple consequence of the above result is that there is no compensat-
ing income variation, i.e. q∗ · ωa = b◦

a
, in the case of logarithmic utilities

(η = 1, uah (y) = Log (θa + y)) . Indeed the numerator and denominator of
the right hand side of (5.20) are both equal to 1 for any belief πa and any
common probability π◦ when η = 1. On the other hand, we know from Propo-
sition 5.1 that when there is no aggregate risk, individual incomes have to
be shifted upward if η < 1 and downward if η > 1 for all beliefs πa �= π◦.
From the same proposition, we also know that these features are preserved
by continuity when aggregate risk remains small, and if η differs from 1, at
least when the belief πa is significantly far from π◦. We give in the following
a direct proof of these statements that relies on the convexity properties of
the function f (x) = xη and that will also imply that these properties should
not be expected to prevail for every belief πa.

Corollary 5.5. (Compensating income shifts) In the HARA family,

1) There is no compensating income variation, i.e. q∗ · ωa = b◦
a
, in the

case of logarithmic VNM utilities η = 1.

2) Assume that absolute risk tolerance does not increase too fast, i.e.
η < 1. If there is no aggregate risk, then π◦ coincides with the risk adjusted
probability π∗

h
= R∗

◦
q∗
h
and q∗ · ωa < b◦

a
for all beliefs πa �= π◦. If there is

some aggregate risk so that π◦ �= π∗, one still has q∗ · ωa < b◦a if π◦ is near
π∗ (aggregate risk is small) and if πa differs significantly from π∗, but the
inequality is reversed i.e. q∗ · ωa > b◦a, if πa is equal or close enough to π∗.

3) The same statements hold with reverse inequalities throughout when
η > 1.

Proof. We detail the proof when η > 1, the argument is similar when η < 1.
If η > 1, since the function f (x) = xη is convex and increasing for x > 0,
the right hand side (RHS) of (5.20) is bounded below by

(5.22)
Eπ∗ [(πah�π∗

h)
η]

Eπ∗ [(π◦

h�π∗

h)
η]

�
1

Eπ∗ [(π◦

h�π∗

h)
η]

,

and the minimum is actually reached if and only if πa = π∗. So if there is
no aggregate risk, one has π◦ = π∗, the RHS of (5.22) is equal to 1 : the
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left hand side (LHS) is thus greater than 1, hence q∗ · ωa > b◦
a
, for every

πa �= π∗ = π◦. If there is some aggregate risk, so that π◦ �= π∗, the RHS of
(5.22) is less than 1. By continuity, the LHS of (5.22) still exceeds 1, hence
one still has q∗ · ωa > b◦

a
, if π∗ is close to π◦ (the RHS is close to 1) and

πa differs significantly from π∗(the LHS is significantly far from the RHS in
(5.22)). But if πa is equal or close enough to π∗ and π◦ �= π∗, the LHS of
(5.22) is equal or close to the RHS and is therefore less than 1, so one gets
q∗ · ωa < b◦

a
. Similar arguments go through when η < 1 or in the CARA

configuration η = 0. Q.E.D.

It is remarkable that despite this ambiguity at the individual level about
the direction of income shifts between the observed and the equivalent com-
mon probability equilibria, the fact that the aggregate coefficient of adjust-
ment r◦ is greater or less than 1 is nevertheless entirely determined, in the
HARA family, by whether the marginal risk tolerance η is less or greater
than 1, no matter what is the distribution of individual beliefs πa. This prop-
erty is a consequence of the general result stated in Corollary 5.2, and more
particularly in (5.11), since the ratios T ◦

ah
�T ◦

h
are independent of the state

so that the linear covariance term collapses to 0 in that case (this is implied
by (5.16) above when η �= 0, and by T ◦

ah
�T ◦

h
= θa�θ when η = 0). Thus in

the HARA family, with the notations of Corollary 5.2,

(5.23)
r◦ − 1

r◦
Eπ◦ [ρ

◦

h] =
1− η

2
Ea,π◦

[(
πah − π◦

h

π̂ah

)2
T̂ah
T ◦

h

]
.

The adjustment coefficient r◦ is therefore greater than, equal to or less than 1
according to whether η < 1, η = 1, or η > 1. We give next a direct argument
that relies here again on the convexity or concavity of the function f (x) = xη

for x > 0.10

Corollary 5.6. (Adjustment coefficient). In the HARA family as in
Corollary 5.4, there is no adjustment of the market portfolio, i.e. r◦ = 1,
in the case of logarithmic utilities η = 1. The market portfolio is adjusted
upward, i.e. r◦ > 1, when η < 1 and in the CARA configuration η = 0, and
downward, i.e. r◦ < 1, when η > 1.

Proof. The fact that r◦ = 1 when η = 1 is clear since there is then no
adjustment of indivual incomes, i.e. q∗ · ωa = b◦

a
for every investor. In

all cases, from Corollary 4.2, the adjustment coefficient r◦ is obtained by
solving R∗

◦

∑
k
(q∗

k
�U ′

k
(r◦ωk)) = 1, or equivalently in the case of the HARA

family, (4.15) when η �= 0 and (4.19) in the CARA configuration η = 0. Since
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marginal utilities of the aggregate investor are decreasing, we shall get r◦ < 1
if and only if R∗

◦

∑
k
(q∗

k
�U ′

k
(ωk)) > 1. When η �= 0, this condition can be

written in view of (4.15),
∑

k
q∗
k

((
θ + ηωk

)
�ν∗

)1/η
> 1. But aggregating

over investors the FOC (5.14) relative to the observed portfolio y∗a gives that

q∗k
(
θ + ηωk

)1/η
= (Ea [(πak)

η ν∗a])
1/η . So we get r◦ < 1 if and only if

∑
k

(
Ea

[
(πak)

η ν
∗

a

ν∗

])1/η

> 1.

It is easily seen that this inequality is verified when η > 1. Indeed since the
function f (x) = xη is in that case increasing and convex for x > 0, one

has that (Ea [(πak)
η (ν∗a/ν

∗)])
1/η

> Ea [πakν
∗

a/ν
∗] , hence the desired result by

summing over k. A similar (symmetric) direct reasonning shows that this
inequality is reversed, and that one gets accordingly r◦ > 1, when η < 1, η �=
0 and also for the CARA configuration. Q.E.D.

Remark 5.7. Monotone risk sharing rules

In what precedes, heterogeneity of individual equilibrium portfolios y∗
a

was studied in relation with heterogeneity of beliefs πa, by comparison with
a common probability equivalent equilibrium that was defined exclusively
in terms of marginal asset pricing invariance conditions. We look now at
an alternative, essentially equivalent formulation, that is cast in terms of
(optimal) risk sharing rules and may be useful, in particular in the focal
case where VNM utilities are state independent. One standard approach, in
the case of homogenous beliefs, is to view equilibrium consumptions y∗

ah
as

resulting from an allocation to individuals of the macroeconomic risks implied
by the variations accross states of aggregate income or consumption ωh. The
corresponding risk sharing rule is then, when utilities are state independent,
monotone : for each investor a, consumption y∗

ah
is increasing with aggregate

consumption ωh.We show briefly here that our results can be reinterpreted as
generalizing this approach to the case of heterogenous beliefs, by decomposing
the risk sharing rule in two : one that reproduces the standard approach
with the commonly shared probability π◦, and the other that specifies a
“residual risk” sharing rule in a way that is also monotone with respect to
the individual belief deviations πah − π◦

h
.

Specifically, consider an equilibrium q∗, (y∗
a
) with heterogenous beliefs πa.

It is known that such an equilibrium is a Pareto optimum given these beliefs,
or more specifically that the individual portfolios (y∗

a
) are the solutions of

the maximization problem
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(5.24) Max Ea [Eπa [vah (yah)]] subject to Ea [ya] = y,

when y is equal to the market portfolio ω, where individual VNM utilities
vah(yah) = uah(yah)�Eπa [u

′

ah
(y∗

a
)] have been normalized as in Proposition

4.1. Indeed, this problem splits into independent maximization problems,
for each state h

(5.25) Wh (yh ; (πbh)) = Max Ea [πahvah(yah)] subject to Ea [yah] = yh.

Assuming interior portfolios throughout, the solution to (5.25) is character-
ized by πahv

′

ah
(yah) = W ′

h
(yh ; (πbh)) , which implies yah = y∗

ah
for every

a when yh = ωh (because v′

ah
(yah)�v

′

ah
(y∗

ah
) is then independent of a and

Ea [yah] = Ea [y
∗

ah
]), and therefore

(5.26) πahv
′

ah
(y∗

ah
) = W ′

h
(ωh ; (πbh)) = q

∗

h
R∗

◦
.

The aggregate investor with separable (but non VNM expected) utility∑
h
Wh (yh ; (πbh)) does accordingly “represent” the economy in equilibrium,

in the sense that the market portfolio ω maximizes his preferences under the
aggregate budget constraint q∗ · y = q∗ · ω. One may equivalently state that
the competitive equilibrium mechanism generates a risk sharing rule

(5.27)
y∗
ah

= Φah (ωh ; (πbh)) = (v′
ah
)−1 (W ′

h
(ωh ; (πbh))�πah)

= (v′
ah
)−1 (q∗

h
R∗

◦
�πah)

that is (Pareto) optimal, conditionnally upon the investors’ beliefs (πb) .

Such a Pareto optimal risk sharing rule displays attractive monotonicity
properties whenever all individual investors share the same belief, i.e. πa = π
for all a. In that case, the aggregate utilities Wh (yh ; (πh)) in (5.25) coincide
with πhUh (yh) where Uh (yh) are the normalized VNM utilities of the ag-
gregate investor involved in the CCAPM of section 4.1. The corresponding
equilibrium sharing rule becomes then quite simple and has the property,
when VNM utilities are state independent, that an investor’s consumption
y∗
ah

depends only on aggregate wealth ωh, and increases with ωh in propor-
tion of the relative contribution of the individual absolute risk tolerance to
aggregate absolute risk tolerance.

(5.28) (Risk sharing with homogenous beliefs). Consider an interior equi-
librium q∗, (y∗

a
) with homogenous beliefs, i.e. πa = π for all investors a. The

corresponding risk sharing rule is given by

y∗
ah

= ϕ
ah
(ωh) = (v′

ah
)
−1

(U ′

h
(ωh)) = (v′

ah
)
−1

(q∗
h
R∗

◦
�πh)
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where normalized individual and aggregate investors’ VNM utilities (vah) and
(Uh) are defined as in Proposition 4.1. The risk sharing rule ϕ

ah
(y) ≡

(v′
ah
)−1 (U ′

h
(y)) is increasing, with ϕ′

ah
(y) = Tah (ϕah (y))�Th (y) > 0, where

Tah (y) = −v′

ah
(y)�v′′

ah
(y) and Th (y) = −U ′

h
(y)�U

′′

h
(y) = Ea [Tah (ϕah

(y))]
are the individual and aggregate degrees of absolute risk tolerance.

When all VNM utilities are state independent, so is the risk sharing rule
ϕah (y) = (v′

a
)−1 (U ′ (y)) . In that case, individual consumption y∗

ah
= ϕa (ωh)

depends only on aggregate consumption ωh and increases with aggregate con-
sumption in the sense that y∗

ak
− y∗

ah
= ϕa (ωk) − ϕa (ωh) � 0 if and only if

ωk � ωh (mutuality principle).

When individual beliefs πa are heterogenous, the risk sharing rule Φah

(5.27) is still increasing in ωh, provided that one keeps fixed all investors’
beliefs (πbh) . So in the particular case where VNM utilities are state in-
dependent, one does get a weak form of the mutuality principle (Varian
(1985, 1989)), in the sense that if one considers two states, one will get
y∗
ak

= y∗
ah

(resp. y∗
ak

> y∗
ah
) when ωk = ωh (resp. ωk > ωh) provided that

the distribution of beliefs (πbk) and (πbh) among investors is the same in
both states, which is a serious limitation. The construction of an equiva-
lent common probability equilibrium, and its use to study heterogeneity of
individual portfolios, can be reinterpreted as a decomposition of the equi-
librium risk sharing rule (5.27) in two parts. The first part defines, exactly
as in (5.28), a risk sharing rule y◦

ah
= ϕ◦

ah
(ωh) associated to the equilibrium

with the commonly shared probability π◦ : that part generates by construc-
tion the same simple mutuality principles as stated in (5.28). The second
part then formulates a rule intended to allocate the “residual risks” due to
the deviations πah − π◦

h
of individual beliefs from the common probability,

of the form y∗
ah

− y◦
ah

= Φah (ωh ; (πbh)) − ϕ◦

ah
(ωh) . By construction, this

residual risk sharing rule has the attractive property, under our aggregation
procedure, to be monotone in individual subjective probability deviations,
i.e. y∗

ah
− y◦

ah
� 0 if and only if πah − π◦

h
� 0, and in fact this monotonicity

requirement is essentially equivalent to the formulation of the text (when
there is a large number of states, and when individual and aggregate pro-
babilities πa and π◦ approximate probabilities with continuous densities on
a common interval, see (3.8)). The cost to be paid to get monotonicity of
the residual risks sharing rule, being that the allocation of risks under the
hypothesis that all investors share the common probability π◦, adds up to
a scalarly adjusted market portfolio instead of the actual market portfolio,
i.e. Ea [y

◦

a
] = r◦ω, the adjustment coefficient r◦ reflecting an aggregation bias

due to the diversity of beliefs πa.
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Corollary 5.8. (Monotone risk sharing rules with heterogenous be-
liefs). Consider an interior equilibrium q∗, (y∗

a
) with heterogenous beliefs

πa. There exists a probability π◦ and an adjustment coefficient r◦ of the
market portfolio ω such that the Pareto optimal risk sharing rule (5.27),
y∗
ah

= Φah (ωh ; (πbh)) can be decomposed in two parts.

1) A risk sharing rule associated with the common probability π◦ and the
adjusted market portfolio r◦ω

y◦
ah

= ϕ
ah
(r◦ωh) = (v′

ah
)
−1

(U ′

h
(r◦ωh)) = (v′

ah
)
−1

(q∗
h
R∗

◦
�π◦

h
) ,

where individual and aggregate VNM utilities vah and Uh are normalized as in
Proposition 4.1. The common probability sharing rule ϕah (y) = (v′

ah
)−1 (U ′

h
(y))

satisfies then the mutuality principle properties stated in (5.28).

2) A residual risks sharing rule

y∗
ah

− y◦
ah

= (v′
ah
)
−1

(
π◦

h

πah
v′
ah
(ϕ

ah
(r◦ωh))

)
− ϕ

ah
(r◦ωh)

satisfying the monotonicity property y∗ah � y◦ah if and only if πah � π◦

ah.
11,12

The results of this section can then be reinterpreted as analyzing the
determinants of these risk sharing rules, in particular of their deviations
y∗
ah
−y◦

ah
and (1− r◦) from the common probability configuration, in relation

to aggregate risk, and to heterogeneity of beliefs, of attitudes toward risk and
of incomes. When specialized to the HARA family where Tah (y) = θa + ηy,
it is known that the optimal (state independent) risk sharing rule, in the case
of homogenous beliefs, is linear (Wilson (1968)). This is easily verified here
by differentiating once more the risk sharing rule ϕ

ah
(y) given in (5.28), or

1) of Corollary 5.8, which generates

(5.29) ϕ′′

ah
(y) =

Tah (ϕah (y))

(Th (y))
2

(T ′

ah
(ϕ

ah
(y))− T ′

h
(y)) ,

hence ϕ′′

ah
(y) = 0 since T ′

ah
(y) = η = T ′

h
(y) in the HARA family. One verifies

also by looking at the common probability equivalent equilibrium (π◦, r◦) ,
that the linearity of the corresponding (state independent) risk sharing rule
y◦
ah

= ϕah (r
◦ωh) is in fact equivalent to the “two funds separation” property

that prevails in equilibrium for the HARA family in the case of homogenous
beliefs (see (5.16) in Corollary 5.4 for η = 0 and (5.17) for the CARA con-
figuration η = 0). Our analysis shows in fact that, in the case of HARA
family, linearity of the equilibrium risk sharing rule with respect to aggregate
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consumption extends also to the residual risk sharing rule 2) of Corollary 5.8
and therefore to the overall risk sharing rule (5.27), y∗

ah
= Φah (ωh ; (πbh)) ,

given the investors heterogenous beliefs and (π◦, r◦) . Indeed consideration of
(5.16) - (5.19) in Corollary 5.4 above generates

(5.30) θa + ηy∗ah =

(
πah
π◦

h

)η

(θa + ηy◦ah) =

(
πah
π◦

h

)η ν∗a
ν∗

(
θ + ηr◦ωh

)
when η �= 0 and

(5.31)
y∗
ah

θa
= Log

(
πah
π◦

h

)
+

y◦
a

θa
= Log

(
πah
π◦

h

)
+

(
ν∗
a

θa
−

ν∗

θ

)
+

r◦ωh

θ

in the CARA configuration η = 0.

6 Aggregate risk aversion and asset pricing

We focus in this section on a few implications of heterogeneity of individual
beliefs and of tastes, for aggregate risk aversion and asset pricing, with the
aim, among others, to identify a few channels through which heterogeneity
of this sort may contribute toward explaining some phenomena such as the
socalled “equity premium puzzle”.13

Specifically, we consider an oberved equilibrium with heterogenous be-
liefs πa, as described by the vector of state prices q∗ and the corresponding
equilibrium portfolios y∗

a
, and apply our aggregation procedure with the ref-

erence portfolio equal to the market portfolio, i.e. ω◦ = ω.We know from the
adjusted CCAPM presented in Section 4 that, under the maintained assump-
tion of interior equilibria, there is a representative investor with normalized
VNM utilities Uh (y) who, when endowed with the common probability π◦

and the adjusted market portfolio r◦ω, has for every asset generating the
returns Rh with

∑
h
q∗
h
Rh = 1, a marginal valuation

(6.1) Eπ◦ [RhU
′

h
(r◦ωh)] = Eπ◦ [Rh] + covπ◦ [Rh, U

′

h
(r◦ωh)] = R

∗

◦

that is by construction identical to the marginal asset valuation of every
individual investor in the observed equilibrium

(6.2) Eπa [Rhv
′

ah
(y∗

ah
)] = Eπa [Rh] + covπa [Rh, v

′

ah
(y∗

ah
)] = R∗

◦
,

where individual VNM utilities have been normalized by vah (y) = uah (y)�
Ea [u

′

ah
(y∗

ah
)] . As noted in section 4, one may equivalently leave invariant the
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market portfolio and adjust instead the representative investor normalized
VNM utilities through Vh (y) = Uh (r

◦y)�r◦, or V ′

h
(y) = U ′

h
(r◦y) .

The representative investor’s evaluation of risk premia is therefore given
by the usual formulation (in view of the normalization Eπ◦ [U

′

h
(r◦ωh)] = 1)

(6.3) Eπ◦ [Rh]−R∗

◦
= −covπ◦ [Rh, U

′

h
(r◦ωh)]� Eπ◦ [U

′

h
(r◦ωh)] .

Heterogeneity of beliefs may thus contribute to explain something like the
equity premium puzzle if, when applied to the market portfolio with returns
RM
h

= ωh�q
∗ ·ω (and to the case of state independent VNM utilities), it gen-

erates a lower evaluation by the representative investor, of the corresponding
risk premium Eπ◦

[
RM
h

]
−R∗

◦
through (6.3), by comparison to the evaluation

of an econometrician using an hypothetical “true” probability π �= π◦ : the
econometrician would have then to assume “too much” risk aversion while
trying to fit a standard CCAPM formulation like

(6.4) Eπ

[
RM
h

]
−R∗

◦
= −covπ

[
RM
h
, Ṽ ′ (ωh)

]
�Eπ

[
Ṽ ′ (ωh)

]
for some specification Ṽ ′ (y) of the VNM marginal utility of an hypothetical
representative investor. We seek to identify in what follows a few possi-
ble channels through which diversity of beliefs may indeed generate such a
possible “heterogeneity aggregation bias” by decreasing the representative
investor’s risk premium evaluations (6.3) of the market portfolio, or more
generally of assets generating returns that vary positively with aggregate
income.

We investigate first how varies the risk evaluation of such an asset as in
the right hand side of (6.3), with the scalar adjustment coefficient. When
this coefficient goes up, aggregate incomes increase, which should lower the
risk premium evaluation if risk aversion goes down with income, while the
variability of these aggregate incomes goes up, which should tend to increase
the risk premium evaluation. The next elementary fact implies that the
first (income) effect should prevail, when utilities are state independent and
relative risk aversion decreases with income.

Lemma 6.1. (Scalar adjustment and risk evaluation). Let π be an arbi-
trary probability with positive components, and let Uh (y) stand for VNM util-
ities satisfying assumption (2.a), with ρ

h
(y) = −yU ′′

h
(y)�U ′

h
(y) denoting

the corresponding degrees of relative risk aversion. Let the market portfolio
ω satisfy assumption (2.c). Then for any adjustment coefficient r > 0, the
evaluation of the risk premium of an asset yielding the returns Rh, given by
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(6.5) g (r) = −covπ [Rh, U
′

h
(r ωh)]�Eπ [U

′

h
(r ωh)] ,

varies with the adjustment coefficient as

(6.6)
dg (r)

dLogr
= covπ(r) [Rh, ρh (r ωh)] ,

where the covariance is taken with respect to the probability π (r) described by
πk (r) = πkU

′

k
(r ωk)�Eπ [U

′

h
(r ωh)] . The covariance is negative for every

asset, the returns of which vary negatively with the degrees of relative risk
aversion ρh (r ωh) .

In the particular case where VNM utilities are state independent and rel-
ative risk aversion ρ

h
(y) = ρ

k
(y) is decreasing with income, and if there

is some aggregate risk, an increase of the adjustment coefficient r pushes
down the risk premium evaluation (6.5) for any asset with returns Rh that
vary positively with aggregate income ωh, and thus for the market portfolio
RM
h

= ωh�q
∗ · ω.

Proof. One can rewrite (6.5) as g (r) = Eπ [Rh]− Eπ(r) [Rh] , so that

dg (r)

dLogr
= −Eπ(r)

[
dLogπh (r)

dLogr
Rh

]
= −Eπ(r)

[
dLogπh (r)

dLogr

]
Eπ(r) [Rh]− covπ(r)

[
Rh,

dLogπh (r)

dLogr

]
.

One gets (6.6) from the fact that

−
dLogπk (r)

dLogr
= ρk (r ωk)− Eπ(r) [ρh (r ωh)] ,

which implies Eπ(r)

[
dLogπh (r)

dLogr

]
= 0. The other statements are then imme-

diate consequences of (6.6). Q.E.D.

The foregoing fact, when applied to the equivalent common probability
equilibrium (π◦, r◦) , suggests that an adjustment coefficient r◦ exceeding 1
might be associated, in the configuration where there is some aggregate risk
and where VNM utilities are state independent that is usually considered
in financial studies, to a low risk premium evaluation by the representative
investor as in (6.3) of the market portfolio, or generally of assets yielding

45



returns that vary positively with aggregate income. We know from the pre-
vious section that r◦ > 1 does obtain when aggregate risk is small and dis-
persion of beliefs is significant, provided that individual absolute risk tol-
erances do not increase too fast (T ′

ah
(y) < 1) . The above lemma uncovers

an additional independent condition sufficient to get the desired outcome,
namely that aggregate relative risk aversion decreases with income. These
two sorts of conditions are in principle independent even when there is no
microeconomic heterogeneity, since for a given utility function, the degrees of
absolute risk tolerance T (y) and of relative risk aversion ρ (y) are linked by
T (y) = y�ρ (y) . So the condition that relative risk aversion ρ (y) is decreas-
ing means that the elasticity εT (y) = yT ′ (y)�T (y) = T ′ (y) ρ (y) exceeds 1,
which implies T ′ (y) > 0 and is compatible with T ′ (y) < 1 as long as relative
risk aversion ρ (y) is above 1.

We investigate next the links between microeconomic and aggregate risk
aversion. Our point of departure is the remark we used already that aggre-
gate risk tolerance is an appropriate average of individual risk tolerances in
the population (see (4.11)). We show now that whenever individual absolute
risk tolerances are increasing, microeconomic heterogeneity introduces an ag-
gregation bias toward decreasing aggregate relative risk aversion, even though
such a property may be weak or even absent at the microeconomic level. In
particular, if all individual investors have Constant Relative Risk Aversion
(CRRA) VNM utilities that are different, aggregate relative risk aversion is
decreasing. This sort of result is comforting since, while empirical studies
appear indeed to point toward microeconomic increasing absolute risk toler-
ance, the evidence on individual decreasing relative risk aversion seems to be
more mixed.14

Lemma 6.2. (Aggregate risk aversion). Under assumptions (2.a) and
(2.c), consider an equilibrium vector of state prices q∗ with individual beliefs
πa and the associated equivalent common probability equilibrium defined by
(π◦, r◦) with the reference portfolio equal to the market portfolio, i.e. ω◦ =
ω, the corresponding individual portfolios y∗

a
and y◦

a
being interior. Let the

normalized VNM of the equilibrium representative investor be defined as in
Proposition 4.1 by

(6.7) Uh (yh) = Max Ea [uah (yah)�Eπa
[u′

ak
(y∗

ak
)]] subject to Ea [yah] = yh.

Individual degrees of absolute risk tolerance and of relative risk aversion are
noted as before Tah (y) = −u′

ah
(y)�u′′

ah
(y) and ρah (y) = −yu′′

ah
(y)�u′

ah
(y) ,

while those of the representative investor are Th (y) = −U ′

h
(y)�U ′′

h
(y) and
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ρh (y) = −yU ′′

h
(y)�U ′

h
(y) . It is also convenient to define corresponding de-

grees of “relative risk tolerance” by τah (y) = 1�ρ
ah
(y) = Tah (y)�y and

τh (y) = 1�ρh (y) = Th (y)�y. Interior solutions are assumed throughout.

Aggregate absolute and relative risk tolerances are (possibly weighted) av-
erages of individual absolute and relative risk tolerances

(6.8) Th (yh) = Ea [Tah (yah)] and τh (yh) = Ea

[
τ ah (yah)

yah
yh

]
,

where the yah are solutions of (6.7).

Income derivatives of aggregate absolute risk tolerance are weighted aver-
ages of the corresponding income derivatives of individual absolute risk tol-
erances

(6.9) T ′

h
(yh) = Ea

[
T ′

ah
(yah)

Tah(yah)

Th(yh)

]
.

If all individual absolute risk tolerances are increasing with income, so does
aggregate absolute risk tolerance, or more generally T ′

ah
(yah) � η (resp.

T ′

ah
(yah) � η) for all a implies T ′

h
(yh) � η (resp. T ′

h
(yh) � η).

By contrast, microeconomic heterogeneity introduces an aggregation bias
toward decreasing relative risk aversion (increasing relative risk tolerance),
whenever individual absolute risk tolerance is increasing. Elasticities of ab-
solute and relative risk tolerances εTh (y) = y T ′

h
(y)�Th (y) and ετh (y) =

εTh (y)− 1, are related to the corresponding individual elasticities εTah (y) =
yT ′

ah
(y)�Tah(y) and ετah (y) = εTah (y)− 1 through

(6.10) ετh (yh) = Ea

[
ετah (yah)

(
τah (yah)

τh (yh)

)2
yah
yh

]
+Ea

[(
τ ah (yah)

τh (yh)
− 1

)2
yah
yh

]
.

If ετah (yah) � γ for all investors, then

(6.11) ετh (yh) � γ + (1 + γ)Ea

[(
τ ah (yah)

τh (yh)
− 1

)
2 yah
yh

]
,

which exceeds γ by a positive variance term when individual absolute risk
tolerance is increasing, i.e. εTah (yah) � 1 + γ > 0, and whenever individual
degrees of relative risk aversion ρah (yah) = 1�τah (yah) differ at the micro-
economic level. In particular, if all investors have different Constant Relative
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Risk Aversion (CRRA) VNM utilities, ετah (y) ≡ γ = 0 for all a, aggregate
relative risk aversion is decreasing.

The inequality in (6.11) is reversed when ετah (yah) � γ, and microeco-
nomic heterogeneity generates an opposite bias toward increasing aggregate
relative risk aversion when individual absolute risk tolerance is decreasing,
i.e. εTah (yah) � 1 + γ < 0.

Proof. As noted in the text, the first part of (6.8) was already established in
(4.11) and results from the differenciation of the FOC of (6.7). The second
part of (6.8) is a simple restatement of the first part by using T (y) = τ (y) y.

One gets next (6.9) by differenciation of the first part of (6.8) and by noting
that the solution (yah) of (6.7) satisfies dyah�dyh = Tah(yah)�Th(yh). In-
serting the expressions of the elasticities ετh (y) + 1 = yT ′

h
(y)�Th (y) and

ετah (y) + 1 = yT ′

ah
(y)�Tah (y) in (6.9) gives

ετh (yh) + 1 = Ea

[
(ετah (yah) + 1)

(
τah (yah)

τh (yh)

)2
yah
yh

]
,

which is identical to (6.10) if one remarks that

Ea

[(
τah (yah)

τh (yh)
− 1

)
2 yah
yh

]
= Ea

[(
τah (yah)

τh (yh)

)
2 yah
yh

]
− 1

is in fact, in view of the second part of (6.8), the variance in the population
of τah (yah)�τh (yh) when each investor is given the weight µ

a
yah�yh (where

µa is the proportion of investors of type a in the market). The statements
from (6.11) until the end of the lemma are then immediate. Q.E.D.

The preceding analysis does suggest that in the case of state independent
VNM utilities, an adjustment coefficient r◦ > 1 may contribute to a low risk
premium evaluation of the market portfolio, by the representative investor as
in (6.3), in the plausible configuration of a decreasing aggregate relative risk
aversion. Yet the argument is not completely convincing since that adjust-
ment coefficient r◦ is not an independent parameter : it is jointly determined
with the equivalent common probability π◦. What we need eventually to do
is to identify all the mechanisms that may contribute to a low risk premium
evaluation by the representative investor Eπ◦ [Rh]−R∗

◦
, in particular for the

market portfolio with returns RM
h

= ωh�q
∗ · ω, for instance by putting cau-

tiously more weight on states involving lower than average aggregate incomes,
than would be justified by an hypothetical “true” reference probability.
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Assessing fully such an issue would require an explicit dynamic analysis
of the genesis of the distribution of individual beliefs, in particular in terms
of differential access to information, processing and learning. We focus here
on the possibility of an “aggregation bias” by looking at the specific simple
case where the distribution of individual beliefs πa among investors is the
result of the presence of some “noise” around a “true” probability, taken as
the average belief in the population π = Ea [πa] . We are thus looking for
mechanisms that may contribute to a positive risk premium aggregation bias

(6.12) Eπ [Rh]−Eπ◦ [Rh] = covπ◦

[
πh
π◦
h

, Rh

]
> 0

for the market portfolio and more generally for assets with returns positively
related with aggregate income.

We use here again a variation on the second order Taylor expansion in-
troduced in the previous section in particular to analyse the determinants
of the adjustment coefficient r◦. With the notations of Proposition 5.1 and
Corollary 5.2, aggregation of individual portfolios in (5.6) leads to (5.9),
which gives after dividing by aggregate risk tolerance T ◦

h
= Ea [T

◦

ah
] in the

equivalent equilibrium and rearranging :

(6.13)
πh − π◦

h

π◦

h

= −
r◦ − 1

r◦
ρ◦
h
−cova

[
πah
π◦

h

,
T ◦

ah

T ◦

h

]
+1

2
Ea

[(
πah − π◦

h

π̂ah

)2
T̂ah
T ◦

h

(
1− T̂ ′

ah

)]
.

That relation allows to inventory the main channels through which hetero-
geneity of beliefs may affect the risk premium aggregation bias (6.12). Taking
the covariance, according to the common probability π◦, of an asset’s returns
Rh with the relative belief deviations (πh − π

◦

h
)�π◦

h
, as expressed in (6.13),

generates three terms. The first one, A = − ((r◦ − 1)�r◦) covπ◦ [Rh, ρ
◦

h
]

quantifies the influence of heterogeneity of beliefs through the scalar adjust-
ment of the market portfolio, exactly along the lines laid down earlier in
expression (6.6) of Lemma 6.1. The two other terms identify two different
channels through which systematic “distorsions” in the distribution of be-
liefs in the population may generate a positive risk premium aggregation
bias, namely when more risk tolerant or richer investors assign cautiously
more weight to “bad” states (”pessimism”), or when agents have on average
beliefs that are relatively more dispersed for “good” states (”doubt”).

Proposition 6.3. (Risk premium aggregation bias). Under the assump-
tions and notations of Proposition 5.1 and Corollary 5.2, let π = Ea [πa]
be the average belief among investors and consider an arbitrary asset with
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returns Rh satisfying
∑

h
q∗
h
Rh = 1. The corresponding risk premium aggre-

gation bias is the sum of three terms

Eπ [Rh]− Eπ◦ [Rh] = covπ◦

[
Rh,

πh
π◦
h

]
= A+B + C.

1) (Adjustment coefficient) The first term A = − ((r◦ − 1)�r◦) covπ◦ [Rh, ρ
◦

h
]

measures the direct influence of the heterogeneity of beliefs through the cor-
responding scalar adjustment of the market portfolio. When there is some
aggregate risk, an upward adjustment coefficient r◦ > 1 contributes to a
positive risk premium aggregation bias if VNM utilities are state indepen-
dent and aggregate relative risk aversion ρ (y) is decreasing with income, for
every asset with returns that vary positively with aggregate income and in
particular for the market portfolio. For small aggregate risks, an approx-
imate evaluation of this term in the case of state independent utilities is
A � − (r◦ − 1) ρ′ (r◦Eπ

◦ [ωh]) covπ◦ [Rh, ωh] .

2) (”Pessimism”) The second term B = −covπ◦

[
Rh, cova

[
πah
π◦
h

,
T ◦

ah

T ◦

h

]]
is

the sum of two terms B1 +B2, where

B1 = −cova

[
Eπa [Rh] , Eπ◦

[
T ◦

ah

T ◦

h

]]
, B2 = −Ea

[
covπ◦

[
πah
π◦
h

(Rh − Eπ◦ [Rk]) ,
T ◦

ah

T ◦

h

]]
.

The term B1 will be positive if people having on average higher absolute risk
tolerances T ◦

ah
in the equivalent common probability equilibrium, have also

a more pessimistic evaluation of the expected return of that asset Eπa [Rh] .
The term B2 vanishes if the ratios T ◦

ah
�T ◦

h
are independent of the state h,

e.g. when VNM utilities are state independent, if there is no aggregate risk
or in the case of the HARA family (two funds separation). So when VNM
utilities are state independent and if pessimism is significant, the term B1 > 0
dominates the term B2 provided that aggregate risk, and/or departure from
the HARA family specification, is small.

3) (”Doubt”) The third term C = 1

2
covπ◦

[
Rh, Ea

[(
πah − π◦h
π̂ah

)2
T̂ah
T ◦

h

(
1− T̂ ′

ah

)]]

can be approximated by C � 1

2
covπ◦

[
Rh, Ea

[(
πah − π◦h
π◦
h

)
2 T ◦

ah

T ◦

h

(1− T ′

ah
(y◦

ah
))

]]
for heterogeneities of beliefs small enough to allow neglecting third order
terms. This term then tends to be positive if the relative dispersion of beliefs
in the population is on average larger for “good” states (defined by larger
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returns Rh) and lower for “bad” states, provided that individual absolute risk
tolerance does not increase too fast, i.e. when T ′

ah
(y◦

ah
) < 1 for all a, h.

The above statements follow by direct inspection. It may be worth re-
marking that the effect of heterogeneity of beliefs on the risk premium aggre-
gation bias, through the adjustment coefficient r◦, operates via the first term
A above, whether or not there is any systematic pattern in the distribution
of beliefs among investors. We attempt next to gain more insights into the
interactions between this “adjustment coefficient effect” and the two other
“pessimism” and “doubt” effects, by looking at some specific examples drawn
from the HARA family.

Example 6.4. The HARA family

We go back to the HARA family where VNM utilities are state indepen-
dent with individual absolute risk tolerance given by Tah (y) = θa+ηy > 0 and
thus aggregate absolute risk tolerance Th (y) = θ + ηy > 0 with θ = Ea [θa] .
The empirically plausible case where absolute risk tolerance increases corre-
sponds to η > 0. Aggregate relative risk aversion ρ (y) = y�

(
θ + ηy

)
> 0 is

then decreasing (for y > −θ�η) if and only if θ < 0.

The simpler specification to consider is the case of logarithmic utilities
η = 1. We know that there is then no scalar adjustment of the market
portfolio in the common probability equivalent equilibrium (r◦ = 1) , so that
the first and third terms in (6.13) and Proposition 6.3 disappear (as well
as the therm B2, that vanishes for the HARA family). In fact, there is no
income compensation in that case, i.e. b◦

a
= q∗ · ωa, so that from (5.16) in

Corollary 5.4, T ◦

ah
�T ◦

h
= (q∗

◦
θa + q∗ · ωa)�

(
q∗
◦
θ + q∗ · ω

)
. Therefore

(6.14)
πh − π◦

h

π◦

h

= −cova

[
πah
π◦

h

,
q∗
◦
θa + q∗ · ωa

q∗
◦
θ + q∗ · ω

]
,

which implies

Lemma 6.5. (Risk premium aggregation bias : logarithmic utilities η =
1) Consider an asset with returns Rh satisfying

∑
h
q∗
h
Rh = 1. In the case

of logarithmic utilities (η = 1) , the risk premium aggregation bias takes the
form

Eπ [Rh]− Eπ◦ [Rh] = −cova

[
Eπa [Rh] ,

q∗
◦
θa + q∗ · ωa

q∗
◦
θ + q∗ · ω

]
.

It is equal to 0 for every asset (i.e. π◦ = π) if the distribution of beliefs πa
in the population is independent of the distribution of risk attitudes θa and
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of endowments ωa. For a particular asset with returns Rh, the risk premium
aggregation bias will be positive if investors with larger risk tolerance and/or
income, i.e. with larger q∗

◦
θa+q

∗ ·ωa, are more pessimistic about the expected
return of the asset.

The case of logarithmic utilities η = 1 involves only the “pessimism effect”
identified in 2) of Proposition 6.3. The other case that is amenable to explicit
global calculations, i.e. the CARA configuration, η = 0, θa > 0, has the
potential for a richer interaction between the two other effects. We know
from Corollary 4.5 that this CARA specification implies an upward scalar
adjustment coefficient r◦ > 1 since the common probability π◦ is given by

bh = π◦
h
e−(r◦−1)ωh�θ = Ea

[(
θa�θ

)
Log πah

]
with bh < Ea

[(
θa�θ

)
πah

]
and therefore

∑
h
bh < 1 from the concavity

of the Log function. This specification displays the unpleasant feature of
an increasing relative risk aversion, with the consequence that the contri-
bution of the adjustment effect to the risk premium aggregation bias is
negative for assets with returns positively related to aggregate consump-
tion : for the market portfolio, for instance, the adjustment effect term in
Proposition 6.3 is A = − (r◦ − 1) varπ◦ [ωh]�

(
θq∗ · ω

)
< 0. On the other

hand, the pessimism effect term identified in Proposition 6.3 reduces here
to B = −cova

[
Eπa [Rh] , θa�θ

]
and will disappear again if we assume that

the distributions of beliefs πa and of risk tolerance θa are independent in the
population . The potential for interactions with the third “doubt effect”, is
nevertheless much richer as the following example is going to show.

To this end, we shall allow in our calculations for a continuum of states
and at some point also for a continuum of agents, although our theoretical
analysis is not strictly speaking quite valid in these cases. Specifically, we
assume that h is any positive real number and set ω (h) ≡ h > 0. To take
advantage of the fact that the common probability π◦ is a weighted harmonic
mean of individual beliefs, we assume that each individual probability πa (h)
is a two parameters (αa > 0, β

a
> 0) gamma distribution, with density

πa (h) = hαa−1 e−h�βa� (βαa
a
Γ (αa)) ,

where Γ (α) =

∫
+∞

0

xα−1 e−xdx is the “complete gamma function” (see John-

son, Kotz and Lalakrishnan (JKB), 1994, Ch. 17). The equivalent common
probability π◦ is then also a two parameters (α◦, β◦) gamma distribution.
The mean and variance of a (α, β) gamma distribution being αβ and αβ2
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respectively, evaluating the risk premium aggregation bias associated with
the market portfolio ω (h) ≡ h means computing the difference between
Eπ [h] = EaEπa

[h] = Ea [αaβa] and Eπ
◦ [h] = α◦β◦. We are going to see

that (under the assumption that β
a
is lognormally distributed in the popu-

lation) increasing the variance of the distribution of αa and/or of βa among
investors does increase, as expected, the scalar adjustment coefficient r◦ > 1
of the market portfolio. This contributes to a negative, and larger in ab-
solute value, adjustment effect on the risk premium aggregation bias for the
market portfolio, as identified in Proposition 6.3. Yet some dispersion in the
distribution of the parameter β

a
in the population, associated with a much

smaller variance of the distribution of αa, generates an overall positive risk
premium aggregation bias for the market portfolio, i.e. Eπ [h] − Eπ

◦ [h] > 0
: a positive “doubt effect”, overcomes in that case the negative “adjustment
effect” implied by an increasing relative risk aversion involved in the CARA
specification.

Lemma 6.6 (Risk premium aggregation bias in the CARA - gamma con-
figuration). Assume that a state h is any positive real number, that each
individual belief πa (h) has a (αa > 0, β

a
> 0) gamma distribution and that

ω (h) ≡ h. Let α = Ea

[(
θa�θ

)
αa

]
, 1�β = Ea

[(
θa�θ

)
(1�β

a
)
]
. Then the

equivalent common probability π◦ (h) has a (α◦, β◦) gamma distribution with
α◦ = α and

1�β◦ = eEa[(θaαa)�(θα) Log(1�β
a
)] e(LogΓ(α)−Ea[(θa�θ) LogΓ(αa)])�α ,

the corresponding adjustment coefficient being given by r◦−1 = θ ((1�β)− (1�β◦)) >
0.

Assume further that risk tolerance θa and the parameters αa, βa are in-
dependently ditributed in the population, and moreover that βa has a log-
normal distribution with Logβa ∼ N

(
mβ, v

2

β

)
, so that α = Ea [αa] and

1�β = Ea [1�β
a
] = e−mβ ev

2

β
�2.

1) One gets then

1�β◦ = e−mβ e(LogΓ(α)−Ea[LogΓ(αa)])�α, r◦ − 1 = θ

(
e
−mβ

e
v2
β
� 2

− 1�β◦

)
.

The function LogΓ (α) being strictly convex, the mean αβ◦ and the variance
α (β◦)2 of the equivalent common probability π◦, as well as the adjustment
coefficient r◦ > 1, increase following a mean-preserving spread of the distrib-
ution of the parameter αa. The adjustment coefficient r◦ also increases with
the variance v2β of the distribution among investors of the parameter Logβa.
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2) The contribution to the risk premium aggregation bias, of the “pes-
simism effect” term B = −cova

[
Eπa [Rh] , θa�θ

]
in Proposition 6.3 vanishes

for all assets when (αa, βa) and θa are assumed to be independently distrib-
uted as here. For the market portfolio (assuming its market value to be nor-
malized to 1), the corresponding adjustment coefficient effect A = − (r◦ − 1)
varπ◦ [h]�θ = − (r◦ − 1)α (β◦)2�θ is negative and increases in absolute
value with v2β and with a mean-preserving spread of the distribution of αa.

On the other hand, the overall market portfolio risk premium aggregation
bias is

Eπ [h]− Eπ◦ [h] = αemβ

(
ev

2

β
�2 − e−(LogΓ(α)−Ea[LogΓ(αa)])�α

)
.

It decreases with a mean-preserving spread of the distribution of αa, but
increases with v2β. In particular, it is positive if there is some dispersion in

the distribution of βa
(
v2β > 0

)
whereas the variance of the distribution of αa

is small.

Proof. The property that π◦ has a gamma distribution comes from the
fact that

(6.15) Logπ◦ (h) = (r◦ − 1)
(
h/θ

)
+ Ea

[(
θa�θ

)
Logπa (h)

]
together with

Logπa (h) = (αa − 1)Logh− (h�β
a
)− Log (βαa

a
Γ (αa)) .

The expressions for the parameters α◦, β◦ are then obtained by direct inspec-
tion.

The properties stated in 1) and 2) use a few elementary facts that we recall
now. First, if x is a normal random variable distributed asN (µ, σ2) , then for

every real number t, E [etx] = etµ+
t
2
σ
2

2 (by direct inspection). Equivalently, if
y is lognormal, with Logy distributed as N (µ, σ2) , then again for every real

number t, E [yt] = etµ+
t
2
σ
2

2 . This implies indeed that 1�β = Ea [1�β
a
] =

e−mβev
2

β
�2 as stated in the Lemma, and also Ea [βa] = emβev

2

β
�2, which is

used in 2).

The results rest essentially on the property that the function LogΓ (α)
is strictly convex. This follows from the fact that the “psi” or “digamma”
function

Ψ(α) =
dLogΓ (α)

dα
=

+∞∫
0

[
e−t −

1

(1 + t)α

]
dt

t
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is increasing, or equivalently that the “trigamma” function

Ψ′ (α) =

+∞∫
0

te−αt

1− e−t
dt

is positive (Abramowitz and Stegum (1965), Ch. 6, (6.3.21) and (6.4.1)).

The fact that LogΓ (α) is strictly convex implies that Ea [LogΓ (αa)] ex-
ceeds LogΓ (α) where α = Ea [αa] , and that it increases following a mean-
preserving spread of the distribution of the αa (in the sense of Rotschild and
Stiglitz (1970), see Mas-Colell, Whinston and Green (1995, section 6.D)). All
the comparative statics statements about the consequences of increasing the
dispersion of the distributions of the parameters αa, βa

, follow then by direct
inspection.

The fact that when focussing attention on the market portfolio, a signif-
icant dispersion of the distribution of the parameter β

a
generates a positive

“doubt effect” that overcomes in this case the negative “adjustment coeffi-
cient effect” when the dispersion of the distribution of αa is small, may be
intuitively understood if one remarks that the corresponding term in Propo-
sition 6.3 may be approximated when neglecting third order terms, by C �
1

2
covπ◦

[
h,Ea

[
((πa (h)− π◦ (h))�π◦ (h))2

]]
, where in fact

(
(πa (h)− π◦ (h))�π◦ (h)2

)
can in turn be approximated by (Log(πa (h)�π◦ (h)))2. For large h, the aver-
age Ea [·] is dominated by Ea

[
((1�β

a
)− (1�β◦))2

]
h2, while for small h > 0,

this average behaves like vara [αa] (Logh)
2 . Thus if αa has a small dispersion

in the population, the covariance in C will tend to be dominated by the
terms involving large ω (h) = h and thus to be positive, if the variance of the
distribution of the parameters β

a
is significant. Q.E.D.

The foregoing analysis of a few special cases of the HARA family illus-
trates the possible interactions between the three effects identified in Propo-
sition 6.3, that may contribute to a positive risk premium aggregation bias,
in particular for the market portfolio. It would be useful to supplement it
with studies of other configurations, notably in the case where absolute risk
tolerance does not increase too fast, 0 < η < 1, and where aggregate relative
risk aversion decreases with aggregate income, i.e. θ < 0, since we know
that the adjustment coefficient r◦ > 1 contributes in that case to a positive
risk premium aggregation bias for the market portfolio. As the adjustment
coefficient effect vanishes in the HARA family in the case of a CRRA utility
(θa = 0, individual and aggregate VNM utilities coincide with ρ

a
= ρ = 1/η),
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another case of interest would be for instance the configuration where in-
vestors have different CRRA utilities (Ta (y) = θa + η

a
y with θa = 0) since

we know (from Lemma 6.2) that aggregate relative risk aversion should be
then decreasing.15

7 Conclusions

It seems most relevant to incorporate heterogenous, “noisy” beliefs in
our representations of the workings of actual economies. The methods pro-
posed in this paper show that it is possible indeed to achieve this goal while
retaining the analytical simplicity of being able to describe a particular equi-
librium through a single, commonly shared “aggregate market probability”.
In a complete markets framework, the proposed approach allows the stan-
dard construction of an “expected utility maximizing representative agent”,
designed so as to mimic equilibrium prices and marginal asset valuations by
individual investors, to be extended to cover the case of diverse beliefs. Het-
erogeneity of individual portfolios, or of risk sharing, can then be studied in
particular in relation with deviations of individual beliefs from the “aggregate
market probability” so constructed. The proposed design of an aggregate
probability may require a scalar adjustment of the market portfolio, that
reflects an aggregation bias due to the heterogeneity of beliefs, and generates
accordingly an “Adjusted” version of the “Consumption based Capital Asset
Pricing Model” (ACCAPM). We also saw that an upward scalar adjustment
could contribute to a positive risk premium aggregation bias, at least when
aggregate relative risk aversion is decreasing.

Our study was made in the deliberately oversimplified setup of a static
(one period) asset exchange economy with finitely many states of the world,
in order to keep the technical apparatus down so as to be able to focus on
ideas. It remains to be seen whether the approach developped here can be
fruitfully extended to more realistic and more applied frameworks.

In particular, it would appear important to include intertemporal choice
(portfolio selection), with a finite or infinite horizon, discrete or continuous
time, in order to see if and how our approach of the consequences of het-
erogenous beliefs, can be related to more traditional theoretical and/or ap-
plied models in the finance and the macroeconomics literature, that employ
the convenient but presumably counterfactual assumption of homogenous
beliefs. Extension to a continuum of states, beyond taking a step toward
more realism, would also allow to make tighter parts of our characterization
of the aggregation procedure in terms of monotonicity of individual portfolio
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deviations (residual risk sharing rules), notably in the case of probabilities
with continuous densities. Our results, in particular existence and unicity
of a common probability equivalent equilibrium, relied also heavily on the
explicit assumption that incomes had to be positive, or equivalently that
returns were bounded below. Allowing for unbounded returns (above and
below) would appear important for practical applications involving for in-
stance normal distributions. A cursory glance at a specific example with
CARA utilities and normal distributions shows easily that unicity of a com-
mon probability equivalent equilibrium does not survive the incorporation of
such unbounded returns.16This raises interesting technical and conceptual is-
sues to be studied further (in particular, what is the meaning of the existence
of several “equivalent aggregate probabilities” ?). While the construction of
an “expected utility maximizing representative agent” is presumably closely
tied to the specific assumption of complete markets, our construction of an
equivalent aggregate market probability in terms of marginal asset pricing
invariance requirements (section 3) may perhaps be fruitfully extended to
the case of incomplete markets (but one may lose also unicity there ?). Fi-
nally, it should be worth exploring thoroughly the welfare implications of
heterogeneity of beliefs, which were only tangentially alluded to here.
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Footnotes

* We had stimulating conversations in particular with Bernard Salanié
who read carefully and commented on an earlier version, with Denis Fougère
and Francis Kramarz who provided useful references about univariate distrib-
utions for section 6.4, and with Guy Laroque, Jerry Green, Philippe Aghion,
Guido Cazzavillan, Cuong Le Van, at various stages of this research project.
Comments from participants in seminars in Harvard, Paris, Venice, Bologna,
Padova, Marseille, are gratefully acknowledged. A particular mention is due
to Andrea, Mario, Stefano, ... who kept on refueling the engine with expres-
sos during the many times when this research work failed to be “in progress”
on Piazza San Marco. Special thanks are also due to Nadine Guedj for her
kind and efficient typing assistance.

1. It should be clear that the notion of a “representative agent” used
in this discussion and in fact in the whole paper, holds only in equilibrium.
It should not be confused with the more demanding notion of an aggregate
agent who would represent the economy even out of equilibrium, i.e. for
every price system, as in Gorman (1953).

2. These is actually a sizeable literature that explores conditions im-
plying that it would be in fact “rational” for all agents to coordinate their
beliefs and strategies on signals that are indeed not perfectly correlated with
fundamentals, generating in this way excess volatility and endogenous busi-
ness cycles due to “sunspots”, “self-fulfilling prophecies”, “animal spirits”,
“market psychology” or “endogenous uncertainty” (Benhabib and Nishimura
(1979, 1985), Benhabib and Day (1982), Cass and Shell (1983), Azariadis
(1981, 1993), Farmer (1993), Kurz (1997) and among others, various sym-
posia in the Journal of Economic Theory (1986, 1994, 1998a, 1998b, 2001)
or Economic Theory (1996)). As many of these models involve a large multi-
plicity and indeterminacy of deterministic and stochastic intertemporal equi-
libria, one should then expect a persistent and significant heterogeneity of
“noisy” individual beliefs due to exacting expectations coordination problems
(Grandmont (1985)).

3. Specifically, Varian shows that within the same fixed equilibrium with
heterogenous subjective probabilities, with complete asset markets and when
agents have identical tastes, an Arrow-Debreu security will have a lower price
for a state of nature h than for another state k, if and only if the dispersion of
individual subjective probabilities (weighted by marginal expected utilities),
is larger for state h than for state k (ceteris paribus, in particular for an
unchanged mean of these weighted individual probabilities). The direction of
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this association is reversed when the income derivative of individual absolute
risk tolerance (η in the HARA family) exceeds 1.

4. The careful reader will have noted that we did not use actually the
property that q∗ is an equilibrium price vector. At this stage, q∗ can be an
arbitrary price system.

5. The careful reader will have noted also here that we have not yet used
the property that q∗ is an equilibrium vector of state prices. The first part
of the Theorem is valid when q∗ is an arbitrary price system.

6. The construction of an equilibrium “expected utility maximizing rep-
resentative investor” in the case of homogenous beliefs is standard, see Huang
and Litzenberger (1988, ch. 5), Duffie (1996, ch. 1, section E).

7. Again, the careful reader will have noted that these statements are
valid when q∗ is an arbitrary price system, not necessarily an equilibrium
price vector.

8. As noted in the introduction, aggregation of heterogenous beliefs in the
CARA configuration, leading to an aggregate probability having the form of
a weighted harmonic mean of individual probabilities as here, was performed
along similar lines some time ago by Huang and Litzenberger (1988, section
5.26), without any scalar adjustment of the market portfolio, however.

9. We use here the change of probability formula

Eπ [xh] = Eπ◦

[
πh
π◦

h

xh

]
= Eπ◦ [xh] + covπ◦

[
πh
π◦

h

, xh

]
.

10. Our results imply that exact aggregation of diverse individual proba-
bilities is possible without any shift of individual income (q∗ · ωa = b◦

a
) and

any scalar adjustment of the market portfolio (r◦ = 1) in the case of loga-
rithmic utilities η = 1, confirming the results obtained some time ago by M.
Rubinstein (1976) in this specific case, as noted in the introduction.

11. The above framework can be used to study equilibrium state prices
as a function of aggregate consumption and of heterogenous individual be-
liefs. Assuming interior portfolios throughout, consideration of the FOC of
(5.25) shows that the aggregate utilities Wh (yh ; (πbh)) are strictly concave
in yh and increasing in πbh. Thus according to (5.26), equilibrium state prices
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q∗
h
R∗

◦
= W ′

h
(ωh ; (πbh)) are “decreasing functions of aggregate consumption

ωh and increasing functions of anyone individual’s probability beliefs” (Var-
ian (1985, 1989)). More precisely, in the particular case of state independent
utilities, the equilibrium prices associated with two different states k and h
will satisfy q∗

k
= q∗

h
(resp. q∗

k
< q∗

h
) when ωk = ωh (resp. ωk > ωh) provided

that all individual beliefs (πbk) and (πbh) are the same in both states. Simi-
larly, one will get q∗

k
= q∗

h
(resp. q∗

k
> q∗

h
) when πbk = πbh (resp. πbk > πbh)

for some b provided that aggregate consumtion is the same in both states,
ωk = ωh, and all beliefs other than those of b are also invariant, πak = πah

for all investors a �= b.

12. Similarly, by rewriting individual FOC with unnormalized VNM
utilities uah (yah) , one gets y∗

ah
= (u′

ah
)−1 (q∗

h
R∗

◦
�π̃ah) , where individual

beliefs π̃ah = πah�Eπa [u
′

ah
(y∗

ah
)] are “normalized” (weighted by λ∗

a
/R∗

◦
).

When utilities are state independent and all investors have identical tastes,
one gets by adopting the same VNM utility representation uah (y) = u (y)
for all, y∗

ah
= (u′)−1 (q∗

h
R∗

◦
�π̃ah) = f (q∗

h
R∗

◦
�π̃ah) hence by aggregation

ωh = Ea [f (q
∗

h
R∗

◦
�π̃ah)] . Therefore a “mean preserving spread”, in the sense

of Rotschild and Stiglitz (1970), Mas-Colell, Whinston and Green (1995, sec-
tion 6.D), when comparing state h to state k, of the distribution of weighted
individual probabilities from (π̃ah) to (π̃ak) , given the same aggregate con-
sumption ωk = ωh, will decrease the equilibrium state price, i.e. imply
q∗
k
< q∗

h
, provided that the function f (q∗

h
R∗

◦
�π̃ah) considered as a function

of π̃ah, is concave or equivalently if absolute risk tolerance does not increase
too fast, i.e. T ′ (y) = −u′ (y)�u′′ (y) < 1 (Varian (1985, 1989), see also
the exposition in Ingersoll (1987, Chap. 9)). The reason why the condition
T ′ < 1 arises in Varian’s analysis as well as in ours, should be clear since
both express the concavity of the function gah (πah) defined in (5.2).

13. See Mehra and Prescott (1985), P. Weil (1989), Kocherlakota (1996),
Cecchetti, Lam and Mark (2000) among others.

14. Empirical evidence in finance seems to favor decreasing relative risk
aversion at the microeconomic level, see e.g. Friend and Blume (1975), Morin
and Suarez (1983). Yet evidence coming from other types of data is more
mixed, see e.g. the discussion in Peress (2000). Arrow (1970) produces a
theoretical argument showing that bounded VNM utilities implies a degree
of relative risk aversion below 1 for small wealth and above 1 for large wealth,
with the consequence that relative risk aversion, if monotone, should be in-
creasing.

15. One may note an alternative interesting formulation, where for in-
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stance the “true” probability π belongs to a particular class indexed by a
vector of parameters γ, corresponding actually to a particular vector γ, and
where individual beliefs πa are also all members of that class of probabi-
lities, each being indexed by a vector γ

a
with Ea [γa] = γ (with the in-

terpretation that investors receive, say, unbiased signals about the “true”
vector of parameters γ). The risk premium aggregation bias would then be
Eπ [Rh] − Eπ◦ [Rh] , where π may now differ from the average π = Ea [πa] .
Such a formulation may be interesting to study despite the fact that it is
not invariant to a nonlinear change of variables. For instance, in the partic-
ular CARA - gamma specification of Lemma 6.6, the market portfolio risk
premium aggregation bias would then be αβ − αβ◦, where α and β are the
parameters of the “true” gamma distribution. If agents receive an unbiased
signal about α, then α = Ea [αa] = α. If they get an unbiased signal about

β
a
, then β = Ea [βa] = emβeυ

2

β
/2 and one gets the same results as in the

text. If on the other hand the signal is about relative deviations of βa, i.e.
with Ea [Logβa] =Logβ = mβ, the market portfolio risk premium aggegation
bias α

(
β − β◦

)
< 0 is dominated by the effect of the adjustment coefficient

r◦ > 1, which is negative since aggregate relative risk aversion is increasing
in the CARA specification.

16. Specifically, consider the CARA specification with the state h being
any positive and negative real number and ω (h) ≡ h as in Lemma 6.6. Let
πa (h) be normally distributed as N (ma, σ

2

a
) . One verifies then by direct

inspection from (6.15) that π◦ (h) is also normally distributed as N (m◦, σ2) ,
where 1/σ2 = Ea

[(
θa/θ

)
(1/σ2

a
)
]
, m◦ and r◦ are related by m◦ = m +

(r◦ − 1)σ2�θ with m = Ea

[(
θa/θ

) 1/σ2

a

1/σ2
ma

]
, and m◦ (or r◦) is solution of

the second degree equation

(m◦)2 = Ea

[(
θa/θ

) 1/σ2

a

1/σ2
m2

a

]
− σ2Ea

[(
θa/θ

)
Log

(
1/σ2

a

1/σ2

)]
.

The term after the minus sign is less than Log[1] = 0, since the function Log
is concave, so (m◦)2 is greater than the first term of the right hand side of
the equation, which exceeds itself m2. Therefore (m◦)2 > m2. There are two
solutions, one involving m◦ > m and r◦ > 1, the other m◦ < −m and r◦ < 1.
This specific feature is due to the fact that ω (h) can take any unbounded
positive and negative value, while the assumption that ω (h) was bounded
below by 0 played a crucial role to get unicity in the general analysis of the
text.
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